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In this paper we established some vector-valued inequalities of Gronwall type in ordered Banach spaces. Our results can be applied
to investigate systems of real-valued Gronwall-type inequalities. We also show that the classical Gronwall-Bellman-Bihari integral
inequality can be generalized from composition operators to a variety of operators, which include integral operators, maximal
operators, geometric mean operators, and geometric maximal operators.

1. Introduction

It is well known that the Gronwall-type inequalities play
an important role in the study of qualitative properties of
solutions to differential equations and integral equations.The
Gronwall inequality was established in 1919 by Gronwall [1]
and then it was generalized by Bellman [2]. In fact, if

𝑢 (𝑡) ≤ 𝜂 + ∫

𝑡

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑏, (1)

where 𝜂 ≥ 0 and 𝑢, and 𝑔 are nonnegative continuous func-
tions on [0, 𝑏], then

𝑢 (𝑡) ≤ 𝜂 exp(∫
𝑡

0

𝑔 (𝑠) 𝑑𝑠) , 0 ≤ 𝑡 ≤ 𝑏. (2)

This result plays a key role in studying stability and asymp-
totic behavior of solutions to differential equations and
integral equations. One of the important nonlinear general-
izations of (1) and (2) was established by Bihari [3]. Assume
that 0 ≤ 𝑘 ≤ 𝜂 < 𝐶, 𝑢 and 𝑔 are nonnegative continuous
functions on [𝑎, 𝑏], and 𝑟 is a positive increasing continuous
function on [0,∞). Bihari showed that if

𝑢 (𝑡) ≤ 𝜂 + ∫

𝑡

𝑎

𝑔 (𝑠) 𝑟 (𝑢 (𝑠)) 𝑑𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏, (3)

and ∫𝑏
𝑎
𝑔(𝑠)𝑑𝑠 < ∫

𝐶

𝜂
𝑟(𝑠)
−1
𝑑𝑠, then

𝑢 (𝑡) ≤ 𝐺
−1
(𝐺 (𝜂) + ∫

𝑡

𝑎

𝑔 (𝑠) 𝑑𝑠) < 𝐶, 𝑎 ≤ 𝑡 ≤ 𝑏, (4)

where 𝐺(𝑥) = ∫

𝑥

𝑘
𝑟(𝑠)
−1
𝑑𝑠, 𝑥 ≥ 𝑘. By choosing 𝑟(𝑠) = 𝑠,

inequality (4) can be reduced to the form (2).Many results on
the various generalizations of real-valuedGronwall-Bellman-
Bihari type inequalities are established. See [4–12], [13,
CH.XII], [14–16], and the references given in this literature.

Another direction of generalizations is the development
of the abstract Gronwall lemma. These results are closely
related to the fixed points of operators. See [17, 18], [13,
CH.XIV], [19], [20, Proposition 7.15], and the references given
in this literature.

Inequality (3) can be written in a general form

𝑢 (𝑡) ≤ 𝜂 + ∫

𝑡

𝑎

𝑔 (𝑠) 𝐴 [𝑢] (𝑠) 𝑑𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏, (5)

where 𝐴 is a positive operator on continuous functions. If 𝐴
is a composition operator defined by 𝐴[𝑢](𝑠) = 𝑟(𝑢(𝑠)), then
(5) is reduced to (3). We show that if 𝐴 belongs to the class
F of operators which is defined in Section 5, then we have an
upper estimate of 𝑢which is similar to the form (4). It is worth
pointing out that the classF includes integral operators

T [𝑓] (𝑡) = ∫
𝑡

𝑎

𝑘 (𝑡, 𝑠) 𝑟 (𝑓 (𝑠)) 𝑑𝑠, (6)
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maximal operators

M [𝑓] (𝑡) = sup
𝑎<𝑥<𝑡

∫

𝑡

𝑥

𝑘 (𝑡, 𝑠) 𝑟 (𝑓 (𝑠)) 𝑑𝑠, (7)

geometric mean operators

G [𝑓] (𝑡) = exp( 1

∫

𝑡

𝑎
𝑘 (𝑡, 𝑠) 𝑑𝑠

∫

𝑡

𝑎

𝑘 (𝑡, 𝑠) log 𝑟 (𝑓 (𝑠)) 𝑑𝑠) ,

(8)

and geometric maximal operators

G [𝑓] (𝑡)

= sup
𝑎<𝑥<𝑡

exp( 1

∫

𝑡

𝑥
𝑘 (𝑡, 𝑠) 𝑑𝑠

∫

𝑡

𝑥

𝑘 (𝑡, 𝑠) log 𝑟 (𝑓 (𝑠)) 𝑑𝑠) .

(9)

We discuss these operators and the class F in Section 5. We
extend the Gronwall-Bellman-Bihari inequality (3) and (4) to
the form (5) and the operator 𝐴 in (5) is generalized from a
composition operator to the classF of operators.

The aim of this paper is to investigate vector-valued
inequalities in ordered Banach spaces. Under suitable con-
ditions we have estimates for 𝑢 which are similar to (4).
By restricting our results to Euclidean spaces we study
systems of real-valued Gronwall-type inequalities. For the
one-dimensional case, real-valued inequalities of the form (5)
with 𝐴 ∈ F are discussed.

Throughout this paper, let R+ = [0,∞), 𝐼 = [𝑎, 𝑏], where
−∞ < 𝑎 < 𝑏 < ∞, let 𝑌

1
, . . . , 𝑌

𝑛
be Banach spaces, Y =

𝑌
1
× ⋅ ⋅ ⋅ ×𝑌

𝑛
; and 𝑌 be an ordered Banach space with an order

cone𝐾 (see [20, Definition 7.1]).We denote by𝐶(𝑋
1
, 𝑋
2
) and

𝐶
1
(𝑋
1
, 𝑋
2
) the space of continuous operators and the space

of continuously Fréchet differentiable operators, respectively,
from𝑋

1
into𝑋

2
.

2. Preliminaries

For𝑓∈𝐶(𝐼, 𝑌), the integral of𝑓 on 𝐼 and the derivative of𝑓 at
𝑡
0
∈𝐼, which are denoted by ∫𝑏

𝑎
𝑓(𝑡)𝑑𝑡 and𝑓󸀠(𝑡

0
), respectively,

can be defined as generalizations of the usual definitions of
integral and derivative for real-valued functions. Onemay see
[20, Sections 3.1 and 3.2] for the definitions and properties of
the integral and derivative. In particular, if 𝑓󸀠(𝑡) exists for all
𝑡 ∈ 𝐼, where 𝑓󸀠(𝑎) and 𝑓󸀠(𝑏) are defined by one-sided limits,
and if 𝑓󸀠 is continuous on 𝐼, then 𝑓(𝑏) − 𝑓(𝑎) = ∫𝑏

𝑎
𝑓
󸀠
(𝑡)𝑑𝑡. If

we define 𝐹(𝑡) = ∫𝑡
𝑎
𝑓(𝑠)𝑑𝑠 for all 𝑡 ∈ [𝑎, 𝑏], then 𝐹󸀠(𝑡) exists

for all 𝑡 ∈ (𝑎, 𝑏) and 𝐹󸀠(𝑡) = 𝑓(𝑡). See [20, Propositions 3.5
and 3.7]. By defining

K = {𝑓 : 𝑓 ∈ 𝐶 (𝐼, 𝑌) , 𝑓 (𝑡) ∈ 𝐾 ∀𝑡 ∈ 𝐼} ⊆ 𝐶 (𝐼, 𝑌) , (10)

we see that 𝐶(𝐼, 𝑌) is an ordered Banach space with sup-
norm ‖ ⋅ ‖

∞
and the order cone K. If 𝑓 ≤ 𝑔 in 𝐶(𝐼, 𝑌), then

∫

𝑏

𝑎
𝑓(𝑡)𝑑𝑡 ≤ ∫

𝑏

𝑎
𝑔(𝑡)𝑑𝑡.

By [21,Theorem7.1.9]we see that, for 𝑡 ∈ (𝑎, 𝑏), theFréchet
derivative𝐷F𝑓(𝑡) exists if and only if 𝑓󸀠(𝑡) exists and

(𝐷F𝑓 (𝑡)) (ℎ) = ℎ𝑓
󸀠
(𝑡) ∀ℎ ∈ R. (11)

Here we denote by (𝐷F𝑓(𝑡))(ℎ) the value of𝐷F𝑓(𝑡) at ℎ.
For 𝑦
𝑖
∈ 𝑌
𝑖
, 𝑖 = 1, . . . , 𝑛, let 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
) ∈ Y and we

define ‖𝑦‖Y = ‖𝑦1‖𝑌
1

+ ⋅ ⋅ ⋅ + ‖𝑦
𝑛
‖
𝑌
𝑛

. Then ‖ ⋅ ‖Y is a norm and
Y , with coordinatewise linear operations, is a Banach space.
If 𝑌
1
, . . . , 𝑌

𝑛
are ordered Banach spaces with ordered cones

𝐾
1
, . . . , 𝐾

𝑛
, respectively, then Y is an ordered Banach space

with an order cone 𝐾
1
× ⋅ ⋅ ⋅ × 𝐾

𝑛
. It is easy to see that a

sequence of points 𝑦(𝑚) = (𝑦(𝑚)
1
, . . . , 𝑦

(𝑚)

𝑛
) in Y converges to

a point (𝑐
1
, . . . , 𝑐

𝑛
) ∈ Y if and only if 𝑦(𝑚)

𝑖
converges to 𝑐

𝑖
in 𝑌
𝑖

for each 𝑖 = 1, . . . , 𝑛. For 𝑓
𝑖
∈ 𝐶(𝐼, 𝑌

𝑖
), 𝑖 = 1, . . . , 𝑛, we define

𝑓(𝑡) = (𝑓
1
(𝑡), . . . , 𝑓

𝑛
(𝑡)). Then 𝑓 ∈ 𝐶(𝐼,Y ). If 𝑓󸀠

1
(𝑡), . . . , 𝑓

󸀠

𝑛
(𝑡)

all exist for 𝑡 ∈ 𝐼, then the derivative of 𝑓 at 𝑡 exists and
𝑓
󸀠
(𝑡) = (𝑓

󸀠

1
(𝑡), . . . , 𝑓

󸀠

𝑛
(𝑡)).

Let𝑋,𝑌, and𝑍 be Banach spaces, and𝑈,𝑉 are nonempty
open subsets of𝑋, 𝑌, respectively, and let 𝑔 : 𝑈 → 𝑉 and 𝑓 :
𝑉 → 𝑍. Suppose that 𝑔 is continuous and Fréchet differen-
tiable at a point 𝑧 ∈ 𝑈 and that 𝑓 is continuous and Fréchet
differentiable at the point 𝑔(𝑧) ∈ 𝑉. Then 𝑓 ∘ 𝑔 is continuous
and Fréchet differentiable at 𝑧, and

𝐷F (𝑓 ∘ 𝑔) (𝑧) = 𝐷F𝑓 (𝑔 (𝑧)) ∘ 𝐷F𝑔 (𝑧) . (12)

Let𝑋
1
,𝑋
2
, and 𝑌 be Banach spaces, and𝐴 is a nonempty

open subset of 𝑋
1
× 𝑋
2
, and let 𝑓 : 𝐴 → 𝑌 be given by

(𝑥
1
, 𝑥
2
) 󳨃→ 𝑓(𝑥

1
, 𝑥
2
). For (𝑧

1
, 𝑧
2
) ∈ 𝐴, let 𝐴

1
= {𝑥
1
∈𝑋
1
: (𝑥
1
,

𝑧
2
) ∈ 𝐴} and let 𝑔(𝑥

1
) = 𝑓(𝑥

1
, 𝑧
2
) for all 𝑥

1
∈ 𝐴
1
. It is

clear that 𝐴
1
⊆ 𝑋
1
is open and 𝑔 : 𝐴

1
→ 𝑌. If 𝑔 has a

Fréchet derivative at 𝑧
1
, then we define the partial Fréchet

derivative of 𝑓 at (𝑧
1
, 𝑧
2
) with respect to the variable 𝑥

1

to be 𝐷F,1𝑓(𝑧1, 𝑧2) = 𝐷F𝑔(𝑧1); it is a linear operator of
𝑋
1
into 𝑌. The derivative 𝐷F,2𝑓(𝑧1, 𝑧2) is defined similarly.

If 𝑓 is Fréchet differentiable at (𝑧
1
, 𝑧
2
), then 𝑓 is Fréchet

differentiable with respect to both variables at (𝑧
1
, 𝑧
2
) and

(𝐷F𝑓 (𝑧1, 𝑧2)) ((𝑥1, 𝑥2)) = (𝐷F,1𝑓 (𝑧1, 𝑧2)) (𝑥1)

+ (𝐷F,2𝑓 (𝑧1, 𝑧2)) (𝑥2)

(13)

for all (𝑥
1
, 𝑥
2
) ∈ 𝑋

1
× 𝑋
2
. Moreover, 𝑓 is continuously

Fréchet differentiable in a neighborhood of (𝑧
1
, 𝑧
2
) if and

only if all partial Fréchet derivatives are continuous in a
neighborhood of (𝑧

1
, 𝑧
2
). Similar results hold for maps of the

form (𝑥
1
, . . . , 𝑥

𝑛
) 󳨃→ 𝑓(𝑥

1
, . . . , 𝑥

𝑛
).

Notation. Here we give notations used in this paper for
reader’s convenience. 𝑢 ∈ 𝐶(𝐼, 𝑌), Φ : 𝐶(𝐼, 𝑌) → 𝐶(𝐼, 𝑌),
𝐹 ∈ 𝐶

1
(𝐼 × Y , 𝑌), 𝑆

𝑖
: 𝐶(𝐼, 𝑌) → 𝐶

1
(𝐼, 𝑌
𝑖
), 𝑖 = 1, . . . , 𝑛, and

S : 𝐶(𝐼, 𝑌) → 𝐶
1
(𝐼, 𝐼 × Y ) is defined by

S [𝑢] (𝑡) = (𝑡, 𝑆
1
[𝑢] (𝑡) , . . . , 𝑆

𝑛
[𝑢] (𝑡)) ,

𝑇
𝑖
: 𝐶 (𝐼, 𝑌) 󳨀→ 𝐶 (𝐼, 𝑌) ,

𝑖 = 0, . . . , 𝑛, ℓ ∈ 𝐶
1
(𝑌, 𝑌) , 𝑈

𝑖
∈ 𝐶 (𝐼, 𝑌) , 𝑖 = 0, . . . , 𝑛.

(14)
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3. Some Vector-Valued
Gronwall-Type Inequalities

In this section we consider vector-valued inequalities of the
form

Φ [𝑢] ≤ 𝐹 ∘ S [𝑢] in 𝐶 (𝐼, 𝑌) . (15)

Theorem 1 gives an estimate of 𝑢 which is similar to the form
(4).

Theorem 1. Let 𝐿
0
∈ 𝑌. Suppose that 𝐹(S[𝑢](𝑎)) ≤ 𝐿

0
and

Φ is bijective and is of monotone type, and suppose that there
exist monotone increasing operators 𝑇

𝑖
: 𝐶(𝐼, 𝑌) → 𝐶(𝐼, 𝑌),

𝑖 = 0, . . . , 𝑛, such that for all 𝑡 ∈ 𝐼,

(𝐷F,1𝐹 (S [𝑢] (𝑡))) (1) ≤ 𝑇0 [𝑢] (𝑡) , (16)

(𝐷F,𝑖+1𝐹 (S [𝑢] (𝑡))) (𝑆𝑖[𝑢]
󸀠
(𝑡)) ≤ 𝑇

𝑖
[𝑢] (𝑡) ,

𝑖 = 1, . . . , 𝑛.

(17)

We also suppose that there exist ℓ ∈ 𝐶1(𝑌, 𝑌) and𝑈
𝑖
∈ 𝐶(𝐼, 𝑌),

𝑖 = 0, . . . , 𝑛, such that ℓ is bijective and monotone increasing
and is of monotone type, and for 𝑖 = 0, 1, . . . , 𝑛,

(𝐷Fℓ ((𝐹 ∘ S [𝑢]) (𝑡))) (𝑇𝑖 [Φ
−1
[𝐹 ∘ S [𝑢]]] (𝑡)) ≤ 𝑈

𝑖
(𝑡)

∀𝑡 ∈ 𝐼.

(18)

If 𝑢 satisfies (15), then

𝑢 ≤ Φ
−1
[𝑉] in 𝐶 (𝐼, 𝑌) , (19)

where 𝑉 ∈ 𝐶(𝐼, 𝑌) is defined by

𝑉 (𝑡) = ℓ
−1
(ℓ (𝐿

0
) +

𝑛

∑

𝑖=0

∫

𝑡

𝑎

𝑈
𝑖
(𝑦) 𝑑𝑦) , 𝑡 ∈ 𝐼. (20)

Moreover, if there exists𝑀 ∈ 𝑌 such that ℓ(𝑉(𝑡)) ≤ 𝑀 for all
𝑡 ∈ 𝐼, then

𝑢 ≤ Φ
−1
[ℓ
−1
(𝑀)] in 𝐶 (𝐼, 𝑌) , (21)

where ℓ−1(𝑀) in (21) is the constant function in 𝐶(𝐼, 𝑌) with
value ℓ−1(𝑀).

Proof of Theorem 1. Let 𝛼
𝑢
= 𝐹 ∘ S[𝑢] ∈ 𝐶1(𝐼, 𝑌). By (15) we

have Φ[𝑢](𝑡) ≤ 𝛼
𝑢
(𝑡) for all 𝑡 ∈ 𝐼. By the chain rule we see

that, for 𝑡 ∈ (𝑎, 𝑏) and ℎ ∈ R,

ℎ𝛼
󸀠

𝑢
(𝑡) = (𝐷F𝛼𝑢 (𝑡)) (ℎ) = (𝐷F (𝐹 ∘ S [𝑢]) (𝑡)) (ℎ)

= (𝐷F𝐹 (S [𝑢] (𝑡)) ∘ 𝐷FS [𝑢] (𝑡)) (ℎ) .
(22)

Since S[𝑢] ∈ 𝐶1(𝐼, 𝐼 × Y ), (𝐷FS[𝑢](𝑡))(ℎ) = ℎS[𝑢]
󸀠
(𝑡) and

we see that

ℎ𝛼
󸀠

𝑢
(𝑡) = (𝐷F𝐹 (S [𝑢] (𝑡))) (ℎS[𝑢]

󸀠
(𝑡))

= (𝐷F,1𝐹 (S [𝑢] (𝑡))) (ℎ)

+ (𝐷F,2𝐹 (S [𝑢] (𝑡))) (ℎ𝑆1[𝑢]
󸀠
(𝑡))

+ ⋅ ⋅ ⋅ + (𝐷F,𝑛+1𝐹 (S [𝑢] (𝑡))) (ℎ𝑆𝑛[𝑢]
󸀠
(𝑡))

= ℎ (𝐷F,1𝐹 (S [𝑢] (𝑡))) (1)

+ ℎ (𝐷F,2𝐹 (S [𝑢] (𝑡))) (𝑆1[𝑢]
󸀠
(𝑡))

+ ⋅ ⋅ ⋅ + ℎ (𝐷F,𝑛+1𝐹 (S [𝑢] (𝑡))) (𝑆𝑛[𝑢]
󸀠
(𝑡)) .

(23)

This implies

𝛼
󸀠

𝑢
(𝑡) = (𝐷F,1𝐹 (S [𝑢] (𝑡))) (1)

+ (𝐷F,2𝐹 (S [𝑢] (𝑡))) (𝑆1[𝑢]
󸀠
(𝑡))

+ ⋅ ⋅ ⋅ + (𝐷F,𝑛+1𝐹 (S [𝑢] (𝑡))) (𝑆𝑛[𝑢]
󸀠
(𝑡)) .

(24)

Since Φ is bijective, we write Φ−1[𝛼
𝑢
] to be the solution of

the equation Φ[𝑥] = 𝛼
𝑢
. By Φ[𝑢] ≤ 𝛼

𝑢
in 𝐶(𝐼, 𝑌) and [20,

Proposition 7.37] we see that 𝑢 ≤ Φ
−1
[𝛼
𝑢
]. This shows that

𝑇
𝑖
[𝑢] ≤ 𝑇

𝑖
[Φ
−1
[𝛼
𝑢
]] for 𝑖 = 0, 1, . . . , 𝑛 and hence

𝛼
󸀠

𝑢
(𝑡) ≤

𝑛

∑

𝑖=0

𝑇
𝑖
[𝑢] (𝑡) ≤

𝑛

∑

𝑖=0

𝑇
𝑖
[Φ
−1
[𝛼
𝑢
]] (𝑡) . (25)

Since ℓ ismonotone increasing, we see that𝐷Fℓ(𝑦) is positive
and hencemonotone increasing for each 𝑦 ∈ 𝑌.Therefore for
ℎ > 0,

ℎ(ℓ ∘ 𝛼
𝑢
)
󸀠

(𝑡) = (𝐷F (ℓ ∘ 𝛼𝑢) (𝑡)) (ℎ)

= (𝐷Fℓ (𝛼𝑢 (𝑡)) ∘ 𝐷F𝛼𝑢 (𝑡)) (ℎ)

= (𝐷Fℓ (𝛼𝑢 (𝑡))) (ℎ𝛼
󸀠

𝑢
(𝑡))

≤ ℎ (𝐷Fℓ (𝛼𝑢 (𝑡))) (

𝑛

∑

𝑖=0

𝑇
𝑖
[Φ
−1
[𝛼
𝑢
]] (𝑡))

= ℎ

𝑛

∑

𝑖=0

(𝐷Fℓ (𝛼𝑢 (𝑡))) (𝑇𝑖 [Φ
−1
[𝛼
𝑢
]] (𝑡))

≤ ℎ

𝑛

∑

𝑖=0

𝑈
𝑖
(𝑡) .

(26)

For 𝑎 < 𝑑 < 𝑡 < 𝑏 we obtain

(ℓ ∘ 𝛼
𝑢
) (𝑡) − (ℓ ∘ 𝛼

𝑢
) (𝑑) ≤

𝑛

∑

𝑖=0

∫

𝑡

𝑑

𝑈
𝑖
(𝑦) 𝑑𝑦. (27)
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By letting 𝑑 → 𝑎 and the condition 𝛼
𝑢
(𝑎) ≤ 𝐿

0
,

ℓ (𝛼
𝑢
(𝑡)) ≤ ℓ (𝐿

0
) +

𝑛

∑

𝑖=0

∫

𝑡

𝑎

𝑈
𝑖
(𝑦) 𝑑𝑦 = ℓ (𝑉 (𝑡)) (28)

for all 𝑡 ∈ (𝑎, 𝑏). Since ℓ ∘ 𝛼
𝑢
and ℓ ∘ 𝑉 are continuous on 𝐼,

inequality (28) holds for all 𝑡 ∈ 𝐼. This implies 𝛼
𝑢
(𝑡) ≤ 𝑉(𝑡)

for all 𝑡 ∈ 𝐼. Therefore Φ[𝑢] ≤ 𝛼
𝑢
≤ 𝑉 and 𝑢 ≤ Φ

−1
[𝑉] in

𝐶(𝐼, 𝑌).
Since ℓ−1 andΦ−1 aremonotone increasing, it follows that

if ℓ(𝑉(𝑡)) ≤ 𝑀 for all 𝑡 ∈ 𝐼 then 𝑉 ≤ ℓ
−1
(𝑀) in 𝐶(𝐼, 𝑌) and

we obtain (21). This completes the proof.

In the followingwe consider two particular cases as exam-
ples of Theorem 1. We see that under these cases, conditions
inTheorem 1 can be reduced to more simpler forms.

In the case 𝑌
1
= 𝑌
2
= ⋅ ⋅ ⋅ = 𝑌

𝑛
= 𝑌 and 𝐹(𝑡, 𝑦

1
, . . . , 𝑦) =

𝑦
1
+ ⋅ ⋅ ⋅ + 𝑦

𝑛
, we see that 𝐹 ∘ S[𝑢] ∈ 𝐶1(𝐼, 𝑌) is given by

𝐹 ∘ S [𝑢] (𝑡) = 𝐹 (S [𝑢] (𝑡)) =
𝑛

∑

𝑖=1

𝑆
𝑖
[𝑢] (𝑡) , 𝑡 ∈ 𝐼. (29)

Moreover, 𝐷F,1𝐹(⋅) is the zero operator of 𝐼 into 𝑌 and
𝐷F,𝑖+1𝐹(⋅) is the identity operator of 𝑌 into 𝑌. We have the
following corollary.

Corollary 2. Let 𝐿
0
∈ 𝑌 and let 𝑢,Φ, ℓ, 𝑆

𝑖
, 𝑇
𝑖
,𝑈
𝑖
, 𝑖 = 1, . . . , 𝑛,

and S be given as in Theorem 1 with 𝑌
1
= 𝑌
2
= ⋅ ⋅ ⋅ = 𝑌

𝑛
= 𝑌.

Suppose that ∑𝑛
𝑖=1
𝑆
𝑖
[𝑢](𝑎) ≤ 𝐿

0
, and

𝑆
𝑖
[𝑢]
󸀠
(𝑡) ≤ 𝑇

𝑖
[𝑢] (𝑡) , (30)

(𝐷Fℓ(

𝑛

∑

𝑗=1

𝑆
𝑗
[𝑢] (𝑡)))(𝑇

𝑖
[

[

Φ
−1
[

[

𝑛

∑

𝑗=1

𝑆
𝑗
[𝑢]
]

]

]

]

(𝑡)) ≤ 𝑈
𝑖
(𝑡)

(31)

for each 𝑖 = 1, . . . , 𝑛 and for all 𝑡 ∈ 𝐼. If 𝑢 satisfies

Φ [𝑢] ≤

𝑛

∑

𝑖=1

𝑆
𝑖
[𝑢] in 𝐶 (𝐼, 𝑌) , (32)

then we have (19)–(21).

Remark 3. If 𝐾
𝑖
: 𝐶(𝐼, 𝑌) → 𝐶(𝐼, 𝑌) and 𝑆

𝑖
[𝑢](𝑡) =

∫

𝑡

𝑎
𝐾
𝑖
[𝑢](𝑧)𝑑𝑧 for each 𝑖 = 1, . . . , 𝑛, then (32) is reduced to

the following integral inequality:

Φ [𝑢] (𝑡) ≤

𝑛

∑

𝑖=1

∫

𝑡

𝑎

𝐾
𝑖
[𝑢] (𝑧) 𝑑𝑧, 𝑡 ∈ 𝐼. (33)

By [20, Proposition 3.7] the item 𝑆
𝑖
[𝑢]
󸀠
(𝑡) in (17) and (30)

can be replaced by 𝐾
𝑖
[𝑢](𝑡). Moreover, if 𝐾

𝑖
is monotone

increasing for each 𝑖, then we can choose𝑇
𝑖
= 𝐾
𝑖
, 𝑖 = 1, . . . , 𝑛,

in Corollary 2 and condition (30) is redundant.

Consider the case that 𝑌
1
, . . . , 𝑌

𝑛
are ordered Banach

spaces, 𝑌 = Y , and 𝐹(𝑡, 𝑦
1
, . . . , 𝑦

𝑛
) = (𝑦

1
, . . . , 𝑦

𝑛
). We see that

𝐹 ∘ S[𝑢] ∈ 𝐶1(𝐼,Y ) is given by

(𝐹 ∘ S [𝑢]) (𝑡) = 𝐹 (S [𝑢] (𝑡)) = (𝑆
1
[𝑢] (𝑡) , . . . , 𝑆

𝑛
[𝑢] (𝑡)) ,

𝑡 ∈ 𝐼.

(34)

Moreover, 𝐷F,1𝐹(⋅) is the zero operator of 𝐼 into Y and
𝐷F,𝑖+1𝐹(⋅) is the operator of 𝑌𝑖 into Y such that for ℎ ∈ 𝑌

𝑖
,

the 𝑖th element of (𝐷F,𝑖+1𝐹(⋅))(ℎ) is ℎ and the other elements
are zero.

Remark 4. Let Φ
𝑖
: 𝐶(𝐼,Y ) → 𝐶(𝐼, 𝑌

𝑖
), 𝑖 = 1, . . . , 𝑛, and

Φ : 𝐶(𝐼,Y ) → 𝐶(𝐼,Y ) is defined by Φ[𝑢](𝑡) = (Φ
1
[𝑢](𝑡),

. . . , Φ
𝑛
[𝑢](𝑡)) for 𝑡 ∈ 𝐼. Suppose that each Φ

𝑖
is injective and

is of monotone type. Suppose that for any𝑤 = (𝑤
1
, . . . , 𝑤

𝑛
) ∈

𝐶(𝐼,Y ), where 𝑤
𝑖
∈ 𝐶(𝐼, 𝑌

𝑖
), there exist V ∈ 𝐶(𝐼,Y ) such that

Φ
𝑖
[V] = 𝑤

𝑖
for each 𝑖 = 1, . . . , 𝑛. Then Φ is bijective and is of

monotone type.

The following corollary can be obtained byTheorem 1.

Corollary 5. Let 𝐿
0
= (𝐿
1
, . . . , 𝐿

𝑛
) ∈ Y and let 𝑢, ℓ, 𝑆

𝑖
,

𝑖 = 1, . . . , 𝑛, and S be given as in Theorem 1 with 𝑌 = Y . Let
Φ
1
, . . . , Φ

𝑛
,Φ be given as in Remark 4. Suppose that 𝑆

𝑖
[𝑢](𝑎) ≤

𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛, and there exist 𝑈

𝑖
∈ 𝐶(𝐼,Y ) and monotone

increasing operators 𝐺
𝑖
: 𝐶(𝐼,Y ) → 𝐶(𝐼, 𝑌

𝑖
), 𝑖 = 1, . . . , 𝑛,

such that

𝑆
𝑖
[𝑢]
󸀠
(𝑡) ≤ 𝐺

𝑖
[𝑢] (𝑡) , (35)

(𝐷Fℓ ((𝐹 ∘ S [𝑢]) (𝑡))) (𝑇𝑖 [Φ
−1
[𝐹 ∘ S [𝑢]]] (𝑡)) ≤ 𝑈

𝑖
(𝑡) ,

(36)

for 𝑖 = 1, . . . , 𝑛 and for all 𝑡 ∈ 𝐼, where 𝑇
𝑖
[⋅](𝑡) ∈ Y and the 𝑖th

element of 𝑇
𝑖
[⋅](𝑡) is 𝐺

𝑖
[⋅](𝑡) and the other elements are zero. If

𝑢 satisfies the systems

Φ
𝑖
[𝑢] (𝑡) ≤ 𝑆

𝑖
[𝑢] (𝑡) , 𝑖 = 1, . . . , 𝑛, (37)

for all 𝑡 ∈ 𝐼, then we have (19)–(21).

Remark 6. If 𝐾
𝑖
: 𝐶(𝐼,Y ) → 𝐶(𝐼, 𝑌

𝑖
) and 𝑆

𝑖
[𝑢](𝑡) =

∫

𝑡

𝑎
𝐾
𝑖
[𝑢](𝑧)𝑑𝑧 for each 𝑖 = 1, . . . , 𝑛, then (37) is reduced to

the system of integral inequalities

Φ
𝑖
[𝑢] (𝑡) ≤ ∫

𝑡

𝑎

𝐾
𝑖
[𝑢] (𝑧) 𝑑𝑧, 𝑡 ∈ 𝐼, 𝑖 = 1, . . . , 𝑛. (38)

The item 𝑆
𝑖
[𝑢]
󸀠
(𝑡) in (35) can be replaced by 𝐾

𝑖
[𝑢](𝑡).

Moreover, if 𝐾
𝑖
is monotone increasing for each 𝑖, then we

can choose𝐺
𝑖
= 𝐾
𝑖
, 𝑖 = 1, . . . , 𝑛, in Corollary 5 and condition

(35) is redundant.

4. Systems of Real-Valued
Gronwall-Type Inequalities

In this section we apply results in Section 3 to obtain systems
of real-valued Gronwall-type inequalities. Consider the case
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𝑌 = R𝑚, 𝑌
𝑖
= R, 𝑖 = 1, . . . , 𝑛, Y = R𝑛, and 𝐾 = {(𝑥

1
, . . . ,

𝑥
𝑚
) ∈ R𝑚 : 𝑥

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚}. Let 𝑢

𝑖
∈ 𝐶(𝐼,R), Φ

𝑖
: 𝐶(𝐼,

R𝑚) → 𝐶(𝐼,R), 𝐹
𝑖
∈ 𝐶
1
(𝐼 × R𝑛,R), ℓ

𝑖
∈ 𝐶
1
(R𝑚,R),

𝑖 = 1, . . . , 𝑚, and 𝑢 ∈ 𝐶(𝐼,R𝑚), 𝑢(𝑡) = (𝑢
1
(𝑡), . . . , 𝑢

𝑚
(𝑡)),

𝐹 ∈ 𝐶
1
(𝐼 × R𝑛,R𝑚), 𝐹 = (𝐹

1
, . . . , 𝐹

𝑚
). Let 𝑆

𝑖
: 𝐶(𝐼,R𝑚) →

𝐶
1
(𝐼,R), 𝑖 = 1, . . . , 𝑛.
Define Φ : 𝐶(𝐼,R𝑚) → 𝐶(𝐼,R𝑚) by

Φ [𝑢] (𝑡) = (Φ
1
[𝑢] (𝑡) , . . . , Φ

𝑚
[𝑢] (𝑡)) , 𝑡 ∈ 𝐼. (39)

Then (15) can be reduced to the system

Φ
𝑖
[𝑢] (𝑡) ≤ (𝐹

𝑖
∘ S [𝑢]) (𝑡) , 𝑡 ∈ 𝐼, 𝑖 = 1, . . . , 𝑚. (40)

Remark 7. Suppose that Φ
𝑖
is injective and is of monotone

type for each 𝑖 = 1, . . . , 𝑚. Suppose that for any 𝑤 = (𝑤
1
,

. . . , 𝑤
𝑚
) ∈ 𝐶(𝐼,R𝑚), where 𝑤

𝑖
∈ 𝐶(𝐼,R), there exist 𝜐 ∈

𝐶(𝐼,R𝑚) such that Φ
𝑖
[𝜐] = 𝑤

𝑖
for each 𝑖 = 1, . . . , 𝑚. Then

Φ is bijective and is of monotone type.

Since

(𝐷F,1𝐹 (𝑡, 𝑦1, . . . , 𝑦𝑛)) (1) =
𝜕𝐹

𝜕𝑡

(𝑡, 𝑦
1
, . . . , 𝑦

𝑛
) , (41)

and, for 𝑖 = 1, . . . , 𝑛, the linear transform 𝐷F,𝑖+1𝐹(𝑡, 𝑦1, . . . ,

𝑦
𝑛
) : R → R𝑚 can be represented by the 𝑚 × 1 matrix

[(𝜕𝐹
𝑘
/𝜕𝑦
𝑖
)(𝑡, 𝑦
1
, . . . , 𝑦

𝑛
)], conditions (16)-(17) are reduced to

𝜕𝐹

𝜕𝑡

(S [𝑢] (𝑡)) ≤ 𝑇
0
[𝑢] (𝑡) , (42)

[

𝜕𝐹
𝑘

𝜕𝑦
𝑖

(S [𝑢] (𝑡))] 𝑆
𝑖
[𝑢]
󸀠
(𝑡) ≤ 𝑇

𝑖
[𝑢] (𝑡) , 𝑖 = 1, . . . , 𝑛,

(43)

where 𝑇
𝑖
: 𝐶(𝐼,R𝑚) → 𝐶(𝐼,R𝑚), 𝑖 = 0, . . . , 𝑛, are monotone

increasing operators. Here the vector 𝑇
𝑖
[𝑢](𝑡) in (43) is

written as a column matrix. In particular, if 𝑚 = 1, then
𝐹 ∈ 𝐶

1
(𝐼 ×R𝑛,R) and (43) is reduced to

𝜕𝐹

𝜕𝑦
𝑖

(S [𝑢] (𝑡)) ⋅ 𝑆
𝑖
[𝑢]
󸀠
(𝑡) ≤ 𝑇

𝑖
[𝑢] (𝑡) , 𝑖 = 1, . . . , 𝑛.

(44)

Remark 8. Define ℓ ∈ 𝐶1(R𝑚,R𝑚) by ℓ = (ℓ
1
, . . . , ℓ

𝑚
). Sup-

pose that ℓ
𝑘
is injective and monotone increasing and is of

monotone type for each 𝑘, and, for any 𝑧 = (𝑧
1
, . . . , 𝑧

𝑚
) ∈ R𝑚,

there exist 𝑦 ∈ R𝑚 such that ℓ
𝑘
(𝑦) = 𝑧

𝑘
for each 𝑘 = 1,

. . . , 𝑚. Then ℓ is bijective and monotone increasing and
is of monotone type. Moreover, the linear transform
𝐷Fℓ(𝜉1, . . . , 𝜉𝑚) can be represented by the 𝑚 × 𝑚 Jacobian
matrix [𝐷

𝑗
ℓ
𝑘
(𝜉
1
, . . . , 𝜉

𝑚
)], 1 ≤ 𝑗, 𝑘 ≤ 𝑚. Hence (18) is reduced

to

[𝐷
𝑗
ℓ
𝑘
((𝐹 ∘ S [𝑢]) (𝑡))] 𝑇

𝑖
[Φ
−1
[𝐹 ∘ S [𝑢]]] (𝑡) ≤ 𝑈

𝑖
(𝑡) ,

𝑖 = 0, . . . , 𝑛,

(45)

where 𝑈
𝑖
∈ 𝐶(𝐼,R𝑚). Here the vectors 𝑇

𝑖
[Φ
−1
[𝐹 ∘ S[𝑢]]](𝑡)

and 𝑈
𝑖
(𝑡) in (45) are written as column matrices.

Theorem 9. Let 𝐿
0
∈ R𝑚 and the conditions of Φ

1
, . . . , Φ

𝑚
,

Φ be given in Remark 7. Suppose that 𝐹(S[𝑢](𝑎)) ≤ 𝐿
0
, and

there exist monotone increasing operators 𝑇
𝑖
: 𝐶(𝐼,R𝑚) →

𝐶(𝐼,R𝑚), 𝑖 = 0, . . . , 𝑛, such that (42)-(43) are satisfied. We
also suppose that conditions for ℓ

1
, . . . , ℓ

𝑚
, ℓ in Remark 8 hold

and (45) is satisfied. If 𝑢 satisfies the system (40), then one has
(19)–(21) with 𝑌 = R𝑚.

Let Ψ
𝑖
: 𝐶(𝐼,R) → 𝐶(𝐼,R), 𝑖 = 1, . . . , 𝑚. If we define

Φ : 𝐶(𝐼,R𝑚) → 𝐶(𝐼,R𝑚) by

Φ [𝑢] (𝑡) = (Ψ
1
[𝑢
1
] (𝑡) , . . . , Ψ

𝑚
[𝑢
𝑚
] (𝑡)) , 𝑡 ∈ 𝐼, (46)

then (15) can be reduced to the system

Ψ
𝑖
[𝑢
𝑖
] (𝑡) ≤ (𝐹

𝑖
∘ S [𝑢]) (𝑡) , 𝑡 ∈ 𝐼, 𝑖 = 1, . . . , 𝑚. (47)

Remark 10. Suppose that Ψ
𝑖
is bijective and is of monotone

type for each 𝑖 = 1, . . . , 𝑚. ThenΦ defined by (46) is bijective
and is of monotone type, and

Φ
−1
[𝑓] (𝑡) = (Ψ

−1

1
[𝑓
1
] (𝑡) , . . . , Ψ

−1

𝑚
[𝑓
𝑚
] (𝑡)) ∀𝑡 ∈ 𝐼,

(48)

where 𝑓 = (𝑓
1
, . . . , 𝑓

𝑚
) ∈ 𝐶(𝐼,R𝑚). In particular, the

functionΦ−1[𝐹 ∘ S[𝑢]] ∈ 𝐶(𝐼,R𝑚) is given by

Φ
−1
[𝐹 ∘ S [𝑢]] (𝑡)

= (Ψ
−1

1
[𝐹
1
∘ S [𝑢]] (𝑡) , . . . , Ψ

−1

𝑚
[𝐹
𝑚
∘ S [𝑢]] (𝑡))

∀𝑡 ∈ 𝐼.

(49)

Example 11. Define Ψ
𝑗
[𝑢
𝑗
](𝑡) = 𝜓

𝑗
(𝑢
𝑗
(𝑡)), where 𝜓

𝑗
∈ 𝐶(R,

R). If 𝜓
𝑗
is strictly increasing from R onto R, then Ψ

𝑗
is

bijective and is of monotone type, and (48) can be reduced
to

Φ
−1
[𝑓] (𝑡) = (𝜓

−1

1
(𝑓
1
(𝑡)) , . . . , 𝜓

−1

𝑚
(𝑓
𝑚
(𝑡))) ∀𝑡 ∈ 𝐼,

(50)

where 𝑓 = (𝑓
1
, . . . , 𝑓

𝑚
) ∈ 𝐶(𝐼,R𝑚).

Remark 12. Let 𝑙
𝑖
∈ 𝐶
1
(R,R), 𝑖 = 1, . . . , 𝑚. Define ℓ ∈

𝐶
1
(R𝑚,R𝑚) by

ℓ (𝜉
1
, . . . , 𝜉

𝑚
) = (𝑙
1
(𝜉
1
) , . . . , 𝑙

𝑚
(𝜉
𝑚
)) . (51)

Suppose that 𝑙
𝑖
is strictly increasing from R onto R for 𝑖 =

1, . . . , 𝑚; then it is easy to see that ℓ is bijective andmonotone
increasing and is of monotone type, and

ℓ
−1
(𝜉
1
, . . . , 𝜉

𝑚
) = (𝑙

−1

1
(𝜉
1
) , . . . , 𝑙

−1

𝑚
(𝜉
𝑚
)) . (52)

Moreover, the Jacobianmatrix [𝐷
𝑗
𝑙
𝑘
(𝜉
1
, . . . , 𝜉

𝑚
)] is a diagonal

matrix with diagonal entries 𝑙󸀠
𝑘
(𝜉
𝑘
), 𝑘 = 1, . . . , 𝑚. Hence

𝐷Fℓ((𝐹 ∘ S[𝑢])(𝑡)) in (18) can be represented by the 𝑚 × 𝑚

diagonal matrix with diagonal entries 𝑙󸀠
𝑘
((𝐹
𝑘
∘ S[𝑢])(𝑡)), 𝑘 =

1, . . . , 𝑚.
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The following theorem can be obtained byTheorem 1.

Theorem 13. Let 𝐿
1
, . . . , 𝐿

𝑚
∈ R and the conditions of Ψ

1
,

. . . , Ψ
𝑚
, Φ be given as in Remark 10. Suppose that

𝐹
𝑗
(S[𝑢](𝑎)) ≤ 𝐿

𝑗
, 𝑗 = 1, . . . , 𝑚, and there exist monotone

increasing operators 𝑇
𝑖
: 𝐶(𝐼,R𝑚) → 𝐶(𝐼,R𝑚), 𝑖 = 0, . . . , 𝑛,

such that (42)-(43) are satisfied. We also suppose that there
exist 𝑙

𝑗
∈ 𝐶
1
(R,R), 𝑗 = 1, . . . , 𝑚, and 𝑈

𝑖𝑗
∈ 𝐶(𝐼,R), 𝑖 = 0,

. . . , 𝑛, 𝑗 = 1, . . . , 𝑚, such that conditions for 𝑙
𝑗
and ℓ in

Remark 12 hold, and (18) with 𝑈
𝑖
= (𝑈

𝑖1
, . . . , 𝑈

𝑖𝑚
) are

satisfied. If 𝑢 satisfies (47), then we have

𝑢
𝑗
(𝑡) ≤ Ψ

−1

𝑗
[𝑉
𝑗
] (𝑡) , 𝑡 ∈ 𝐼, 𝑗 = 1, . . . , 𝑚, (53)

where

𝑉
𝑗
(𝑡) = 𝑙

−1

𝑗
(𝑙
𝑗
(𝐿
𝑗
) +

𝑛

∑

𝑖=0

∫

𝑡

𝑎

𝑈
𝑖𝑗
(𝑦) 𝑑𝑦) , 𝑡 ∈ 𝐼. (54)

Moreover, if there exists𝑀
1
, . . . ,𝑀

𝑚
∈ R such that 𝑙

𝑗
(𝑉
𝑗
(𝑡)) ≤

𝑀
𝑗
for all 𝑡 ∈ 𝐼, 𝑗 = 1, . . . , 𝑚, then

𝑢
𝑗
(𝑡) ≤ Ψ

−1

𝑗
[𝑙
−1

𝑗
(𝑀
𝑗
)] ∀𝑡 ∈ 𝐼, 𝑗 = 1, . . . , 𝑚, (55)

where 𝑙−1
𝑗
(𝑀
𝑗
) in (55) is the constant function in 𝐶(𝐼,R) with

value 𝑙−1
𝑗
(𝑀
𝑗
).

Consider the particular case 𝑚 = 𝑛 and 𝐹
𝑗
(𝑡, 𝑦
1
, . . . ,

𝑦
𝑚
) = 𝑦

𝑗
, 𝑗 = 1, . . . , 𝑚 of Theorem 13. In this case (𝐹

𝑖
∘

S[𝑢])(𝑡) = 𝑆
𝑖
[𝑢](𝑡) and (47) is reduced to

Ψ
𝑖
[𝑢
𝑖
] (𝑡) ≤ 𝑆

𝑖
[𝑢] (𝑡) , 𝑡 ∈ 𝐼, 𝑖 = 1, . . . , 𝑚. (56)

Assume that

𝑆
𝑖
[𝑢] (𝑎) ≤ 𝐿

𝑖
, 𝑖 = 1, . . . , 𝑚. (57)

We also assume that there exist monotone increasing opera-
tors 𝐺

𝑖
: 𝐶(𝐼,R𝑚) → 𝐶(𝐼,R), 𝑖 = 1, . . . , 𝑚, such that

𝑆
𝑖
[𝑢]
󸀠
(𝑡) ≤ 𝐺

𝑖
[𝑢] (𝑡) , 𝑖 = 1, . . . , 𝑚. (58)

We also suppose that there exist 𝑙
𝑖
∈ 𝐶
1
(R,R) and 𝑊

𝑖
∈

𝐶(𝐼,R), 𝑖 = 1, . . . , 𝑚, such that conditions for 𝑙
𝑖
in Remark 12

hold and satisfy the following condition:

𝑙
󸀠

𝑖
(𝑆
𝑖
[𝑢] (𝑡)) 𝐺

𝑖
[Φ
−1
[𝐹 ∘ S [𝑢]]] (𝑡) ≤ 𝑊

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑚,

(59)

where

Φ
−1
[𝐹 ∘ S [𝑢]] (𝑡) = (Ψ

−1

1
[𝑆
1
[𝑢]] (𝑡) , . . . , Ψ

−1

𝑚
[𝑆
𝑚
[𝑢]] (𝑡))

∀𝑡 ∈ 𝐼.

(60)

ThenTheorem 13 implies that if 𝑢 satisfies (56) then we have
(53) with

𝑉
𝑗
(𝑡) = 𝑙

−1

𝑗
(𝑙
𝑗
(𝐿
𝑗
) + ∫

𝑡

𝑎

𝑊
𝑗
(𝑦) 𝑑𝑦) , 𝑡 ∈ 𝐼. (61)

Remark 14. Condition (59) can be satisfied if there exist 𝑟
𝑖
∈

𝐶(R, (0,∞)), 𝑖 = 1, . . . , 𝑚, such that

𝐺
𝑖
[Φ
−1
[𝐹 ∘ S [𝑢]]] (𝑡) ≤ 𝑊

𝑖
(𝑡) 𝑟
𝑖
(𝑆
𝑖
[𝑢] (𝑡)) , 𝑡 ∈ 𝐼,

(62)

and we choose

𝑙
𝑖
(𝑡) = ∫

𝑡

𝑐
𝑖

1

𝑟
𝑖
(𝑠)

𝑑𝑠, 𝑖 = 1, . . . , 𝑚, (63)

where 𝑐
𝑖
is some constant. Moreover, 𝑉

𝑗
defined by (61)

satisfies 𝑙
𝑗
(𝑉
𝑗
(𝑡)) ≤ 𝑀

𝑗
, where

𝑀
𝑗
= max
𝑎≤𝑡≤𝑏

{𝑙
𝑗
(𝐿
𝑗
) + ∫

𝑡

𝑎

𝑊
𝑗
(𝑦) 𝑑𝑦} , 𝑗 = 1, . . . , 𝑚.

(64)

By a little modification of Theorem 13 we have Corollary
15.

Corollary 15. Let 𝐿
1
, . . . , 𝐿

𝑚
∈ R and the conditions of Ψ

1
,

. . . , Ψ
𝑚
be given as in Remark 10. Suppose that (57) holds, and

there exist monotone increasing operators 𝐺
𝑖
: 𝐶(𝐼,R𝑚) →

𝐶(𝐼,R), 𝑖 = 1, . . . , 𝑚, such that (58) is satisfied. For 𝑖 =

1, . . . , 𝑚, we suppose that there exist 𝑊
𝑖
∈ 𝐶(𝐼,R) and 𝑟

𝑖
∈

𝐶(R, (0,∞)) such that (62) holds. Define 𝑙
𝑖
by (63). Assume

that 𝑙
𝑖
(−∞) < 𝑙

𝑖
(𝑉
𝑖
(𝑡)) < 𝑙

𝑖
(∞) for all 𝑡 ∈ 𝐼, where𝑉

𝑖
is defined

by (61). If 𝑢 satisfies (56), then we have (53) and (55)with (64).

As an example we consider the system of integral inequal-
ities

𝜓
𝑗
(𝑢
𝑗
(𝑡)) ≤ 𝐿

𝑗
+ ∫

𝑡

𝑎

𝑔
𝑗
(𝑠) 𝐴
𝑗
[𝑢] (𝑠) 𝑑𝑠,

𝑡 ∈ 𝐼, 𝑗 = 1, . . . , 𝑚.

(65)

Here 𝜓
𝑗
∈ 𝐶(R,R) is strictly increasing from R onto R, 𝐿

𝑗
∈

R, 𝑔
𝑗
∈ 𝐶(𝐼,R+), and 𝐴

𝑗
: 𝐶(𝐼,R𝑚) → 𝐶(𝐼,R). Assume

that for each 𝑗 = 1, . . . , 𝑚, 𝐴
𝑗
is monotone increasing and

there exist 𝑤
𝑗
∈ 𝐶(𝐼,R) and 𝑟

𝑗
∈ 𝐶(R, (0,∞)) such that

𝐴
𝑗
[(𝜓
−1

1
∘ 𝑓
1
, . . . , 𝜓

−1

𝑚
∘ 𝑓
𝑚
)] (𝑡) ≤ 𝑤

𝑗
(𝑡) 𝑟
𝑗
(𝑓
𝑗
(𝑡)) ,

𝑡 ∈ 𝐼,

(66)

for all 𝑓
1
, . . . , 𝑓

𝑚
∈ 𝐶(𝐼,R). Moreover, we suppose that

𝑙
𝑗
(−∞) < 𝑙

𝑗
(𝐿
𝑗
) + ∫

𝑡

𝑎
𝑔
𝑗
(𝑦)𝑤
𝑗
(𝑦)𝑑𝑦 < 𝑙

𝑗
(∞) for all 𝑡 ∈ 𝐼,

where 𝑙
𝑗
is given in (63). By Example 11 and Corollary 15 with

Ψ
𝑗
[𝑢
𝑗
](𝑡) = 𝜓

𝑗
(𝑢
𝑗
(𝑡)), 𝑆

𝑗
[𝑢](𝑡) = 𝐿

𝑗
+ ∫

𝑡

𝑎
𝑔
𝑗
(𝑠)𝐴
𝑗
[𝑢](𝑠)𝑑𝑠,

𝐺
𝑗
[𝑢](𝑡) = 𝑔

𝑗
(𝑡)𝐴
𝑗
[𝑢](𝑡), and𝑊

𝑗
(𝑡) = 𝑔

𝑗
(𝑡)𝑤
𝑗
(𝑡), we have

𝑢
𝑗
(𝑡) ≤ 𝜓

−1

𝑗
(𝑙
−1

𝑗
(𝑙
𝑗
(𝐿
𝑗
) + ∫

𝑡

𝑎

𝑔
𝑗
(𝑦)𝑤
𝑗
(𝑦) 𝑑𝑦)) ,

𝑡 ∈ 𝐼, 𝑗 = 1, . . . , 𝑚.

(67)
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5. A Real-Valued Gronwall-Type Inequality

In this section we establish a real-valued Gronwall-type ine-
quality which extends (3) from composition operators
𝐴[𝑢](𝑠) = 𝑟(𝑢(𝑠)) to 𝐴 ∈ F. Consider the case 𝑚 = 1 of
(65):

𝜓 (𝑢 (𝑡)) ≤ 𝐿 + ∫

𝑡

𝑎

𝑔 (𝑠) 𝐴 [𝑢] (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐼. (68)

Here 𝑢 ∈ 𝐶(𝐼,R+), 𝜓 ∈ 𝐶(R+,R+) is strictly increasing and
𝜓(∞) = ∞, 𝐿 ≥ 0, 𝑔 ∈ 𝐶(𝐼,R+), and𝐴 : 𝐶(𝐼,R) → 𝐶(𝐼,R).
Let F be the class of operators 𝐴 : 𝐶(𝐼,R) → 𝐶(𝐼,R)

such that 𝐴 is positive and monotone increasing, and there
exist 𝑤 ∈ 𝐶(𝐼,R+) and 𝑟 ∈ 𝐶(R+, (0,∞)) such that for all
increasing 𝑓 ∈ 𝐶(𝐼,R+), we have

𝐴 [𝑓] (𝑡) ≤ 𝑤 (𝑡) 𝑟 (𝑓 (𝑡)) , 𝑡 ∈ 𝐼. (69)

By somemodification of results in Section 4wehaveTheorem
16.

Theorem 16. Let 𝐿 ≥ 0 and 𝑢, 𝜓, 𝑔, and 𝐴 be given as above.
Suppose𝐴 ∈ F. Let 𝑙(𝑡) = ∫𝑡

𝑐
(1/𝑟(𝜓

−1
(𝑠)))𝑑𝑠, where 0 ≤ 𝑐 ≤ 𝐿

and 𝑡 ≥ 𝑐. Assume that 𝑙(∞) > 𝑙(𝐿) + ∫

𝑏

𝑎
𝑔(𝑦)𝑤(𝑦)𝑑𝑦. If 𝑢

satisfies (68), then for all 𝑡 ∈ 𝐼 we have

𝑢 (𝑡) ≤ 𝜓
−1
(𝑙
−1
(𝑙 (𝐿) + ∫

𝑡

𝑎

𝑔 (𝑦)𝑤 (𝑦) 𝑑𝑦))

≤ 𝜓
−1
(𝑙
−1
(𝑙 (𝐿) + ∫

𝑏

𝑎

𝑔 (𝑦)𝑤 (𝑦) 𝑑𝑦)) .

(70)

It is easy to see that if 𝐴 ∈ F, then 𝐴𝑚 ∈ F for 𝑚 > 0.
If 𝐴
1
, . . . , 𝐴

𝑘
∈ F, then 𝐴 = ∏

𝑘

𝑖=1
𝐴
𝑖
∈ F. Moreover, we

also have 𝐴 = ∑
𝑘

𝑖=1
𝑏
𝑖
𝐴
𝑖
∈ F, where 𝑏

𝑖
≥ 0. Hence the

class of operators F is closed under multiplication and
linear combination with nonnegative coefficients. This and
the following examples show that Theorem 16 can be applied
to a variety of operators 𝐴 in (68).

Example 17. Let

𝐴 [𝑓] (𝑡) = 𝑟 (𝑓 (𝑡)) , (71)

where 𝑟 ∈ 𝐶(R+, (0,∞)) is increasing. Then 𝐴 ∈ F with
𝑤(𝑡) = 1 in (69). In this case and 𝜓 ≡ 1, Theorem 16 is
reduced to (3)-(4).

Example 18. Let

𝐴 [𝑓] (𝑡) = sup
𝑎≤𝑠≤𝑡

𝑓 (𝑠) . (72)

Then 𝐴 ∈ F with 𝑤(𝑡) = 1 and 𝑟(𝑡) = 1 in (69).

Example 19. Let

T [𝑓] (𝑡) = ∫
𝑡

𝑎

𝑘 (𝑡, 𝑠) 𝑟 (𝑓 (𝑠)) 𝑑𝑠, (73)

where 𝑘 ∈ 𝐶(𝐼
2
,R+) and 𝑟 ∈ 𝐶(R+, (0,∞)) is increasing.

Then T ∈ F with 𝑤(𝑡) = ∫𝑡
𝑎
𝑘(𝑡, 𝑠)𝑑𝑠 in (69).

Example 20. Let

G [𝑓] (𝑡) = exp( 1

∫

𝑡

𝑎
𝑘 (𝑡, 𝑠) 𝑑𝑠

∫

𝑡

𝑎

𝑘 (𝑡, 𝑠) log 𝑟 (𝑓 (𝑠)) 𝑑𝑠) ,

(74)

where 𝑘 ∈ 𝐶(𝐼2, (0,∞)) and 𝑟 ∈ 𝐶(R+, (0,∞)) is increasing.
Then G ∈ F with 𝑤(𝑡) = 1 in (69).

Example 21. Let

M [𝑓] (𝑡) = sup
𝑎<𝑥<𝑡

∫

𝑡

𝑥

𝑘 (𝑡, 𝑠) 𝑟 (𝑓 (𝑠)) 𝑑𝑠, (75)

where 𝑘 and 𝑟 are given as in Example 19. ThenM ∈ F with
𝑤(𝑡) = ∫

𝑡

𝑎
𝑘(𝑡, 𝑠)𝑑𝑠 in (69).

Example 22. Let

G [𝑓] (𝑡)

= sup
𝑎<𝑥<𝑡

exp( 1

∫

𝑡

𝑥
𝑘 (𝑡, 𝑠) 𝑑𝑠

∫

𝑡

𝑥

𝑘 (𝑡, 𝑠) log 𝑟 (𝑓 (𝑠)) 𝑑𝑠) ,

(76)

where 𝑘 and 𝑟 are given as in Example 20. Then G ∈ F with
𝑤(𝑡) = 1 in (69).
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