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We introduce two subequationswith different independent variables for constructing exact solutions to nonlinear partial differential
equations. In order to illustrate the efficiency and usefulness, we apply this method to (2 + 1)-dimensional KdV equation, which
was first derived by Boiti et al. (1986) using the idea of the weak Lax pair. As a result, we obtained many new exact solutions.

1. Introduction

Solving nonlinear partial differential equations (PDEs) has
become increasingly important in many physical and math-
ematical fields, such as fluid physics, condensed matter,
biophysics, plasma physics, nonlinear optics, quantum field
theory, and particle physics [1–11], since many physical
models could be reduced to PDEs which have a profuse
mathematical structure. In recent years, with the help of com-
puter, symbolic computation has enhanced a great progress
in many subjects, including solving the PDEs. Under many
scientists’ works, there have been many papers and software
about how to construct exact solutions to PDEs; Lou et al.
[12] presented a computational method for constructing
the explicit solutions to some complicated nonlinear wave
equations by the phenomenon that soliton solutions could
be expressed by a combination of tanh and sech functions.
Malfliet [13] proposed a tanh function method which offers a
systemic approach to construct soliton solutions to nonlinear
wave equations. Recently, Parkes and Duffy put forward
software named “ATFM” [14–16] on Mathematica. “ATFM”
could output the required results directly after complicated
algebraic computation. Li and Liu [17] developed another
software program “RATH” for solving nonlinear partial dif-
ferential equations on symbolic computation systemMAPLE.
Compared with “ATFM”, “RATH” is more automatic and

could obtainmore solutions. Fan [18, 19] developed a uniform
and direct method for constructing a numerous travelling
wave solutions to nonlinear wave equations.

However, all these existing methods [12–22] could only
construct exact solutions expressed by either hyperbolic
functions tanh and sech or periodic functions tan, sin, and
sn. et al. In this paper, by introducing two subequations with
different independent variables, respectively, we will present
a newmethod for constructing exact solutions. Some of these
solutions are complexiton solutions which are first derived
by Ma through Wronskian method in [23]. And especially
some of them are multisoliton-like solutions. We should
indicate that these complexiton solutions and multisoliton-
like solutions are more general than the solutions obtained
by many other methods because our solutions contain some
arbitrary functions and constants. In some senses, the above
methods [12–22] could be regarded as our special cases.
This method could construct many kinds of exact solutions
to nonlinear PDEs in a unified form, besides complexiton
solutions, multisoliton-like solutions, periodic solutions and
rational solutions.

The rest of this paper is arranged as follows: in Section 2,
we mainly present our method; in Section 3, we will focus
on the application of our method to a nonlinear partial
differential equation, (2+1)-dimensional KdV equation (also
named the asymmetric Nizhnik-Novikov-Veselov (ANNV)
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equation or BLMP (Boiti-Leon-Manna-Pempinelli) equa-
tion) [24, 25]; in Section 4, a discussion about our solutions
and the computer simulations will be provided. Finally, we
will conclude the paper in the last section.

2. Summary of the Method

In this section, we would like to outline the main steps of our
method as follows.

Step 1. Given a system of polynomial nonlinear PDE with
constant coefficients,

𝐻(𝑈 (𝑋) , 𝑈
𝑥𝑖
(𝑋) , 𝑈

𝑥𝑖𝑥𝑗
(𝑋) , 𝑈

𝑥𝑖𝑥𝑗𝑥𝑘
(𝑋) , . . .) = 0,

(1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛) ,

(1)

where𝑋 denotes some physical fields (𝑥
1
, 𝑥
2
, 𝑥
3
, . . .).

Step 2. We introduce a new ansätz in terms of formal expan-
sion in the following form:

𝑈 (𝑋) = ∑
0≤𝑖,𝑗≤𝑁

𝐴
𝑖𝑗
𝜙
𝑖

(𝜉) 𝜓
𝑗

(𝜂) , (2)

where 𝑁 is an integer determined by balancing the highest
nonlinear terms and the highest-order partial derivative
terms in the given nonlinear partial differential equation,
and 𝜙(𝜉) and 𝜓(𝜂) satisfy two subequations with different
independent variables separately

𝑑𝜙

𝑑𝜉
= 𝑒
0
+ 𝑒
2
𝜙
2

(𝜉) , (3)

𝑑𝜓

𝑑𝜂
= ℎ
0
+ ℎ
2
𝜓
2

(𝜂) , (4)

where 𝑒
0
, 𝑒
2
, ℎ
0
, and ℎ

2
are all arbitrary constants.

In the formal solutions (2), 𝐴
𝑖𝑗
denotes arbitrary func-

tions in terms of 𝑦 and 𝑡. 𝜉 and 𝜂 denote combination of
some arbitrary functions in terms of 𝑥, 𝑦, and 𝑡. All of these
functions will be determined later.

Step 3. With the aid ofMAPLE, substituting (2) into (1) along
with the aid of (3) and (4) and setting all coefficients of
𝜙
𝑖(𝜉)𝜓𝑗(𝜂), (𝑖 = 0, 1, 2, . . . ; 𝑗 = 0, 1, 2, . . .) of the resulting

system to zero, we obtained an overdetermined nonlinear
partial differential equation system with respect to 𝐴

𝑖𝑗
, 𝜉, 𝜂,

and their derivatives.

Step 4. We could determine 𝜉, 𝜂, and 𝐴
𝑖𝑗
(𝑖 = 0, 1, 2, . . . ; 𝑗 =

0, 1, 2, . . .) by solving the overdetermined system with the
symbolic computation systemMAPLE.

Step 5. The solutions of system (3) are

𝜙 (𝜉) =

{{{{{{{{

{{{{{{{{

{

tanh (𝜉) , when 𝑒
0
= 1, 𝑒

2
= −1;

coth (𝜉) , when 𝑒
0
= 1, 𝑒

2
= −1;

tan (𝜉) , when 𝑒
0
= 1, 𝑒

2
= 1;

cot (𝜉) , when 𝑒
0
= 1, 𝑒

2
= 1;

1

𝜉 + const
, when 𝑒

0
= 0, 𝑒

2
= −1,

(5)

and a similar result due to (4). Substituting the results in
Step 4 and the expression of 𝜙(𝜉) and 𝜓(𝜉) into (2), we get
formal exact solutions to system (1), including many new
types of multisoliton-like solutions, complexiton solutions,
periodic solutions, and rational solutions.

3. Exact Solutions to (2 + 1)-Dimensional
KdV Equation

In this section, we will construct some new exact solutions
to (2 + 1)-dimensional KdV equation [24–27] by using the
method presented in Section 2 with the aid of symbolic
computation systemMAPLE.

The (2 + 1)-dimensional KdV equation could be written
as

𝑢
𝑡
− 𝑢
𝑥𝑥𝑥

− 3(𝑢V)
𝑥
= 0, 𝑢

𝑥
= V
𝑦
, (6)

which was first derived by Boiti et al. [24] using the idea of
the weak Lax pair. The equation system can also be obtained
from the inner parameter-dependent symmetry constraint of
the KP equation [26].

By the balancing procedure, we could get𝑁 = 2. Because
there are two dependent variables, the ansätz (2) can be
rewritten as follows:

𝑢 = 𝐴
0
+ 𝐴
1
𝜙 (𝜉) + 𝐴

2
𝜓 (𝜂) + 𝐴

3
𝜙
2

(𝜉) + 𝐴
4
𝜓
2

(𝜂)

+ 𝐴
5
𝜙 (𝜉) 𝜓 (𝜂) ,

V = 𝐵
0
+ 𝐵
1
𝜙 (𝜉) + 𝐵

2
𝜓 (𝜂) + 𝐵

3
𝜙
2

(𝜉) + 𝐵
4
𝜓
2

(𝜂)

+ 𝐵
5
𝜙 (𝜉) 𝜓 (𝜂) ,

(7)

where 𝜉 = 𝑝(𝑥) + 𝑞(𝑦, 𝑡), 𝜂 = 𝑘(𝑥) + 𝑙(𝑦, 𝑡), 𝑝 and 𝑘 are
arbitrary functions with respect to 𝑥, and 𝑞 and 𝑙 are arbitrary
functions in terms of 𝑦 and 𝑡.

Substituting (7) into (6) and collecting all coefficients of
polynomials in terms of 𝜙𝑖𝜓𝑗 (𝑖 = 0, 1, . . . ; 𝑗 = 0, 1, . . .), and
then setting each coefficient to zero with the aid of MAPLE,
we deduce an overdetermined partial differential equation
system in terms of 𝐴

𝑖𝑗
, 𝐵
𝑖𝑗
, 𝑝, 𝑞, 𝑘, and 𝑙.

With the aid of symbolic computation software MAPLE
and solving the overdetermined partial differential equations,
we get the following solutions.

Case 1. Consider

𝐵
1
= 𝐵
2
= 𝐵
5
= 0, 𝑞 = 𝐹

2
(𝑦) + 𝐹

1
(𝑡) ,

𝐴
5
= 𝐴
1
= 𝐴
2
= 0, 𝐴

4
= −2𝐶

3
𝑒
2

2

𝑑

𝑑𝑦
𝐹
2
(𝑦) ,

𝐴
3
= 2

𝐶
2

1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) ℎ
2

2

𝐶
3

,

𝐵
0
=
(𝑑/𝑑𝑡) 𝐹

1
(𝑡)

3𝐶
3

−
𝐶
5
+ 8𝐶3
1
ℎ
0
ℎ
2
+ 8𝐶
1
𝑒
2
𝑒
0
𝐶2
3

6𝐶
1

,

𝑘 = 𝐶
1
𝑥 + 𝐶

2
, 𝐵

4
= −2𝐶

2

3
𝑒
2

2
, 𝐵

3
= −2𝐶

2

1
ℎ
2

2
,



Abstract and Applied Analysis 3

𝐴
0
=
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) (−𝐶

5
− 8𝐶
1
𝑒
2
𝑒
0
𝐶2
3
+ 8𝐶3
1
ℎ
0
ℎ
2
)

6𝐶
3
𝐶
1

,

𝑝 = 𝐶
3
𝑥 + 𝐶

4
, 𝑙 =

𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

,

(8)

where 𝐹
1
(𝑡) and 𝐹

2
(𝑦) are arbitrary functions with 𝑡 and 𝑦,

respectively, and 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
, and 𝐶

6
are all integral

constants.

Case 2. Consider

𝐵
1
= 𝐵
2
= 𝐵
5
= 0, 𝐴

1
= 𝐴
2
= 𝐴
5
= 0,

𝐴
4
= −2𝐶

3
𝑒
2

2

𝑑

𝑑𝑦
𝐹
2
(𝑦) , 𝐴

0
= −

8

3
𝐶
3
𝑒
0
𝑒
2

𝑑

𝑑𝑦
𝐹
2
(𝑦) ,

𝑙 =
−𝐶
1
𝐹
2
(𝑦) + 8𝐶3

1
ℎ
2
ℎ
0
𝐶
3
𝑡 + 𝐶
1
𝐶
5
𝑡 + 8𝐶

1
𝑒
2
𝑒
0
𝐶3
3
𝑡 + 𝐶
6
𝐶
3

𝐶
3

,

𝑘 = 𝐶
1
𝑥 + 𝐶

2
, 𝐵

4
= −2𝐶

2

3
𝑒
2

2
,

𝐴
3
=
2𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) ℎ2
2

𝐶
3

, 𝑞 = 𝐶
5
𝑡 + 𝐹
2
(𝑦) ,

𝑝 = 𝐶
3
𝑥 + 𝐶

4
, 𝐵

3
= −2𝐶

2

1
ℎ
2

2
, 𝐵

0
=

𝐶
5

3𝐶
3

,

(9)

where 𝐹
1
(𝑡) and 𝐹

2
(𝑦) are arbitrary functions with respect to

𝑡 and 𝑦, respectively,𝐶
1
,𝐶
2
,𝐶
3
,𝐶
4
,𝐶
5
, and𝐶

6
are all integral

constants.

Case 3. Consider

𝐵
1
= 𝐵
2
= 𝐵
5
= 0, 𝐴

1
= 𝐴
2
= 𝐴
5
= 0,

𝑞 = 𝐹
2
(𝑦) + 𝐹

1
(𝑡) , 𝐴

4
= −2𝐶

3
𝑒
2

2

𝑑

𝑑𝑦
𝐹
2
(𝑦) ,

𝐴
0
= −

8

3
𝐶
3
𝑒
0
𝑒
2

𝑑

𝑑𝑦
𝐹
2
(𝑦) ,

𝑙 = (𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦)

+ 8 (𝐶
1
𝑒
2
𝑒
0
𝐶
2

3
𝑡 + 𝐶
3

1
ℎ
2
ℎ
0
𝑡 +

1

8
𝐶
5
)𝐶
3
)𝐶
−1

3
,

𝐵
0
=
(𝑑/𝑑𝑡) 𝐹

1
(𝑡)

3𝐶
3

, 𝐴
3
= 2

𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) ℎ2
2

𝐶
3

,

𝑘 = 𝐶
1
𝑥 + 𝐶

2
, 𝐵

4
= −2𝐶

2

3
𝑒
2

2
, 𝑝 = 𝐶

3
𝑥 + 𝐶

4
,

𝐵
3
= −2𝐶

2

1
ℎ
2

2
,

(10)

where 𝐹
1
(𝑡) and 𝐹

2
(𝑦) are arbitrary functions with respect to

𝑡 and 𝑦, respectively,𝐶
1
,𝐶
2
,𝐶
3
,𝐶
4
,𝐶
5
, and𝐶

6
are all integral

constants.

Case 4. Consider

𝐵
1
= 𝐵
2
= 𝐵
5
= 0, 𝐴

1
= 𝐴
2
= 𝐴
5
= 0,

𝐴
3
= −4

𝐶
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) 𝑒
2
𝑒
0
ℎ2
2

√−2𝑒
2
𝑒
0
ℎ
2
ℎ
0

,

𝐴
4
= −2

𝐶
1
ℎ
2
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) 𝑒2
2
ℎ
0

√−2𝑒
2
𝑒
0
ℎ
2
ℎ
0

,

𝑞 (𝑦, 𝑡) = −
𝐶3
1
ℎ
2
ℎ
0
√−2𝑒

2
𝑒
0
ℎ
2
ℎ
0

𝑒
2
𝑒
0

𝑡 + 𝐹
2
(𝑦) ,

𝑝 (𝑥) = −
√−2𝑒

2
𝑒
0
ℎ
2
ℎ
0
𝐶
1
𝑥

2𝑒
2
𝑒
0

+ 𝐶
3
,

𝑙 (𝑦, 𝑡) =
2𝑒
2
𝑒
0
𝐹
2
(𝑦) + 𝐶

5
√−2𝑒

2
𝑒
0
ℎ
2
ℎ
0

√−2𝑒
2
𝑒
0
ℎ
2
ℎ
0

,

𝐴
0
= −

14𝐶
1
ℎ
2
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) 𝑒
2
𝑒
0
ℎ
0

3
,

𝐵
4
=
𝑒
2
ℎ
0
𝐶2
1
ℎ
2

𝑒
0

, 𝑘 = 𝐶
1
𝑥 + 𝐶

2
, 𝐵

3
= −2𝐶

2

1
ℎ
2

2
,

𝐵
0
= −

𝐶2
1
ℎ
2
ℎ
0

3
,

(11)

where 𝐹
2
(𝑦) is an arbitrary function with respect to 𝑦;𝐶

1
,𝐶
2
,

𝐶
3
, 𝐶
4
, 𝐶
5
, and 𝐶

6
are all integral constants.

Case 5. Consider

𝐵
1
= 𝐵
2
= 𝐵
5
= 0, 𝐴

1
= 𝐴
2
= 𝐴
5
= 0,

𝑘 (𝑥) = 𝐶
1
𝑥 + 𝐶

2
, 𝐵

3
= −2𝐶

2

1
ℎ
2

2
, 𝑞 (𝑦, 𝑡) = 𝐹

2
(𝑦) ,

𝐴
3
= −

𝛿𝐶
1
ℎ
2
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

ℎ
0

, 𝑝 (𝑥) =
𝛿𝐶
1
𝑥

𝑒
2
𝑒
0

+ 𝐶
3
,

𝐴
0
= −

(𝑑/𝑑𝑦) 𝐹
2
(𝑦) (𝐶

6
− 24𝐶3

1
ℎ
0
ℎ
2
) 𝑒
2
𝑒
0

6𝛿𝐶2
1

,

𝐵
4
= 4

𝑒
2
ℎ
0
𝐶2
1
ℎ
2

𝑒
0

, 𝐴
4
= −2

𝑒
2
𝛿𝐶
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝑒
0

,

𝐵
0
=
𝐶
6
+ 8𝐶3
1
ℎ
0
ℎ
2

6𝐶
1

, 𝑙 =
−𝑒
2
𝑒
0
𝐹
2
(𝑦) + (𝐶

6
𝑡 + 𝐶
7
) 𝛿

𝛿
,

(12)

where 𝐹
2
(𝑦) is an arbitrary function with respect to 𝑦; 𝐶

1
,

𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
, and 𝐶

6
are all integral constants; 𝛿 denotes

√−2𝑒
2
𝑒
0
ℎ
2
ℎ
0
.
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Case 6. Consider

𝐵
1
= 𝐵
2
= 𝐵
5
= 0, 𝐴

1
= 𝐴
2
= 𝐴
5
= 0,

𝐴
3
= 2

𝐶2
1
𝐶
5
ℎ2
2

𝐶
3

, 𝐵
0
= −

2

3
𝑒
2
𝑒
0
𝐶
2

3
−
4

3
𝐶
2

1
ℎ
2
ℎ
0
,

𝑘 = 𝐶
1
𝑥 + 𝐶

2
, 𝑙 =

−𝐶
1
𝐶
5
𝑦 + 4𝐶

1
𝑒
2
𝑒
0
𝐶3
3
𝑡 + 𝐶
7
𝐶
3

𝐶
3

,

𝐵
4
= −2𝐶

2

3
𝑒
2

2
, 𝑞 (𝑦, 𝑡) = 𝐶

5
𝑦 + 𝐶

6
,

𝑝 = 𝐶
3
𝑥 + 𝐶

4
, 𝐴

4
= −2𝐶

3
𝑒
2

2
𝐶
5
,

𝐴
0
=
−6𝐶
5
𝐶
2

3
𝑒
2
𝑒
0
+ 4𝐶
5
ℎ
0
ℎ
2
𝐶
2

1

3𝐶
3

, 𝐵
3
= −2𝐶

2

1
ℎ
2

2
,

(13)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
, and 𝐶

6
are all integral constants.

Case 7. Consider

𝐴
1
= 𝐴
2
= 𝐴
3
= 𝐴
5
= 0, 𝐵

1
= 𝐵
2
= 𝐵
3
= 𝐵
5
= 0,

𝑝 (𝑥) = 𝐶
1
𝑥 + 𝐶

2
, 𝑙 (𝑦, 𝑡) = 𝑙 (𝑦, 𝑡) ,

𝑘 = 𝑘 (𝑥) , 𝐵
0
=
(𝑑/𝑑𝑡) 𝐹

1
(𝑡) + 3𝐶

3
𝐶
1

3𝐶
1

,

𝑞 (𝑦, 𝑡) = 𝐹
2
(𝑦) + 𝐹

1
(𝑡) ,

𝑎
0
=
(−3𝐶
3
− 8𝐶2
1
𝑒
2
𝑒
0
) (𝑑/𝑑𝑦) 𝐹

2
(𝑦)

3𝐶
1

,

𝐴
4
= −2𝐶

1
𝑒
2

2

𝑑

𝑑𝑦
𝐹
2
(𝑦) , 𝐵

4
= −2𝐶

2

1
𝑒
2

2
,

(14)

where 𝐹
1
(𝑡) and 𝐹

2
(𝑦) are arbitrary functions with respect to

𝑡 and 𝑦, respectively;𝐶
1
,𝐶
2
,𝐶
3
,𝐶
4
,𝐶
5
, and𝐶

6
are all integral

constants.

With the aid of (7) and (5), we could obtain many new
exact solutions to (2 + 1)-dimensional KdV equation There
are too many solutions to cite one by one, we only select Case
1, for instance. We omit the other cases here which could be
obtained by the similar way as in Case 1. Corresponding to
Case 1, we have 16 families solutions in what follows.

Family 1. For 𝑒
0
= 1, 𝑒

2
= −1, ℎ

0
= 1, and ℎ

2
= −1, then,

we have the following solution to (2 + 1)-dimensional KdV
equations

𝑢
1
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) (−𝐶

5
+ 8𝐶
1
𝐶2
3
− 8𝐶3
1
)

6𝐶
3
𝐶
1

+ 2
𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝐶
3

𝜙
2

(𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡))

− 2𝐶
3

𝑑

𝑑𝑦
𝐹
2
(𝑦) 𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

V
1
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

1
(𝑡)

3𝐶
3

+
𝐶
5
− 8𝐶3
1
− 8𝐶
1
𝐶2
3

6𝐶
1

− 2𝐶
2

1
𝜙
2

(𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡))

− 2𝐶
2

3
𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

(15)

where 𝐹
1
(𝑡) is an arbitrary function with respect to 𝑡, 𝐹

2
(𝑦)

is an arbitrary function with respect to 𝑦, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
,

and 𝐶
6
are all integral constants, 𝜙 ∈ {tanh, coth}, and 𝜓 ∈

{tanh, coth}.

In fact, (15) indicates four families solutions to (2 + 1)-
dimensional KdV equation. If we choose 𝜙 = tanh and
𝜓 = tanh, we get some multisoliton-like solutions which are
simulated by computer in Section 4.

Family 2. For 𝑒
0
= 1, 𝑒

2
= −1, ℎ

0
= 1, and ℎ

2
= 1, then, we

can get four families solutions to (2 + 1)-dimensional KdV
equation

𝑢
2
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) (−𝐶

5
+ 8𝐶
1
𝐶
2

3
+ 8𝐶
3

1
)

6𝐶
3
𝐶
1

+ 2
𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝐶
3

𝜙
2

(𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡))

− 2𝐶
3

𝑑

𝑑𝑦
𝐹
2
(𝑦) 𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

V
2
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑡) 𝐹

1
(𝑡)

3𝐶
3

+
𝐶
5
− 8𝐶3
1
+ 8𝐶
1
𝐶2
3

6𝐶
1

− 2𝐶
2

1
𝜙
2

(𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡))

− 2𝐶
2

3
𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

(16)
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where 𝐹
1
(𝑡) is an arbitrary function with respect to 𝑡, 𝐹

2
(𝑦) is

arbitrary functionwith respect to𝑦,𝐶
1
,𝐶
2
,𝐶
3
,𝐶
4
,𝐶
5
, and𝐶

6

are all integral constants, 𝜙 ∈ {tanh, coth}, and 𝜓 ∈ {tan, cot}.

In fact, (16) also indicates four families solutions to (2+1)-
dimensional KdV equation. If we choose 𝜙 = tanh and 𝜓 =

tan, we could get some complexiton-like solutions to (2 + 1)-
dimensional KdV equations. If we select 𝑒

0
= 1, 𝑒

2
= 1, ℎ

0
=

1, and ℎ
2
= −1, we get other four families solutions to (2+1)-

dimensional KdV equation similar to (16).

Family 3. For 𝑒
0
= 1, 𝑒
2
= 1, ℎ

0
= 1, and ℎ

2
= 1, then we have

four families solutions to (2 + 1)-dimensional KdV equation

𝑢
3
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) (−𝐶

5
− 8𝐶
1
𝐶2
3
+ 8𝐶3
1
)

6𝐶
3
𝐶
1

+ 2
𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝐶
3

𝜙
2

(𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡))

− 2𝐶
3

𝑑

𝑑𝑦
𝐹
2
(𝑦) 𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

V
3
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

1
(𝑡)

3𝐶
3

+
𝐶
5
− 8𝐶3
1
− 8𝐶
1
𝐶2
3

6𝐶
1

− 2𝐶
2

1
𝜙
2

(𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡))

− 2𝐶
2

3
𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

(17)

where 𝐹
1
(𝑡) is an arbitrary function with respect to 𝑡, 𝐹

2
(𝑦) is

an arbitrary functionwith respect to𝑦,𝐶
1
,𝐶
2
,𝐶
3
,𝐶
4
,𝐶
5
, and

𝐶
6
are all integral constants, 𝜙 ∈ {tan, cot}, and𝜓 ∈ {tan, cot}.

In fact, (17) also denotes four families periodic solutions
to (2 + 1)-dimensional KdV equation.

Family 4. For 𝑒
0
= 0, 𝑒

2
= −1, ℎ

0
= 1, and ℎ

2
= −1, then we

have two families soliton-like solution to (2+ 1)-dimensional
KdV equation

𝑢
4
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) (−𝐶

5
− 8𝐶3
1
)

6𝐶
3
𝐶
1

+ 2
𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝐶
3

(
1

𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡)
)

2

− 2𝐶
3

𝑑

𝑑𝑦
𝐹
2
(𝑦) 𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

V
4
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

1
(𝑡)

3𝐶
3

+
𝐶
5
+ 8𝐶3
1

6𝐶
1

− 2𝐶
2

1
(

1

𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡)
)

2

− 2𝐶
2

3
𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

(18)

where 𝐹
1
(𝑡) is an arbitrary function with respect to 𝑡, 𝐹

2
(𝑦)

is an arbitrary function with respect to 𝑦, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
,

and 𝐶
6
are all integral constants, and 𝜓 ∈ {tanh, coth}. Other

two solutions similar to (18) could be obtained with 𝑒
0
= 1,

𝑒
2
= −1, ℎ

0
= 0, and ℎ

2
= −1.

Family 5. For 𝑒
0
= 0, 𝑒

2
= −1, ℎ

0
= 1, and ℎ

2
= 1, then,

we have two families solutions to (2 + 1)-dimensional KdV
equation

𝑢
5
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

2
(𝑦) (−𝐶

5
+ 8𝐶
3

1
)

6𝐶
3
𝐶
1

+ 2
𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝐶
3

(
1

𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡)
)

2

− 2𝐶
3

𝑑

𝑑𝑦
𝐹
2
(𝑦) 𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

V
5
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

1
(𝑡)

3𝐶
3

+
𝐶
5
− 8𝐶3
1

6𝐶
1

− 2𝐶
2

1
(

1

𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡)
)

2

− 2𝐶
2

3
𝜓
2

× (𝐶
1
𝑥 + 𝐶

2
+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

) ,

(19)
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Figure 1: A computer simulation about two-soliton solution collision at 𝑡 = 0 in Family 1, with parameters 𝐹
1
(𝑡) = 𝑡, 𝐹

2
(𝑦) = −0.5𝑦,

𝐶
1
= 𝐶
3
= 𝐶
5
= 1, 𝐶

2
= 𝐶
4
= 0, 𝜙 = tanh, and 𝜓 = tanh.
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Figure 2: The plots of 𝑢
1
and V

1
in Family 1, with parameters 𝐹

1
(𝑡) = 𝑡, 𝐹

2
(𝑦) = ln(𝑦2 + 10), 𝐶

1
= 𝐶
3
= 1, 𝐶

5
= −2, 𝐶

2
= 𝐶
4
= 𝐶
6
= 0,

𝜙 = tanh, and 𝜓 = tanh at ((a) and (b)) 𝑡 = −5 and ((c) and (d)) 𝑡 = 1.

where 𝐹
1
(𝑡) is an arbitrary function with respect to 𝑡, 𝐹

2
(𝑦)

is an arbitrary function with respect to 𝑦, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
,

and 𝐶
6
are all integral constants, and 𝜓 ∈ {tan, cot}. Other

two solutions similar to (19) could be obtained with 𝑒
0
= 1,

𝑒
2
= 1, ℎ

0
= 0, and ℎ

2
= −1.

Family 6. For 𝑒
0
= 0, 𝑒

2
= −1, ℎ

0
= 0, and ℎ

2
= −1, then, we

have rational solutions with two arbitrary functions to (2+1)-
dimensional KdV equation

𝑢
6
(𝑥, 𝑦, 𝑡)

=
𝐶
5
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

6𝐶
3
𝐶
1

+ 2
𝐶2
1
(𝑑/𝑑𝑦) 𝐹

2
(𝑦)

𝐶
3

(
1

𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡)
)

2

− 2𝐶
3

𝑑

𝑑𝑦
𝐹
2
(𝑦)

× (1(𝐶
1
𝑥 + 𝐶

2

+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

)

−1

)

2

,

V
6
(𝑥, 𝑦, 𝑡)

=
(𝑑/𝑑𝑦) 𝐹

1
(𝑡)

3𝐶
3

+
𝐶
5

6𝐶
1

− 2𝐶
2

1
(

1

𝐶
3
𝑥 + 𝐶

4
+ 𝐹
2
(𝑦) + 𝐹

1
(𝑡)
)

2
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Figure 3: The plots of 𝑢
1
, V
1
in Family 1 with parameters 𝐹

1
(𝑡) = 𝑡, 𝐹

2
(𝑦) = 4sech(0.1𝑦2), 𝐶

1
= 0.5, 𝐶

3
= 1, 𝐶

5
= −1, 𝐶

2
= 𝐶
4
= 𝐶
6
= 0,

𝜙 = tanh, and 𝜓 = tanh at ((a) and (b)) 𝑡 = −9, ((c) and (d)) 𝑡 = −2, and ((e) and (f)) 𝑡 = 5.

− 2𝐶
2

3
(1(𝐶

1
𝑥 + 𝐶

2

+
𝐶
1
𝐹
1
(𝑡) − 𝐶

1
𝐹
2
(𝑦) + 𝐶

3
(𝐶
5
𝑡 + 𝐶
6
)

𝐶
3

)

−1

)

2

,

(20)

where 𝐹
1
(𝑡) is an arbitrary function with respect to 𝑡, 𝐹

2
(𝑦)

is an arbitrary function with respect to 𝑦, and 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
,

𝐶
5
, and 𝐶

6
are all integral constants.

4. Some Special Localized Solutions

In this section, we will show some special types of localized
structure of our solutions. If we select different idiographic
functions to replace the arbitrary functions appeared in
our solutions, we could reveal many new structure of the
solutions to (2 + 1)-dimensional KdV equation.

If we select 𝐹
1
(𝑡) = 𝑡, 𝐹

2
(𝑦) = −0.5𝑦, 𝐶

1
= 𝐶
3
= 𝐶
5
= 1,

𝐶
2
= 𝐶
4
= 0, 𝜙 = tanh, and 𝜓 = tanh in Family 1, we could

get a 2-soliton solution to (2+1)-dimensional KdV equation.
On the beeline

𝑥 − 1.5𝑦 = 0, (21)
where 𝑢

1
= 0 means the two waves are counteracting each

other and the biggest value V
1
means the two waves are

building up each other. We show the collision of the two
waves at 𝑡 = 0 in Figures 1(a) and 1(b).

If we select 𝐹
1
(𝑡) = 𝑡, 𝐹

2
(𝑦) = ln(𝑦2 + 10), 𝐶

1
= 𝐶
3
= 1,

𝐶
5
= −2, 𝐶

2
= 𝐶
4
= 𝐶
6
= 0, 𝜙 = tanh, and 𝜓 = tanh in

Family 1, we could obtain a 2-dromion solution to (2 + 1)-
dimensional KdV equation. The dromion shown by Figure 2
is driven by two curved-line solitons, and the curved lines
have the forms

𝑥 + ln (𝑦2 + 10) = 0,

𝑥 − ln (𝑦2 + 10) = 0.
(22)
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We show the collision of the two waves at 𝑡 = −5 in Figures
2(a) and 2(b) and 𝑡 = 1 in Figures 2(c) and 2(d). From the four
figures, we could find that Family 1 reduces to bidirectional
dromion solutions along 𝑥-axes.

Noted that the waves promulgation have different direc-
tions with different parameters.

If we select 𝐹
1
(𝑡) = 𝑡, 𝐹

2
(𝑦) = 4sech(0.1𝑦2), 𝐶

1
= 0.5,

𝐶
3
= 1, 𝐶

5
= −1, 𝐶

2
= 𝐶
4
= 𝐶
6
= 0, 𝜙 = tanh, and 𝜓 = tanh

in Family 1, we could obtain another 2-dromion solution to
(2 + 1)-dimensional KdV equation. The dromion shown by
Figure 3 is driven by two-curved line solitons and the curved
lines have the forms

𝑥 + 4sech (0.1𝑦2) = 0,

𝑥 − 4sech (0.1𝑦2) = 0.
(23)

This is also a bidirectional dromion solution to (2 + 1)-
dimensional KdV equation along 𝑥-axes. Figures 3(a) and
3(b) denote the shape of 𝑢

1
and V

1
at 𝑡 = −9, Figures 3(c)

and 3(d) denote the shape of 𝑢
1
and V
1
at 𝑡 = −2, and Figures

3(e) and 3(f) denote the shape of 𝑢
1
and V

1
at 𝑡 = 5. We

could easily observe the lower dromion which controls by
𝐶
1
travelling along 𝑥-axes fromnegative to positive direction,

and the higher dromionwhich controls by𝐶
3
travelling along

𝑥-axes from positive to negative direction.

5. Conclusion

In this paper, we have presented a uniform method for
constructing exact solutions to the (2 + 1)-dimensional KdV
equation by using two subequations with different variables.
Some of these exact solutions are multisoliton-like solutions
which have arbitrary functions in 2-soliton solutions, and
some of them are complexiton solutions admitting both
hyperbolic and periodic function in a solution to PDEs.

From the above discussion, we conclude that two-soliton
solutions could be obtained by introducing two subequations.
In fact, if we use 𝑁 subequations, then 𝑁 soliton solutions
will be obtained. We see that further research on the subject
is needed.
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