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Some necessary and sufficient conditions are established for composition operators 𝐶
𝜑
to be bounded or compact from 𝜇-Bloch

type spacesB𝜇 toQ
𝑝
spaces.Moreover, the boundedness, compactness, and Fredholmness of composition operators on little spaces

Q
𝑝,0

are also characterized.

1. Introduction

Let D be the unit disc in the complex plane C and 𝐻(D)
the space of all analytic functions on D with the topology
of uniform convergence on compact subsets of D. If 𝑓 ∈

𝐻(D), we let 𝑓𝑟(𝑧) = 𝑓(𝑟𝑧), 0 < 𝑟 < 1, be the dilation
of 𝑓. The 𝐻∞ space consists of all functions 𝑓 ∈ 𝐻(D)

satisfying sup
𝑧∈D|𝑓(𝑧)| < ∞. The Bloch space B consists of

all functions 𝑓 ∈ 𝐻(D) for which

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B
:= sup
𝑧∈D

(1 − |𝑧|
2
)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (1)

B equipped with the norm ‖𝑓‖ := |𝑓(0)| + ‖𝑓‖B becomes a
Banach space (see [1, 2]). For 𝛼 > 0, the 𝛼-Bloch space B𝛼
consists of all analytic functions 𝑓 on D such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝛼

:= sup
𝑧∈D

(1 − |𝑧|
2
)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (2)

Refer to [3] for more details on 𝛼-Bloch spaces. Recently,
many authors have studied different classes of Bloch type
spaces, where the typicalweight function (1−|𝑧|2)𝛼 is replaced
by a continuous positive function 𝜇 defined on D. More
precisely, let 𝜇 : D → (0,∞) be a radial weight function;
that is, 𝜇(𝑧) = 𝜇(|𝑧|), 𝑧 ∈ D, which is decreasing in a

neighborhood of 1, continuous and lim|𝑧|→1−𝜇(|𝑧|) = 0. The
Bloch type spaceB𝜇 consists of all 𝑓 ∈ 𝐻(D) such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝜇

:= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (3)

It is easy to check that ‖𝑓‖𝜇 := |𝑓(0)| + ‖𝑓‖B𝜇 is a norm on
B𝜇, andB𝜇 is a Banach space equipped with this norm (see,
e.g., [4]). Clearly,B𝜇 includesB𝛼 as its special case. Indeed,
if 𝜇(𝑧) = (1 − |𝑧|2)𝛼 with 𝛼 > 0, B𝜇 becomes 𝛼-Bloch space
B𝛼. When 𝛼 = 1,B𝛼 is just the classical Bloch spaceB. For
𝜇(𝑧) = (1−|𝑧|

2
) ln(𝑒/(1−|𝑧|2)),B𝜇 is logarithmicBloch space,

which first appeared in characterizing the multipliers of the
Bloch spaces. The little Bloch-type space B𝜇,0 = B𝜇,0(D)

consists of all 𝑓 ∈B𝜇 such that

lim
|𝑧|→1

−

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (4)

For 𝑎 ∈ D, let 𝜎𝑎(𝑧) = (𝑎 − 𝑧)/(1 − 𝑎𝑧) be the involutive
automorphism of the unit disc which interchanges 𝑎 and 0.
We recall that in [5], for 𝑝 ≥ 0, 𝑓 ∈ 𝐻(D) belongs to Q𝑝 if

sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < ∞. (5)

Q𝑝,0 is the subclass of Q𝑝 consisting of all 𝑓 ∈ Q𝑝 such that

lim
|𝑎|→1

−

∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) = 0. (6)
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With the norm,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Q
𝑝

:=
󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨

+ sup
𝑎∈D

(∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚(𝑧))

1/2

,

(7)

Q𝑝 is a Banach space, andQ𝑝,0 is the closure of all polynomials
in Q𝑝. It is well known that Q1 = BMOA, the space of all
analytic functions of the bounded mean oscillation on D. Q0
is the classical Dirichlet space D. For all 1 < 𝑝 < ∞, Q𝑝
is the Bloch space B. Also, Q1,0 = VMOA, the subspace
of BMOA consisting of all analytic functions with vanishing
mean oscillation, and for𝑝 > 1,Q𝑝,0 =B0; see [5, 6] formore
details on those spaces.

Let𝐻1 and𝐻2 be two linear subspaces of𝐻(D). If 𝜑 is an
analytic self-map ofD, then𝜑 induces a composition operator
𝐶𝜑 : 𝐻1 → 𝐻2 defined by

𝐶𝜑 (𝑓) := 𝑓 ∘ 𝜑. (8)

Composition operators have been studied by numerous
authors in many subspaces of𝐻(D). Among others, Madigan
andMatheson characterized the continuity and compactness
of composition operators on the classical Bloch space B in
[7]. Lou studied composition operators on Q𝑝 spaces in [8].
Composition operators between the logarithmic Bloch-type
space and Q

𝑝

log are studied in [9–11].
This paper studies composition operators from 𝜇-Bloch

type spaces B𝜇 to Q𝑝 spaces. After some necessary back-
ground materials, Section 2 gives some function-theoretic
characterizations of bounded and compact composition
operators 𝐶𝜑 : B𝜇 → Q𝑝 by using the Hadamard
gap series technique. Section 3 characterizes the continuity,
compactness of 𝐶𝜑 : B

𝜇
→ Q𝑝,0, and the Fredholmness of

𝐶𝜑 on Q𝑝,0.
Throughout the paper we use the same letter 𝐶 to

denote various positive constants which may change at each
occurrence. Variables indicating the dependency of constants
𝐶 will be often specified in the parenthesis. We use the
notation 𝑋 ≲ 𝑌 or 𝑌 ≳ 𝑋 for nonnegative quantities 𝑋 and
𝑌 to mean 𝑋 ≤ 𝐶𝑌 for some inessential constant 𝐶 > 0.
Similarly, we use the notation𝑋 ≈ 𝑌 if both𝑋 ≲ 𝑌 and𝑌 ≲ 𝑋
hold.

2. Composition Operators from B𝜇 to Q
𝑝

We recall that an analytic function 𝑓 on the unit disk D has
Hadamard gaps if

𝑓 (𝑧) =

∞

∑

𝑘=1

𝑎𝑘𝑧
𝑛
𝑘 (9)

with 𝑛𝑘+1/𝑛𝑘 ≥ 𝜆 > 1 for all 𝑘 ∈ N. The following results are
cited from [12].

Theorem A. Assume that 𝑓(𝑧) = ∑∞
𝑛=0
𝑎𝑛𝑧
𝑛
∈B𝜇. Then

lim sup
𝑛→∞

𝑛𝜇 (1 −
1

𝑛
)
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 < ∞. (10)

Theorem B. Assume that 𝜇 is a nonincreasing radial weight
satisfying

lim inf
𝑘→∞

𝜇 (1 − (1/𝑛𝑘))

𝜇 (1 − (1/𝑛𝑘+1))
= 𝑞 > 1,

𝜇 (1 − ln 1

|𝑧|
) ≈ 𝜇 (|𝑧|) , as |𝑧| 󳨀→ 1

−
,

(11)

and such that 𝐹(𝑡) = 1/𝑡𝜇(1 − 1/𝑡) is a positive nonincreasing
absolutely continuous function on the interval [1,∞) satisfying
lim𝑡→∞(𝑡𝐹

󸀠
(𝑡)/𝐹(𝑡)) = 0 and lim𝑡→∞𝑡2𝐹(𝑡) = ∞, where {𝑛𝑘}

is a sequence such that 𝑛𝑘+1/𝑛𝑘 = 𝑝 > 1, 𝑘 ∈ N. Let 𝑓(𝑧) =
∑
∞

𝑘=1
𝑎𝑘𝑧
𝑛
𝑘 ∈ 𝐻(D). If

lim sup
𝑘→∞

𝑛𝑘𝜇(1 −
1

𝑛𝑘

)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 < ∞, (12)

then 𝑓 ∈B𝜇(D).

In the sequel, we always suppose that 𝜇 is as in Theorem
B. The next lemma will play a key role in our main results.

Lemma 1. There exist two functions 𝑓, 𝑔 ∈B𝜇 such that

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
≳

1

𝜇 (𝑧)
, 𝑧 ∈ D. (13)

Proof. We consider the function:

𝑓 (𝑧) = 𝜀𝑧 +

∞

∑

𝑗=1

(𝑞
𝑗
)
−1

𝜇 (1 − 1/𝑞𝑗)
𝑧
𝑞
𝑗

, 𝑧 ∈ D, (14)

where 𝑞 is an appropriately large integer, and 𝜀 > 0 is
sufficiently small. It follows from Theorem B that 𝑓 ∈ B𝜇.
We claim that

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
≳ 1 (15)

for 1 − 𝑞−𝑙 ≤ |𝑧| ≤ 1 − 𝑞−(𝑙+1/2), 𝑙 ∈ N. Indeed,

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜀 +

∞

∑

𝑗=1

1

𝜇 (1 − 1/𝑞𝑗)
𝑧
𝑞
𝑗

−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
1

𝜇 (1 − 1/𝑞𝑙)
|𝑧|
𝑞
𝑙

− (𝜀 +

𝑙−1

∑

𝑗=1

1

𝜇 (1 − 1/𝑞𝑗)
|𝑧|
𝑞
𝑗

)

− (

∞

∑

𝑗=𝑙+1

1

𝜇 (1 − 1/𝑞𝑗)
|𝑧|
𝑞
𝑗

)

=: 𝐼1 − 𝐼2 − 𝐼3.

(16)

For 𝑞 large enough, since

(1 − 𝑞
−𝑙
)
𝑞
𝑙

≤ |𝑧|
𝑞
𝑙

≤ ((1 − 𝑞
−(𝑙+1/2)

)
𝑞
𝑙+1/2

)

𝑞
−1/2

, (17)
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then

1

3
≤ |𝑧|
𝑞
𝑙

≤ (
1

2
)

𝑞
−1/2

. (18)

Hence

𝐼1 ≥
1

3

1

𝜇 (1 − 1/𝑞𝑙)
. (19)

On the other hand, for 𝑞 large enough,

𝐼2 ≤ 𝜀 +

𝑙−1

∑

𝑗=1

1

𝜇 (1 − 1/𝑞𝑗)

≤
1

𝜇 (1 − 1/𝑞𝑙)
(𝜀 +

1

𝑞 − 1
) ,

𝐼3 ≤
|𝑧|
𝑞
𝑙+1

𝑞𝑙𝜇 (1 − 1/𝑞𝑙)

∞

∑

𝑗=𝑙+1

𝑞
𝑗
|𝑧|
𝑞
𝑗

−𝑞
𝑙+1

=
|𝑧|
𝑞
𝑙+1

𝑞𝑙𝜇 (1 − 1/𝑞𝑙)

∞

∑

𝑠=0

𝑞
𝑠+𝑙+1

|𝑧|
(𝑞
𝑙+2

−𝑞
𝑙+1

)𝑠

≤

(|𝑧|
𝑞
𝑙

)

𝑞

𝜇 (1 − 1/𝑞𝑙)

𝑞

1 − 𝑞 |𝑧|
(𝑞𝑙+2−𝑞𝑙+1)

≤
𝑞2
−𝑞
1/2

𝜇 (1 − 1/𝑞𝑙) (1 − 𝑞2−(𝑞
3/2−𝑞1/2))

.

(20)

It follows from (19) and (20) that

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
≥

1

𝜇 (1 − 1/𝑞𝑙)

× [
1

3
− (𝜀 +

1

𝑞 − 1
) −

𝑞2
−𝑞
1/2

(1 − 𝑞2−(𝑞
3/2−𝑞1/2))

] .

(21)

Since 𝜇(1 − 1/𝑞𝑙+1/2) ≈ 𝜇(1 − 1/𝑞𝑙) for sufficient large 𝑞,

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
≳

1

𝜇 (1 − 1/𝑞𝑙)
≳

1

𝜇 (1 − 1/𝑞𝑙+1/2)
≳

1

𝜇 (𝑧)
(22)

for 1/𝑞𝑙+1/2 ≤ 1 − |𝑧| ≤ 1/𝑞𝑙. That is (15).
Now with a similar argument for 1 − 𝑞−(𝑙+1/2) ≤ |𝑧| ≤

1 − 𝑞
−(𝑙+1), 𝑙 ∈ N and 𝑞 large enough, we have

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
≳ 1, (23)

where

𝑔 (𝑧) =

∞

∑

𝑗=1

(𝑞
𝑗+1/2

)
−1

𝜇 (1 − 1/𝑞𝑗+1/2)
𝑧
𝑞
𝑗+1/2

. (24)

Now inequality (13) follows immediately from (15) and (23)
on the annulus 1 − 𝑞−1 < 𝑧 < 1.

On the other hand, in the disc |𝑧| ≤ 1 − 𝑞−1, we have that
𝑔
󸀠
(0) = 0, 𝑓󸀠(0) ̸= 0, and 𝑓󸀠 and 𝑔󸀠 have a finite number of

zeros in the disc. Hence if 𝑓󸀠 and 𝑔󸀠 have common zeros in
the disc |𝑧| ≤ 1 − 𝑞−1, then one can replace 𝑔 by the function
𝑔0(𝑧) = 𝑔(𝑒

𝑖𝜃
𝑧) for an appropriate 𝜃 and obtain a pair of

functions which satisfy inequality (13).

We now characterize the boundedness of the composition
operator 𝐶𝜑 :B

𝜇
→ Q𝑝.

Theorem 2. Let 𝑝 > 0 and 𝜑 be an analytic self-map of the
unit disc. Then 𝐶𝜑 :B𝜇 → Q𝑝 is bounded if and only if

sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) < ∞. (25)

Proof. Assume that 𝐶𝜑 : B
𝜇
→ Q𝑝 is bounded; then 𝐶𝜑𝑓 ∈

Q𝑝, for 𝑓 ∈B
𝜇. By Lemma 1, there exist 𝑓, 𝑔 ∈B𝜇 such that

|𝑓
󸀠
(𝑧)| + |𝑔

󸀠
(𝑧)| ≳ 1/𝜇(𝑧). So

∞ > sup
𝑎∈D

∫
D

[
󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
(𝑔 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

]

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≳ sup
𝑎∈D

∫
D

[
󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
(𝑔 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
]
2

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

= sup
𝑎∈D

∫
D

[
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
]
2 󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≳ sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) ,

(26)

which implies (25).
Conversely, for any 𝑓 ∈B𝜇, it is clear to see that

sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

= sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) ⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

B𝜇
.

(27)

By (25), 𝐶𝜑𝑓 ∈ Q𝑝. Then 𝐶𝜑 : B
𝜇
→ Q𝑝 is bounded by the

closed graph theorem.

Now, we are going to characterize the compactness of
composition operators𝐶𝜑 :B

𝜇
→ Q𝑝. In [13], Tjani showed

the following result.
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Lemma 3. Let𝑋,𝑌 be two Banach spaces of analytic functions
on D. Suppose the following:

(1) The point evaluation functions on 𝑌 are continuous.

(2) The closed unit ball of 𝑋 is compact subset of 𝑋 in the
topology of uniform convergence on compact sets.

(3) 𝑇 : 𝑋 → 𝑌 is continuous when𝑋 and 𝑌 are given the
topology of uniform convergence on compact sets.

Then, 𝑇 is a compact operator if and only if, given a bounded
sequence {𝑓𝑛} in 𝑋 such that 𝑓𝑛 → 0 uniformly on compact
sets, the sequence {𝑇𝑓𝑛} converges to zero in the norm of 𝑌.

Observe that for any fixed 𝑧 ∈ D we have

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≲
󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 + log
1

1 − |𝑧|

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

≲
󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 + log
1

1 − |𝑧|

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Q
𝑝

,

(28)

so the point evaluation functionals on Q𝑝 are continuous.
Thus, as a consequence of Lemma 3, we have the following
result.

Lemma 4. The composition operator 𝐶𝜑 : B𝜇 → Q𝑝 is
compact if and only if for every bounded sequence {𝑓𝑛}𝑛∈N ⊆
B𝜇, which converges uniformly to zero on any compact subset
of the unit disk, ‖𝐶𝜑(𝑓𝑛)‖Q

𝑝

→ 0 as 𝑛 → ∞.

We now use Lemma 4 above to give a characterization of
compact composition operator 𝐶𝜑 :B

𝜇
→ Q𝑝.

Theorem5. Let𝑝 > 0 and𝜑 be an analytic self-map of the unit
disc. Then 𝐶𝜑 : B𝜇 → Q𝑝 is compact if and only if 𝜑 ∈ Q𝑝
and

lim
𝑡→1

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) = 0. (29)

Proof. We first assume that 𝐶𝜑 :B
𝜇
→ Q𝑝 is compact; then

𝜑 ∈ Q𝑝. Since ‖𝑧
𝑛
/𝑛‖B𝜇 ≲ 1 and 𝑧

𝑛
/𝑛 → 0 as 𝑛 → ∞,

uniformly on any compact subsets of the unit disk, then by
Lemma 4, ‖𝐶𝜑(𝑧

𝑛
/𝑛)‖Q

𝑝

→ 0 as 𝑛 → ∞. So for each 𝑡 ∈
(0, 1) and each 𝜀 > 0, there exists 𝑛0 ∈ N such that

𝑡
2(𝑛
0
−1)sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 𝜀.

(30)

If we choose 𝑡 ≥ 2−(1/2(𝑛0−1)), then

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 2𝜀. (31)

We now consider the functions 𝑓𝑟(𝑧) = 𝑓(𝑟𝑧) and 𝑟 ∈ (0, 1)
for𝑓with ‖𝑓‖B𝜇 ≤ 1. Since ‖𝑓𝑟‖B𝜇 ≲ 1 and𝑓𝑟 uniformly to𝑓

on any compact subsets of the unit disk, for 𝜀 > 0 there exists
𝑟0 ∈ (0, 1) such that, for all 𝑟 ≥ 𝑟0,

sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧) − (𝑓𝑟 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

< 𝜀.

(32)

Note that, for 𝑡 ≥ 2−(1/2(𝑛0−1)),

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ 2sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧) − (𝑓𝑟

0

∘ 𝜑)
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

2

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

+ 2sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓𝑟
0

∘ 𝜑)
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ 2𝜀 + 2
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠

𝑟
0

󵄩󵄩󵄩󵄩󵄩

2

𝐻∞

× sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ 4𝜀 (1 +
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠

𝑟
0

󵄩󵄩󵄩󵄩󵄩

2

𝐻∞
) .

(33)

Namely, for each ‖𝑓‖B𝜇 ≤ 1 and 𝜀 > 0, there is 0 < 𝛿 < 1
and some constant 𝐶(𝑓) depending only on 𝑓 such that, for
𝑡 ∈ [𝛿, 1),

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 𝐶 (𝑓) 𝜀.

(34)

Since𝐶𝜑 is compact, it maps the unit ball ofB𝜇 into a relative
compact subset ofQ𝑝.Thus for each 𝜀 > 0, there exists a finite
collection of functions 𝑓1, 𝑓2, . . . , 𝑓𝑁 in the unit ball of B𝜇,
such that for each ‖𝑓‖B𝜇 ≤ 1 there is a 𝑘 ∈ {1, 2, . . . , 𝑁} with

sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧) − (𝑓𝑘 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

< 𝜀.

(35)

If we take 𝐶 = max1≤𝑘≤𝑁𝐶(𝑓𝑘), then for 𝑡 ∈ [𝛿, 1)

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑘 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 𝐶𝜀.

(36)

Then

sup
‖𝑓‖B𝜇≤1

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≲ 𝐶𝜀,

(37)
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which implies the desired estimate (29) by using Lemma 1 in
a similar way as in the proof of Theorem 2.

Conversely, we assume that 𝜑 ∈ Q𝑝 and (29) holds. Let
{𝑓𝑛}𝑛∈N be a sequence of functions in the unit ball ofB𝜇, such
that 𝑓𝑛 → 0 uniformly on the compact subsets of the unit
disc as 𝑛 → ∞. We notice that, for 𝑡 ∈ (0, 1),

󵄩󵄩󵄩󵄩𝑓𝑛 ∘ 𝜑
󵄩󵄩󵄩󵄩

2

Q
𝑝

≲
󵄨󵄨󵄨󵄨𝑓𝑛 (𝜑 (0))

󵄨󵄨󵄨󵄨

2

+ sup
𝑎∈D

∫
{|𝜑(𝑧)|≤𝑡}

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑛 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

+ sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑛 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

=: 𝐽1 + 𝐽2 + 𝐽3.

(38)

Since 𝑓𝑛 → 0 uniformly on the compact subsets of the unit
disc, as 𝑛 → ∞, then 𝑓󸀠

𝑛
→ 0 as 𝑛 → ∞ uniformly on the

compact subsets of the unit disc. So for every 𝜀 > 0, there is
𝑛0 ∈ N such that, for each 𝑛 > 𝑛0, 𝐽1 ≤ 𝜀, and 𝐽2 ≤ 𝜀‖𝜑‖

2

Q
𝑝

.
Also notice that

𝐽3 ≤ sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) . (39)

By (29) there exists 𝑡0 ∈ (0, 1) such that, for every 𝑡 > 𝑡0,
𝐽3 ≤ 𝜀. Thus ‖𝐶𝜑(𝑓𝑛)‖Q

𝑝

→ 0 as 𝑛 → ∞, which completes
the proof by Lemma 4.

The following corollary is an immediate result of Theo-
rems 2 and 5.

Corollary 6. Let 𝑝 ∈ (0,∞). Then

(1) B𝜇 is embedded boundedly into Q𝑝 if and only if

sup
𝑎∈D

∫
D

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (|𝑧|)
2

𝑑𝑚 (𝑧) < ∞. (40)

(2) B𝜇 is embedded compactly into Q𝑝 if and only if

lim
𝑡→1

sup
𝑎∈D

∫
{|𝜑(𝑧)|>𝑡}

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (|𝑧|)
2

𝑑𝑚 (𝑧) < 0. (41)

3. Composition Operators from B𝜇 to Q
𝑝,0

In this section, we investigate composition operators from
B𝜇 to Q𝑝,0. Contrast with the case 𝐶𝜑 : B

𝜇
→ Q𝑝, here

the boundedness and compactness of 𝐶𝜑 : B𝜇 → Q𝑝,0
are equivalent. Last, we also characterize the Fredholmness
of composition operators on Q𝑝,0. We first begin with the
following.

Lemma 7. Suppose that 0 < 𝑝 < ∞ and 𝜑 is an analytic self-
map of D. Then 𝐶𝜑 :B𝜇 → Q𝑝,0 is compact if and only if

lim
|𝑎|→1

sup
‖𝑓‖B𝜇≤1

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) = 0.

(42)

Proof. Suppose that 𝐶𝜑 : B𝜇 → Q𝑝,0 is compact; then
𝐶𝜑(B
𝜇
) is relatively compact inQ𝑝,0, whereB

𝜇 is the unit ball
of B𝜇. Let 𝜀 > 0; then there is an (𝜀/4)-net 𝑓1, 𝑓2, . . . , 𝑓𝑁
of 𝐶𝜑(B

𝜇
). Then for any fixed 𝑓 ∈ B𝜇, there exists 𝑖0 ∈

{1, 2, . . . , 𝑁} such that
󵄩󵄩󵄩󵄩󵄩
(𝑓 − 𝑓𝑖

0

) ∘ (𝜑)
󵄩󵄩󵄩󵄩󵄩Q
𝑝

<
𝜀

4
. (43)

Clearly, there is 𝛿 > 0 such that

∫
D

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓𝑖
0

∘ 𝜑)
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) <
𝜀

4
(44)

for |𝑎| > 𝛿. So

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ 2∫
D

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧) − (𝑓𝑖

0

∘ 𝜑)
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

2

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

+ 2∫
D

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓𝑖
0

∘ 𝜑)
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

< 2
𝜀

4
+ 2
𝜀

4
= 𝜀

(45)

for |𝑎| > 𝛿. So (42) is proved.
Conversely, suppose that (42) holds and (𝑓𝑛) ⊆ B𝜇 with

‖𝑓𝑛‖B𝜇 ≤ 1, converging uniformly to 0 on compact subsets of
D; we now prove

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐶𝜑 (𝑓𝑛)

󵄩󵄩󵄩󵄩󵄩Q
𝑝

= 0. (46)

For any given 𝜀 > 0, by (42), there is 𝛿 > 0 such that, for all
𝑓𝑛,

sup
𝛿<|𝑎|<1

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑛 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 𝜀; (47)

that is, 𝑓𝑛 ∘ 𝜑 ∈ Q𝑝,0. For 𝑎 ∈ D, 𝑟 ∈ (0, 1) and D𝑟 = {𝑧 ∈ D :

|𝜑(𝑧)| > 𝑟}, set

𝑇𝑟 (𝑎) = ∫
D
𝑟

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑛 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) , (48)

and then lim𝑟→1𝑇𝑟(𝑎) = 0, whichmeans that, for each 𝑎 ∈ D,
there exists 𝑟𝑎 such that 𝑇𝑟(𝑎) < 𝜀 for all 𝑟 > 𝑟𝑎. The same
as in the proof of Lemma 1.3 in [14], 𝑇𝑟(𝑎) is a continuous
function of 𝑎, so there is a neighbourhood 𝑁(𝑎) ⊆ D of 𝑎
such that 𝑇𝑟

𝑎

(𝑧) < 𝜀 for all 𝑧 ∈ 𝑁(𝑎). Since {𝑎 : |𝑎| ≤ 𝛿} ⊆
⋃
𝑎∈{𝑎:|𝑎|≤𝛿}

𝑁(𝑎) and {𝑎 : |𝑎| ≤ 𝛿} is compact, there exist
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𝑁(𝑎1), . . . , 𝑁(𝑎𝑀) such that {𝑎 : |𝑎| ≤ 𝛿} ⊆ ⋃
𝑀

𝑖=1
𝑁(𝑎𝑖). For 𝑎𝑖,

𝑖 = 1, . . . ,𝑀, there exists 𝑟𝑎
𝑖

such that 𝑇𝑟
𝑎
𝑖

(𝑧) < 𝜀, 𝑧 ∈ 𝑁(𝑎𝑖),
𝑖 = 1, . . . ,𝑀. Setting 𝑟0 = max{𝑟𝑎

1

, . . . , 𝑟𝑎
𝑀

}, 𝑇𝑟
0

(𝑎) < 𝜀 for all
|𝑎| ≤ 𝛿. That is,

sup
|𝑎|≤𝛿

∫
D
𝑟
0

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑛 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 𝜀. (49)

On the other hand, since 𝑓𝑛 converge to 0 uniformly on
compact subsets ofD, there exists 𝑛0, such that, for all 𝑛 ≥ 𝑛0,
|𝑓
󸀠

𝑛
(𝑧)|
2
≤ 𝜀 for |𝑧| ≤ 𝑟0. It follows from (42) that 𝜑 ∈ Q𝑝,0. So

sup
|𝑎|≤𝛿

∫
D\D
𝑟
0

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ sup
|𝑎|≤𝛿

𝜀 ∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ 𝜀
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Q
𝑝

.

(50)

It follows from (49) and (50) that for 𝑛 ≥ 𝑛0

sup
|𝑎|≤𝛿

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓𝑛 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ (1 +
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Q
𝑝

) 𝜀.

(51)

Combining (47) and (51) implies that ‖𝐶𝜑(𝑓𝑛)‖Q
𝑝

→ 0 as
𝑛 → ∞, which completes the proof.

The following theorem characterizes the equivalence of
boundedness and compactness of composition operators
fromB𝜇 to Q𝑝,0.

Theorem 8. Let 0 < 𝑝 < ∞ and 𝜑 is an analytic self-map of
D. Then the following are equivalent.

(1) 𝐶𝜑 :B
𝜇
→ Q𝑝,0 is bound.

(2) 𝐶𝜑 :B
𝜇
→ Q𝑝,0 is compact.

(3)

lim
|𝑎|→1

−

∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) = 0. (52)

Proof. (1) ⇔ (3). Assume that 𝐶𝜑 : B
𝜇
→ Q𝑝,0 is bounded;

then 𝜑(𝑧) ∈ Q𝑝,0 by taking 𝑓(𝑧) = 𝑧. By Lemma 1, there exist
𝑓, 𝑔 ∈B𝜇 such that |𝑓󸀠(𝑧)| + |𝑔󸀠(𝑧)| ≳ 1/𝜇(𝑧). So

0 ←󳨀 lim
𝑎→1−

∫
D

[
󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
(𝑔 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

]

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≳ lim
𝑎→1−

∫
D

[
󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
(𝑔 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨
]
2

× (1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

= lim
𝑎→1−

∫
D

[
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
]
2

×
󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≳ lim
𝑎→1−

∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) ,

(53)

which implies (52).
Conversely, for any 𝑓 ∈B𝜇, it is clear that

lim
𝑎→1−

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

= lim
𝑎→1−

∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ lim
𝑎→1−

∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) ⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

B𝜇
.

(54)

By (52), 𝐶𝜑𝑓 ∈ Q𝑝,0. Then 𝐶𝜑 : B
𝜇
→ Q𝑝,0 is bounded by

the closed graph theorem.
(2) ⇔ (3). Let 𝐶𝜑 : B𝜇 → Q𝑝,0 be compact. By

Lemma 7, for any given 𝜀 > 0, there is 𝛿 > 0 such that

sup
‖𝑓‖B𝜇<1

∫
D

󵄨󵄨󵄨󵄨󵄨
(𝑓 ∘ 𝜑)

󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧) < 𝜀 (55)

for |𝑎| > 𝛿, which implies (52) by Lemma 1.
Conversely, suppose that (52) holds; then for any function

𝑓 ∈B𝜇,

∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝑑𝑚 (𝑧)

≤ ∫
D

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2
)
𝑝

𝜇 (
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
2

𝑑𝑚 (𝑧) ⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝜇

󳨀→ 0

(56)

as |𝑎| → 1
−. Hence, 𝐶𝜑 : B𝜇 → Q𝑝,0 is compact by

Lemma 7, which completes the proof.

Finally, we consider the Fredholmness of composition
operators on Q𝑝,0 spaces. For a Banach space 𝑋, recall that a
bounded linear operator𝑇 on𝑋 is said to be Fredholm if both
the dimension of its kernel and the codimension of its image
are finite.This occurs if and only if 𝑇 is invertible modulo the
compact operators; that is, there is a bounded linear operator
𝑆 such that both𝑇𝑆−𝐼 and 𝑆𝑇−𝐼 are compact.We also notice
that an operator is Fredholm if and only if its dual is Fredholm
(see, e.g., [15]).

Before giving our result on Fredholmness, we need a
useful result due to Wirths and Xiao [16].
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Lemma 9. Let 𝑝 ∈ (0,∞) and 𝑓 ∈ Q𝑝 with 𝑓𝑟(𝑧) := 𝑓(𝑟𝑧)
for 𝑟 ∈ (0, 1). Then the following are equivalent.

(1) 𝑓 ∈ Q𝑝,0.
(2) lim𝑟→1‖𝑓𝑟 − 𝑓‖Q

𝑝

= 0.

(3) 𝑓 belongs to the closure of the class of the polynomials
in the norm ‖ ⋅ ‖Q

𝑝

.

(4) For any 𝜖 > 0 there is a 𝑔 ∈ Q𝑝,0 such that ‖𝑔 −𝑓‖Q
𝑝

<

𝜖.

Theorem 10. Let 𝜑 be an analytic self-map of the unit disc D.
Then the following are equivalent.

(1) 𝜑 is a Möbius transformation of D.
(2) 𝐶𝜑 : Q𝑝,0 → Q𝑝,0 is invertible.
(3) 𝐶𝜑 : Q𝑝,0 → Q𝑝,0 is Fredholm.

Proof. (1) ⇒ (2). If 𝜑(𝑧) = 𝜑𝑎(𝑧) = (𝑎 − 𝑧)/(1 − 𝑎𝑧), 𝑎 ∈ D,
then 𝜑𝑎 ∘ 𝜑𝑎(𝑧) = 𝑧; that is, 𝜑𝑎 = 𝜑

−1

𝑎
. Since Q𝑝,0 is Möbius

invariant by [15], we get𝐶−1
𝜑
= 𝐶𝜑−1 . If 𝜑(𝑧) = 𝜆𝑧with |𝜆| = 1,

we also have 𝐶−1
𝜑
= 𝐶𝜑−1 . Since any Möbius transformation 𝜑

can be expressed that 𝜑(𝑧) = 𝜆((𝑎 − 𝑧)/(1 − 𝑎𝑧)) (|𝜆| = 1, 𝑎 ∈
D), 𝐶𝜑 is invertible.
(2) ⇒ (3) is obvious.
(3) ⇒ (1). Suppose 𝐶𝜑 : Q𝑝,0 → Q𝑝,0 is Fredholm. Note

that 𝜑 cannot be a constant mapping. Otherwise, if 𝜑(𝑧) ≡
𝑎, we have (𝑧 − 𝑎)𝑛 ∈ ker𝐶𝜑 and dim ker 𝐶𝜑 = ∞, which
contradicts the Fredholmness of 𝐶𝜑.

Assume 𝜑 is not one to one. So there exist 𝑧1, 𝑧2 ∈ D,
𝑧1 ̸= 𝑧2 with 𝜑(𝑧1) = 𝜑(𝑧2). Select the neighborhoods 𝑈,
𝑉 of 𝑧1, 𝑧2, respectively, such that 𝑈 ∩ 𝑉 = 0. 𝜑(𝑈) ∩ 𝜑(𝑉)
is a nonempty and open set due to 𝜑 being open by the
Open Mapping Theorem, so there exist infinite sequences
{𝑧
1

𝑛
} ⊆ 𝑈, {𝑧2

𝑛
} ⊆ 𝑉 such that 𝜑(𝑧1

𝑛
) = 𝜑(𝑧

2

𝑛
) = 𝜔𝑛

which are distinct. Hence 𝐶∗
𝜑
𝛿𝑧1
𝑛

= 𝛿𝜑(𝑧1
𝑛
) = 𝛿𝜑(𝑧2

𝑛
) = 𝐶

∗

𝜑
𝛿𝑧2
𝑛

;
namely, 𝐶∗

𝜑
(𝛿𝑧1
𝑛

− 𝛿𝑧2
𝑛

) = 0, where 𝛿𝑧 : 𝑓 → 𝑓(𝑧) is
evaluation function, which is a bounded linear functional on
Q𝑝,0. Since Q𝑝,0 contains all polynomials by Lemma 9, we
have that each evaluation function is not a linear combination
of other evaluation functions, so the sequence {𝛿𝑧1

𝑛

− 𝛿𝑧2
𝑛

}

is linearly independent in the kernel of the adjoint operator
𝐶
∗

𝜑
. It is worth pointing out that 𝐶∗

𝜑
is also Fredholm. It is a

contradiction, so 𝜑 is injective.
We now show 𝜑 is surjective. Assume that 𝜑 is not

surjective. Then we can find 𝑧0 ∈ D ∩ 𝜕𝜑(D) and {𝑧𝑛} ⊆ D

such that 𝜑(𝑧𝑛) → 𝑧0 as 𝑛 → ∞. Further, we get, by the
Open Mapping Theorem, that |𝑧𝑛| → 1 as 𝑛 → ∞. For
arbitrary 𝑓 ∈ Q𝑝,0,

𝐶
∗

𝜑
𝛿𝑧
𝑛

𝑓 = 𝛿𝜑(𝑧
𝑛
)𝑓 = 𝑓 ∘ 𝜑 (𝑧𝑛) 󳨀→ 𝑓 (𝑧0) = 𝛿𝑧

0

𝑓; (57)

we get 𝛿𝜑(𝑧
𝑛
)𝑤
∗

󳨀→
𝛿𝑧
0

and {𝛿𝜑(𝑧
𝑛
)} is bounded uniformly. Again,

it is obvious that ‖𝛿𝑧
𝑛

‖ → ∞ as 𝑛 → ∞. Therefore,
‖𝛿𝜑(𝑧

𝑛
)/‖𝛿𝑧

𝑛

‖‖ = ‖𝐶
∗

𝜑
𝛿𝑧
𝑛

/‖𝛿𝑧
𝑛

‖‖ → 0. On the other hand,
since 𝐶∗

𝜑
is also Fredholm, there are operators 𝐾 and 𝑆 on

Q∗
𝑝,0
, with𝐾 compact and 𝑆 bounded, such that 𝑆𝐶∗

𝜑
= 𝐼 +𝐾.

Thus, 𝛿𝑧
𝑛

/‖𝛿𝑧
𝑛

‖+𝐾𝛿𝑧
𝑛

/‖𝛿𝑧
𝑛

‖ → 0. Because𝐾 is compact and
{𝛿𝑧
𝑛

/‖𝛿𝑧
𝑛

‖} is bounded, there exists subsequence {𝛿𝑧
𝑛
𝑘

/‖𝛿𝑧
𝑛
𝑘

‖}

such that 𝐾𝛿𝑧
𝑛
𝑘

/‖𝛿𝑧
𝑛
𝑘

‖ → ℎ, 𝛿𝑧
𝑛
𝑘

/‖𝛿𝑧
𝑛
𝑘

‖ → −ℎ, which
means ‖ℎ‖ = 1. Moreover, Q𝑝,0 is the closure of all polyno-
mials with respect to the norm ‖ ⋅ ‖Q

𝑝

by Lemma 9, which gets
(𝛿𝑧
𝑛
𝑘

/‖𝛿𝑧
𝑛
𝑘

‖)𝑤
∗

󳨀→
0. This implies that (𝛿𝑧

𝑛
𝑘

/‖𝛿𝑧
𝑛
𝑘

‖)𝑤
∗

󳨀→
− ℎ = 0.

This is a contradiction. So 𝜑 is surjective. Thus 𝜑 is a Möbius
transformation, which completes the proof.
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