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The problem of packing spheres in Orlicz sequence space 𝑙
Φ,𝑝

equipped with the p-Amemiya norm is studied, and a geometric
characteristic about the reflexivity of 𝑙

Φ,𝑝
is obtained, which contains the relevant work about 𝑙𝑝 (𝑝 > 1) and classical Orlicz spaces

𝑙
Φ
discussed by Rankin, Burlak, and Cleaver. Moreover the packing constant as well as Kottman constant in this kind of spaces is

calculated.

1. Introduction and Preliminaries

Thepacking constant is an important and interesting geomet-
ric parameter for studying the geometric structure, isomet-
ric embedding, noncompactness, and reflexivity in Banach
spaces [1–4]. Let𝑋 be a Banach space.We denote by 𝐵(𝑋) the
unit ball of 𝑋 and by 𝑆(𝑋) the unit sphere of 𝑋. The packing
constant 𝑃(𝑋) of 𝑋 is the real number such that if 𝑟 ≤ 𝑃(𝑋),
then an infinite number of spheres of radius 𝑟 can be packed
in 𝐵(𝑋), and if 𝑟 > 𝑃(𝑋), only a finite number of spheres can
be done. It began in the 1950s studying the packing constant of
special sequence spaces. Burlak et al. [1] proved that 𝑃(𝑙1) =

𝑃(𝑙
∞
) = 1/2 and 𝑃(𝑙

𝑝
) = 1/(1 + 2

1−(1/𝑝)
) for 1 < 𝑝 < ∞.

Rankin found 𝑃(𝑙
2
) and 𝑃(𝑙

𝑝
) (𝑝 > 1) in 1955 and 1958, re-

spectively. In 1976, Cleaver discussed Orlicz sequence space
𝑙
∘

Φ
equipped with the Orlicz norm under a strong condition,

and he found upper and lower bounds of 𝑃(𝑙
∘

Φ
). In 1983,

Ye investigated Orlicz sequence space 𝑙
Φ
equipped with the

Luxemburg norm and obtained a formula for 𝑃(𝑙
Φ
) [5].

In this paper, an analogue for Orlicz sequence spaces
equipped with the p-Amemiya norm is illustrated, and some
useful definitions and lemmas are presented.

Definition 1 (see [1]). The packing constant of a Banach space
𝑋 is defined by

𝑃 (𝑋) = sup {𝑟 > 0 : there exists {𝑥
𝑖
}
∞

𝑖=1
,
󵄩󵄩󵄩󵄩𝑥𝑖

󵄩󵄩󵄩󵄩 ≤ 1 − 𝑟 ,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
≥ 2 for 𝑖, 𝑗 ∈ N, 𝑖 ̸= 𝑗} .

(1)

It is obvious that 𝑃(𝑋) = 0, if dim𝑋 < ∞.

Lemma 2 (see [2]). Let 𝑋 be an infinite-dimensional Banach
space. Define

𝐾 (𝑋) = sup {inf {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑚

󵄩󵄩󵄩󵄩 : 𝑛 ̸=𝑚} : {𝑥
𝑛
}
∞

𝑛=1
⊂ 𝑆 (𝑋)} ,

(2)

which is called the Kottman constant of X. Then

𝑃 (𝑋) =
𝐾 (𝑋)

𝐾 (𝑋) + 2
. (3)

It is known that 1 ≤ 𝐾(𝑋) ≤ 2. Due to Riesz lemma, it can
be summarised that 𝐾(𝑋) ≥ 1 for any infinite-dimensional
Banach space 𝑋. Finite-dimensional spaces have Kottman
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constant equal to zero. Furthermore, Elton and Odell in [6]
proved that if𝑋 is an infinite-dimensional Banach space, then
there exists an 𝜀 > 0 such that 𝐾(𝑋) ≥ 1 + 𝜀. Consequently,
1/3 ≤ 𝑃(𝑋) ≤ 1/2. Hudzik proved that 𝑃(𝑌) = 1/2 and
𝐾(𝑌) = 2 for every nonreflexive Banach lattice 𝑌 [7].

Recall that a Banach space 𝑋 is said to be 𝑃-convex (see
[2]) if 𝑃(𝑛,𝑋) < 1/2, for some 𝑛 ∈ N, 𝑛 ≥ 2, where

𝑃 (𝑛,𝑋) = sup {𝑟 > 0 : there exist {𝑥
𝑖
}
𝑛

𝑖=1
,
󵄩󵄩󵄩󵄩𝑥𝑖

󵄩󵄩󵄩󵄩 ≤ 1 − 𝑟,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
≥ 2𝑟 for 𝑖 ̸= 𝑗} .

(4)

Kottman [2] has proved that any 𝑃-convex Banach space
is reflexive.

The packing problem in Orlicz sequence spaces was in-
vestigated in [8–11]. The packing constant for Musielak-
Orlicz sequence spaces and Cesaro sequence spaces have
been calculated in [12, 13].

For any mapΦ : R → [0,∞], define

𝑎
Φ
= max {𝑢 ≥ 0 : Φ (𝑢) = 0} ,

𝑏
Φ
= max {𝑢 ≥ 0 : Φ (𝑢) < ∞} .

(5)

AmapΦ is said to be an Orlicz function, ifΦ(0) = 0;Φ is not
identically equal to zero; it is even and convex on the interval
(−𝑏
Φ
, 𝑏
Φ
) and left-continuous at 𝑏

Φ
.

For everyOrlicz functionΦ, we define its complementary
function Ψ : R → [0,∞] by the formula

Ψ (V) = sup {𝑢 |V| − Φ (𝑢) : 𝑢 ≥ 0} . (6)

The complementary function Ψ is also an Orlicz function.
The convex modular 𝐼

Φ
is defined on 𝑙

0 (the space of all real
sequences) by 𝐼

Φ
(𝑥) = ∑

∞

𝑖=1
Φ(𝑥(𝑖)) for any 𝑥 = (𝑥(𝑖)).

Definition 3 (see [14–16]). The Orlicz sequence space is
defined as the set

𝑙
Φ
= {𝑥 = (𝑥 (𝑖)) : 𝐼Φ (𝜆𝑥) < ∞, for some 𝜆 > 0} . (7)

The Luxemburg norm and the Orlicz norm are expressed as

‖𝑥‖Φ = inf {𝜆 > 0 : 𝐼
Φ
(
𝑥

𝜆
) ≤ 1} ,

‖𝑥‖
∘

Φ
= inf
𝑘>0

1

𝑘
(1 + 𝐼

Φ (𝑘𝑥)) ,

(8)

respectively. The Orlicz space equipped with the Luxemburg
norm and the Orlicz norm are denoted by 𝑙

Φ
and 𝑙

∘

Φ
,

respectively.
For any 1 ≤ 𝑝 ≤ ∞ and 𝑢 ≥ 0, define

𝑠
𝑝 (𝑢) = {

(1 + 𝑢
𝑝
)
1/𝑝

, for 1 ≤ 𝑝 < ∞,

max {1, 𝑢} , for 𝑝 = ∞
(9)

and define 𝑠
Φ,𝑝

(𝑥) = 𝑠
𝑝
∘ 𝐼
Φ
(𝑥) for all 1 ≤ 𝑝 ≤ ∞. Note that

the functions 𝑠
𝑝
and 𝑠
Φ,𝑝

are convex. Moreover, the function
𝑠
𝑝
is increasing on R

+
, for 1 ≤ 𝑝 < ∞, but the function 𝑠

∞
is

increasing on the interval [1,∞) only.

Definition 4 (see [17, 18]). Let 1 ≤ 𝑝 ≤ ∞. For any 𝑥 = (𝑥(𝑖)),
define the p-Amemiya norm by the formula

‖𝑥‖Φ,𝑝 = inf
𝑘>0

1

𝑘
𝑠
Φ,𝑝 (𝑘𝑥) . (10)

TheOrlicz space equipped with the p-Amemiya normwill be
denoted by 𝑙

Φ,𝑝
.

It is known that ‖𝑥‖
Φ,1

= ‖𝑥‖
∘

Φ
and ‖𝑥‖

Φ,∞
= ‖𝑥‖

Φ
. If

1 ≤ 𝑝 < ∞, 𝑥 ̸= 0, then

1

2
‖𝑥‖
∘

Φ
≤ ‖𝑥‖Φ ≤ ‖𝑥‖Φ,𝑝 ≤ 2

1/𝑝
‖𝑥‖Φ < 2

1/𝑝
‖𝑥‖
∘

Φ
. (11)

(See [17].)
Let 𝑝
+
be the right-hand side derivative of Φ on [0, 𝑏

Φ
)

and put 𝑝
+
(𝑏
Φ
) = lim

𝑢→𝑏
−

Φ

𝑝
+
(𝑢). Define the function 𝛼

𝑝
:

𝑙
Φ,𝑝

→ [−1,∞] by

𝛼
𝑝 (𝑥) =

{{

{{

{

𝐼
𝑝−1

Φ
(𝑥) 𝐼Ψ (𝑝+ (|𝑥|)) − 1, 1 ≤ 𝑝 < ∞,

−1, 𝑝 = ∞, 𝐼
Φ (𝑥) ≤ 1,

𝐼
Ψ
(𝑝
+ (|𝑥|)) , 𝑝 = ∞, 𝐼

Φ (𝑥) > 1

(12)

and the functions 𝑘∗
𝑝

: 𝑙
Φ,𝑝

→ [0,∞) and 𝑘
∗∗

𝑝
: 𝑙
Φ,𝑝

→

[0,∞) by

𝑘
∗

𝑝
(𝑥) = inf {𝑘 ≥ 0 : 𝛼

𝑝 (𝑘𝑥) ≥ 0} , (with inf 𝜙 = ∞) ,

𝑘
∗∗

𝑝
(𝑥) = inf {𝑘 ≥ 0 : 𝛼

𝑝 (𝑘𝑥) ≤ 0} .

(13)

It is obvious that 𝑘∗
𝑝
(𝑥) ≤ 𝑘

∗∗

𝑝
(𝑥) for every 1 ≤ 𝑝 ≤ ∞ and

𝑥 ∈ 𝑙
Φ,𝑝

.
Set 𝐾
𝑝
(𝑥) = {0 < 𝑘 < ∞ : 𝑘

∗

𝑝
(𝑥) ≤ 𝑘 ≤ 𝑘

∗∗

𝑝
(𝑥)}.

Definition 5 (see [14]). We say an Orlicz function Φ satisfies
the Δ

2
(0)-condition (Φ ∈ Δ

2
(0), for short) if there exist

constants𝐾 ≥ 2 and 𝑢
0
> 0 such thatΦ(𝑢

0
) > 0 and

Φ (2𝑢) ≤ 𝐾Φ (𝑢) for every |𝑢| ≤ 𝑢
0
. (14)

For more details about Orlicz spaces, we refer the reader
to [15, 16, 18, 19].

Lemma 6 (see [20]). Assume that Φ ∈ Δ
2
(0), 1 ≤ 𝑝 < ∞.

Then, for any 𝐿 > 0 and 𝜀 > 0, there exists 𝛿 > 0 such that for
any 𝑥, 𝑦 ∈ 𝑙

0 there holds the implication

(𝐼
Φ (𝑥) ≤ 𝐿) ∧ (𝐼

Φ
(𝑦) ≤ 𝛿) 󳨐⇒

󵄨󵄨󵄨󵄨󵄨
𝐼
𝑝

Φ
(𝑥 + 𝑦) − 𝐼

𝑝

Φ
(𝑥)

󵄨󵄨󵄨󵄨󵄨
< 𝜀.

(15)

2. Main Results

Assume thatΦ ∈ Δ
2
(0), 1 ≤ 𝑝 < ∞.Then, for any 𝑥 ∈ 𝑆(𝑙

Φ,𝑝
)

and 𝑘 > 1, there exists a unique 𝑑
𝑥,𝑘

> 0 such that

𝐼
𝑝

Φ
(

𝑘𝑥

𝑑
𝑥,𝑘

) =
𝑘
𝑝
− 1

2𝑝
. (16)
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Set
𝑑
𝑥
= inf {𝑑

𝑥,𝑘
: 𝑘 > 1} ,

𝑑 = sup {𝑑
𝑥
: 𝑥 ∈ 𝑆 (𝑙

Φ,𝑝
)} .

(17)

Then 𝑑
𝑥
> 1 and 1 < 𝑑 ≤ 2. Denote

𝑘
󸀠
= inf {𝑘 : 𝑘 ∈ 𝐾

𝑝 (𝑥) , ‖𝑥‖Φ,𝑝 = 1} ,

𝑘
󸀠󸀠
= sup {𝑘 : 𝑘 ∈ 𝐾

𝑝 (𝑥) , ‖𝑥‖Φ,𝑝 = 1} .

(18)

In the sequel, the packing constant 𝑙
Φ,𝑝

is calculated, and
the main results of this paper are proposed.

Theorem 7. If Φ ∈ Δ
2
(0), 1 ≤ 𝑝 < ∞, then 𝐾(𝑙

Φ,𝑝
) = 𝑑 and

𝑃(𝑙
Φ,𝑝

) = 𝑑/(𝑑 + 2).

Proof. For any 𝜀 > 0, there exists 𝑥 ∈ 𝑆(𝑙
Φ,𝑝

) such that 𝑑
𝑥
>

𝑑 − 𝜀, so 𝑑
𝑥,𝑘

> 𝑑 − 𝜀 for all 𝑘 > 1. Define

𝑥
𝑛
=

∞

∑

𝑖=1

𝑥 (𝑖) 𝑒2𝑛−1(2𝑖−1), ∀𝑛 ∈ N. (19)

Then {𝑥
𝑛
} have pairwise disjoint supports and ‖𝑥

𝑛
‖
Φ,𝑝

=

‖𝑥‖
Φ,𝑝

= 1 (𝑛 ∈ N). For all 𝑛 ̸=𝑚 and all 𝑘 > 1,

1

𝑘
(1 + 𝐼

𝑝

Φ
(𝑘

𝑥
𝑛
− 𝑥
𝑚

𝑑 − 𝜀
))

1/𝑝

=
1

𝑘
(1 + 2

𝑝
𝐼
𝑝

Φ
(

𝑘𝑥

𝑑 − 𝜀
))

1/𝑝

>
1

𝑘
(1 + 2

𝑝
𝐼
𝑝

Φ
(

𝑘𝑥

𝑑
𝑥,𝑘

))

1/𝑝

=
1

𝑘
(1 + 2

𝑝
⋅
𝑘
𝑝
− 1

2𝑝
)

1/𝑝

= 1.

(20)

Then ‖𝑥
𝑛
− 𝑥
𝑚
‖
Φ,𝑝

= inf
𝑘>0

(1/𝑘)(1 + 𝐼
𝑝

Φ
(𝑘(𝑥
𝑛
− 𝑥
𝑚
)))
1/𝑝

≥

𝑑 − 𝜀, so we have 𝐾(𝑙
Φ,𝑝

) ≥ 𝑑, since 𝜀 is arbitrary.
In the following, 𝐾(𝑙

Φ,𝑝
) ≤ 𝑑 will be illustrated as an

important part of our results.
For any sequence {𝑥

𝑛
} ⊂ 𝑆(𝑙

Φ,𝑝
), which means that 𝑥

𝑛
=

(𝑥
𝑛
(𝑖))
𝑖
, ‖𝑥
𝑛
‖
Φ,𝑝

= ‖∑
∞

𝑖=1
𝑥
𝑛
(𝑖)𝑒
𝑖
‖
Φ,𝑝

= 1, for any 𝑛 ∈ N, then
{‖𝑥
𝑛
(𝑖)𝑒
𝑖
‖
Φ,𝑝

}
𝑛
is bounded for all 𝑖 ∈ N.

Since {‖𝑥
𝑛
(1)𝑒
1
‖
Φ,𝑝

}
𝑛
is bounded, there exists a subse-

quence {𝑥
1
𝑛

} ⊂ {𝑥
𝑛
} such that {‖𝑥

1
𝑛

(1)𝑒
1
‖
Φ,𝑝

}
𝑛

is convergent,
but {‖𝑥

1
𝑛

(2)𝑒
2
‖
Φ,𝑝

}
𝑛

is bounded, so there exists a subsequence
{𝑥
2
𝑛

} ⊂ {𝑥
1
𝑛

} such that {‖𝑥
2
𝑛

(2)𝑒
2
‖
Φ,𝑝

}
𝑛

is convergent. In
a similar way, using the diagonal method, we can find a
subsequence {𝑥

𝑛
𝑛

} ⊂ {𝑥
𝑛
} such that, for any 𝑖 ∈ N,

{‖𝑥
𝑛
𝑛

(𝑖)𝑒
𝑖
‖
Φ,𝑝

}
𝑛≥𝑖

is convergent. Denoting ‖𝑒
𝑖
‖
Φ,𝑝

= 𝑠
𝑖
and

setting ‖𝑥
𝑛
𝑛

(𝑖)𝑒
𝑖
‖
Φ,𝑝

→ 𝑏
𝑖
as 𝑛 → ∞, then |𝑥

𝑛
𝑛

(𝑖)| → 𝑏
𝑖
/𝑠
𝑖

as 𝑛 → ∞ for all 𝑖 ∈ N.
Let 𝑥 = (𝑏

𝑖
/𝑠
𝑖
)
𝑖
, |𝑥
𝑛
𝑛

| = (|𝑥
𝑛
𝑛

(𝑖)|)
𝑖
, and 𝑧

𝑛
= |𝑥
𝑛
𝑛

|−𝑥.Then

𝑧
𝑛 (𝑖) 󳨀→ 0 as 𝑛 󳨀→ ∞ ∀𝑖 ∈ N,

sep (𝑧
𝑛
) = sep (󵄨󵄨󵄨󵄨󵄨𝑥𝑛𝑛

󵄨󵄨󵄨󵄨󵄨
) ≥ sep (𝑥

𝑛
) .

(21)

Since Φ ∈ Δ
2
, then 𝑥 ∈ 𝑆(𝑙

Φ,𝑝
). For any 𝜀 > 0, there exists

𝑖
0
∈ N, such that ‖∑∞

𝑖=𝑖
0

+1
𝑥(𝑖)𝑒
𝑖
‖
Φ,𝑝

< 𝜀. Moreover, |𝑥
𝑛
𝑛

(𝑖)| →

𝑥(𝑖) as 𝑛 → ∞ for 𝑖 = 1, . . . , 𝑖
0
. So we have

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩Φ,𝑝 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=1

(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑛
𝑛

(𝑖)
󵄨󵄨󵄨󵄨󵄨
− 𝑥 (𝑖)) 𝑒𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
0

∑

𝑖=1

(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑛
𝑛

(𝑖)
󵄨󵄨󵄨󵄨󵄨
− 𝑥 (𝑖)) 𝑒𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
0

+1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑛
𝑛

(𝑖)
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 𝜀,

(22)

and, consequently, lim sup
𝑛
‖𝑧
𝑛
‖
Φ,𝑝

≤ 1 + 𝜀.
For the above 𝜀 > 0, since 𝑙

Φ,𝑝
is order continuous, there

exists 𝑖
1
∈ N such that ‖∑∞

𝑖=𝑖
1

+1
𝑧
𝑛
1

(𝑖)𝑒
𝑖
‖
Φ,𝑝

< 𝜀 for 𝑛
1
= 1.

Take 𝑛
2
> 𝑛
1
such that ‖∑𝑖1

𝑖=1
𝑧
𝑛
2

(𝑖)𝑒
𝑖
‖
Φ,𝑝

< 𝜀. And for 𝑛
2
,

there exists 𝑖
2
> 𝑖
1
such that ‖∑∞

𝑖=𝑖
2

+1
𝑧
𝑛
2

(𝑖)𝑒
𝑖
‖
Φ,𝑝

< 𝜀. Then

sep (𝑧
𝑛
) ≤

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
1

− 𝑧
𝑛
2

󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
1

(𝑖)𝑒
𝑖
−

𝑖
2

∑

𝑖=𝑖
1

+1

𝑧
𝑛
2

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
1

+1

𝑧
𝑛
1

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
2

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
2

+1

𝑧
𝑛
2

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
1

(𝑖)𝑒
𝑖
−

𝑖
2

∑

𝑖=𝑖
1

+1

𝑧
𝑛
2

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 3𝜀.

(23)

Take 𝑛
3
> 𝑛
2
such that ‖∑𝑖2

𝑖=1
𝑧
𝑛
3

(𝑖)𝑒
𝑖
‖
Φ,𝑝

< 𝜀, and for 𝑛
3
, there

exists 𝑖
3
> 𝑖
2
such that ‖∑∞

𝑖=𝑖
3

+1
𝑧
𝑛
3

(𝑖)𝑒
𝑖
‖
Φ,𝑝

< 𝜀. Then

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
1

− 𝑧
𝑛
3

󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
1

(𝑖)𝑒
𝑖
−

𝑖
3

∑

𝑖=𝑖
2

+1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
1

+1

𝑧
𝑛
1

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
2

∑

𝑖=1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
3

+1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝
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≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
1

(𝑖) 𝑒𝑖 −

𝑖
3

∑

𝑖=𝑖
2

+1

𝑧
𝑛
3

(𝑖) 𝑒𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 3𝜀,

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
2

− 𝑧
𝑛
3

󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
2

∑

𝑖=𝑖
1

+1

𝑧
𝑛
2

(𝑖)𝑒
𝑖
−

𝑖
3

∑

𝑖=𝑖
2

+1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
2

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
2

+1

𝑧
𝑛
2

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
2

∑

𝑖=1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
3

+1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
2

∑

𝑖=𝑖
1

+1

𝑧
𝑛
2

(𝑖)𝑒
𝑖
−

𝑖
3

∑

𝑖=𝑖
2

+1

𝑧
𝑛
3

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 4𝜀.

(24)

Analogously, we can find by induction a subsequence {𝑧
𝑛
𝑘

}

of {𝑧
𝑛
} and {𝑖

𝑘
} ⊂ N such that 𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑘
< ⋅ ⋅ ⋅ ,

𝑖
1
< 𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
< ⋅ ⋅ ⋅ such that, for any 𝑘 ∈ N,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
𝑘−1

∑

𝑖=1

𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

< 𝜀,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑖
𝑘

+1

𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

< 𝜀,

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
1

− 𝑧
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩Φ,𝑝
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
1

∑

𝑖=1

𝑧
𝑛
1

(𝑖)𝑒
𝑖
−

𝑖
𝑘

∑

𝑖=𝑖
𝑘−1

+1

𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 3𝜀,

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑙

− 𝑧
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩Φ,𝑝
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖
𝑙

∑

𝑖=𝑖
𝑙−1

+1

𝑧
𝑛
𝑙

(𝑖)𝑒
𝑖
−

𝑖
𝑘

∑

𝑖=𝑖
𝑘−1

+1

𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 4𝜀,

∀1 < 𝑙 < 𝑘.

(25)

Since ‖∑∞
𝑖=1

𝑧
𝑛
(𝑖)𝑒
𝑖
‖
Φ,𝑝

≤ 1+𝜀, ‖∑𝑖𝑘
𝑖=𝑖
𝑘−1

+1
𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖
‖
Φ,𝑝

/(1+𝜀) ≤

1 for all 𝑘 ∈ N. Therefore, for any 𝑙, 𝑘 ∈ N,
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑙

− 𝑧
𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩Φ,𝑝

≤ (1 + 𝜀)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖
𝑙

𝑖=𝑖
𝑙−1

+1
𝑧
𝑛
𝑙

(𝑖) 𝑒𝑖

󵄩󵄩󵄩󵄩󵄩
∑
𝑖
𝑙

𝑖=𝑖
𝑙−1

+1
𝑧
𝑛
𝑙

(𝑖) 𝑒𝑖
󵄩󵄩󵄩󵄩󵄩Φ,𝑝

−

∑
𝑖
𝑘

𝑖=𝑖
𝑘−1

+1
𝑧
𝑛
𝑘

(𝑖) 𝑒𝑖

󵄩󵄩󵄩󵄩󵄩
∑
𝑖
𝑘

𝑖=𝑖
𝑘−1

+1
𝑧
𝑛
𝑘

(𝑖) 𝑒𝑖
󵄩󵄩󵄩󵄩󵄩Φ,𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

+ 4𝜀.

(26)

Setting 𝑦
𝑘

= ∑
𝑖
𝑘

𝑖=𝑖
𝑘−1

+1
𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖
/‖∑
𝑖
𝑘

𝑖=𝑖
𝑘−1

+1
𝑧
𝑛
𝑘

(𝑖)𝑒
𝑖
‖
Φ,𝑝

(for all
𝑘 ∈ N), then

{𝑦
𝑚
} ⊂ 𝑆 (𝑙

Φ,𝑝
) , supp (𝑦

𝑙
) ∩ supp (𝑦

𝑚
) = 𝜙. (27)

In this way, we get

𝐾(𝑙
Φ,𝑝

) ≤ sep (𝑥
𝑛
) ≤ sep (𝑧

𝑛
) ≤ sep (𝑧

𝑛
𝑖

)

≤ (1 + 𝜀)
󵄩󵄩󵄩󵄩𝑦𝑚 − 𝑦

𝑙

󵄩󵄩󵄩󵄩Φ,𝑝 + 4𝜀.

(28)

For any 𝜀 > 0, by the definition of 𝑑, there exists 𝑘
𝑚

> 1

such that 𝑑
𝑦
𝑚

,𝑘
𝑚

< 𝑑 + 𝜀, where 𝑑
𝑦
𝑚

,𝑘
𝑚

satisfies the equality
𝐼
𝑝

Φ
(𝑘
𝑚
𝑦
𝑚
/𝑑
𝑦
𝑚

,𝑘
𝑚

) = (𝑘
𝑝

𝑚
− 1)/2

𝑝
(𝑚 ∈ N).

Setting ‖𝑦
𝑚
−𝑦
𝑙
‖ = 𝜆
𝑚𝑙
and taking 𝑘

𝑚𝑙
∈ 𝐾
𝑝
((𝑦
𝑚
−𝑦
𝑙
)/𝜆),

we have

1 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑚
− 𝑦
𝑙

𝜆
𝑚𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

=
1

𝑘
𝑚𝑙

(1 + 𝐼
𝑝

Φ
(𝑘
𝑚𝑙

(
𝑦
𝑚
− 𝑦
𝑙

𝜆
𝑚𝑙

)))

1/𝑝

=
1

𝑘
𝑚𝑙

(1 + (𝐼
Φ
(𝑘
𝑚𝑙

(
𝑦
𝑚

𝜆
𝑚𝑙

)) + 𝐼
Φ
(𝑘
𝑚𝑙

(
𝑦
𝑙

𝜆
𝑚𝑙

)))

𝑝

)

1/𝑝

.

(29)

Then

(𝑘
𝑝

𝑚𝑙
− 1)
1/𝑝

= 𝐼
Φ
(𝑘
𝑚𝑙

(
𝑦
𝑚

𝜆
𝑚𝑙

)) + 𝐼
Φ
(𝑘
𝑚𝑙

(
𝑦
𝑙

𝜆
𝑚𝑙

)) .

(30)

Now we obtain that 𝜆
𝑚𝑙

≤ max{𝑑
𝑦
𝑚

,𝑘
𝑚𝑙

, 𝑑
𝑦
𝑙

,𝑘
𝑚𝑙

}. If not, 𝜆
𝑚𝑙

>

max{𝑑
𝑦
𝑚

,𝑘
𝑚𝑙

, 𝑑
𝑦
𝑙

,𝑘
𝑚𝑙

}, we have

𝐼
𝑝

Φ
(𝑘
𝑚𝑙

(
𝑦
𝑚

𝜆
𝑚𝑙

)) <
𝑘
𝑝

𝑚𝑙
− 1

2𝑝
,

𝐼
𝑝

Φ
(𝑘
𝑚𝑙

(
𝑦
𝑙

𝜆
𝑚𝑙

)) <
𝑘
𝑝

𝑚𝑙
− 1

2𝑝
,

(31)

whence

(𝐼
Φ
(𝑘
𝑚𝑙

(
𝑦
𝑚

𝜆
𝑚𝑙

)) + 𝐼
Φ
(𝑘
𝑚𝑙

(
𝑦
𝑙

𝜆
𝑚𝑙

)))

𝑝

< ((
𝑘
𝑝

𝑚𝑙
− 1

2𝑝
)

1/𝑝

+ (
𝑘
𝑝

𝑚𝑙
− 1

2𝑝
)

1/𝑝

)

𝑝

= 𝑘
𝑝

𝑚𝑙
− 1.

(32)

This is a contradiction. Hence,
󵄩󵄩󵄩󵄩𝑦𝑚 − 𝑦

𝑙

󵄩󵄩󵄩󵄩Φ,𝑝 = 𝜆
𝑚𝑙

≤ max {𝑑
𝑦
𝑚

,𝑘
𝑚𝑙

, 𝑑
𝑦
𝑙

,𝑘
𝑚𝑙

} ≤ 𝑑. (33)

So 𝐾(𝑙
Φ,𝑝

) ≤ (1 + 𝜀)𝑑 + 4𝜀; we get 𝐾(𝑙
Φ,𝑝

) ≤ 𝑑 due to the
arbitrariness of 𝜀.

Theorem 8. If Φ ∉ Δ
2
(0), 1 ≤ 𝑝 < ∞, then 𝐾(𝑙

Φ,𝑝
) = 2.

Proof. Denote

𝑙
𝛼
= {𝑥 ∈ 𝑙

Φ,𝑝
: lim
𝑛→∞

‖(0, . . . , 0, 𝑥 (𝑛 + 1) ,

𝑥 (𝑛 + 2) , . . .)‖Φ,𝑝 = 0} .

(34)
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Since Φ ∉ Δ
2
(0), then 𝑙

𝛼
̸= 𝑙
Φ,𝑝

; so for 𝜀 > 0, according to
Riesz lemma, there exists 𝑥

𝜀
∈ 𝑆(𝑙
Φ,𝑝

) satisfying dist(𝑥
𝜀
, 𝑙
𝛼
) >

1 − 𝜀. Then we have
󵄩󵄩󵄩󵄩(0, . . . , 0, 𝑥𝜀 (𝑛 + 1) , 𝑥𝜀 (𝑛 + 2) , . . .)

󵄩󵄩󵄩󵄩Φ,𝑝 > 1 − 𝜀. (35)

Since

lim
𝑚→∞

󵄩󵄩󵄩󵄩(0, . . . , 0, 𝑥𝜀 (𝑛 + 1) , . . . , 𝑥𝜀 (𝑚) , 0, . . .)
󵄩󵄩󵄩󵄩Φ,𝑝 > 1 − 𝜀,

(36)

there exists a subsequence {𝑛
𝑖
} ⊂ N such that 𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ <

𝑛
𝑘
< ⋅ ⋅ ⋅ and
󵄩󵄩󵄩󵄩(0, . . . , 0, 𝑥𝜀 (𝑛𝑖 + 1) , . . . , 𝑥

𝜀
(𝑛
𝑖+1

) , 0, . . .)
󵄩󵄩󵄩󵄩Φ,𝑝 > 1 − 𝜀.

(37)

Let

𝑥
1
= (−𝑥

𝜀 (1) , . . . , −𝑥𝜀 (𝑛1) , 𝑥𝜀 (𝑛1 + 1) , . . . ,

𝑥
𝜀
(𝑛
2
) , 𝑥
𝜀
(𝑛
2
+ 1) , . . .) ,

𝑥
2
= (𝑥
𝜀 (1) , . . . , 𝑥𝜀 (𝑛1) , −𝑥𝜀 (𝑛1 + 1) , . . . ,

−𝑥
𝜀
(𝑛
2
) , 𝑥
𝜀
(𝑛
2
+ 1) , . . .) .

(38)

Then for any𝑚, 𝑙 ∈ N,
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑥

𝑙

󵄩󵄩󵄩󵄩Φ,𝑝

= 2
󵄩󵄩󵄩󵄩(. . . , 0, 𝑥𝜀 (𝑛𝑚−1 + 1) , . . . , 𝑥

𝜀
(𝑛
𝑚
) , 0, . . . ,

0, 𝑥
𝜀
(𝑛
𝑙−1

+ 1) , . . . , 𝑥
𝜀
(𝑛
𝑙
), 0, . . .)

󵄩󵄩󵄩󵄩Φ,𝑝

≥ 2
󵄩󵄩󵄩󵄩(0, . . . , 0, 𝑥𝜀 (𝑛𝑚−1 + 1) , . . . , 𝑥

𝜀
(𝑛
𝑚
) , 0, . . .)

󵄩󵄩󵄩󵄩Φ,𝑝

≥ 2 (1 − 𝜀) .

(39)

Due to the arbitrariness of 𝜀 > 0, we have𝐾(𝑙
Φ,𝑝

) = 2.

Lemma 9. If Φ ∈ Δ
2
(0) ∩ ∇

2
(0), 1 ≤ 𝑝 < ∞, then

1 < 𝑘
󸀠
≤ 𝑘
󸀠󸀠
< ∞. (40)

Proof. (1) SinceΦ ∈ Δ
2
(0) and the norm convergence and the

modular convergence are equivalent, there exists 𝑐 > 0 such
that

inf
‖𝑥‖
Φ,𝑝

=1

𝐼
Φ (𝑥) = 𝑐 > 0. (41)

For any 𝑥 ∈ 𝑆(𝑙
Φ,𝑝

) and 𝑘 ∈ 𝐾
𝑝
(𝑥), we have

1 = ‖𝑥‖Φ,𝑝 =
1

𝑘
(1 + 𝐼

𝑝

Φ
(𝑘𝑥))
1/𝑝

, (42)

so 𝑘 = (1 + 𝐼
𝑝

Φ
(𝑘𝑥))
1/𝑝

≥ 1; then

𝑘
󸀠
= inf
‖𝑥‖
Φ,𝑝

=1

𝑘 = inf
‖𝑥‖
Φ,𝑝

=1

(1 + 𝐼
𝑝

Φ
(𝑘𝑥))
1/𝑝

≥ inf
‖𝑥‖
Φ,𝑝

=1

(1 + 𝐼
𝑝

Φ
(𝑥))
1/𝑝

≥ (1 + 𝑐
𝑝
)
1/𝑝

> 1.

(43)

(2) If Φ ∈ ∇
2
(0), then there exists 𝛼 > 1 such that

𝑢𝑝
+ (𝑢) ≥ 𝛼Φ (𝑢) , (|𝑢| ≤ 𝑞

+
(Ψ
−1

(
1

𝑐𝑝−1
))) . (44)

For any 𝑥 ∈ 𝑆(𝑙
Φ,𝑝

) and 𝑘 ∈ 𝐾
𝑝
(𝑥), we have 1 < 𝑘

󸀠
≤ 𝑘 ≤

𝑘
∗∗

𝑝
(𝑥); then for any 𝜀 ∈ (0, 𝑘

󸀠
− 1), we get

1 ≥ 𝐼
𝑝−1

Φ
((𝑘 − 𝜀) 𝑥) 𝐼Ψ (𝑝+ (|(𝑘 − 𝜀) 𝑥|))

≥ 𝐼
𝑝−1

Φ
(𝑥) 𝐼Ψ (𝑝+ (|(𝑘 − 𝜀) 𝑥|))

≥ 𝑐
𝑝−1

∞

∑

𝑖=1

Ψ (𝑝
+ (|(𝑘 − 𝜀) 𝑥 (𝑖)|))

≥ 𝑐
𝑝−1

Ψ (𝑝
+ (|(𝑘 − 𝜀) 𝑥 (𝑖)|)) , (∀𝑖 = 1, 2, . . .) ;

(45)

whence |(𝑘 − 𝜀)𝑥(𝑖)| ≤ 𝑞
+
(Ψ
−1
(1/𝑐
𝑝−1

)). Moreover, according
to the Young inequality

1 ≥ 𝐼
𝑝−1

Φ
((𝑘 − 𝜀) 𝑥) 𝐼Ψ (𝑝+ (|(𝑘 − 𝜀) 𝑥|))

≥ 𝑐
𝑝−1

∞

∑

𝑖=1

Ψ (𝑝
+ (|(𝑘 − 𝜀) 𝑥 (𝑖)|))

≥ 𝑐
𝑝−1

∞

∑

𝑖=1

{|(𝑘 − 𝜀) 𝑥 (𝑖)| 𝑝+ (|(𝑘 − 𝜀) 𝑥 (𝑖)|)

−Φ ((𝑘 − 𝜀) 𝑥 (𝑖))}

≥ 𝑐
𝑝−1

(𝛼 − 1) 𝐼Φ ((𝑘 − 𝜀) 𝑥)

≥ 𝑐
𝑝−1

(𝛼 − 1) (𝑘 − 𝜀) 𝐼Φ (𝑥)

≥ 𝑐
𝑝
(𝛼 − 1) (𝑘 − 𝜀) ,

(46)

since 𝜀 > 0 is arbitrary, we deduce that 𝑘 ≤ 1/(𝛼 − 1)𝑐
𝑝
<

∞.

Ye et al. [21] have proved that Orlicz function space as
well as Orlicz sequence space equipped with the Luxemburg
norm is 𝑃-convex if and only if it is reflexive; that is, Φ
satisfies the suitable Δ

2
-condition and ∇

2
-condition (i.e., the

Δ
2
-condition at zero in the sequence case).Wewill prove now

an analogous result for 𝑙
Φ,𝑝

in terms of 𝑃(𝑙
Φ,𝑝

).

Theorem 10. IfΦ ∈ Δ
2
(0)∩∇

2
(0), 1 ≤ 𝑝 < ∞, then 𝑃(𝑙

Φ,𝑝
) <

1/2.

Proof. If Φ ∈ Δ
2
(0), then due to Lemma 6, for any 𝜀 > 0,

there exists 𝛿 > 0 such that

(𝐼
Φ (𝑥) ≤ 1) ∧ (𝐼

Φ
(𝑦) <

𝛿𝑘
󸀠󸀠

2 (2 − 𝛿)
)

󳨐⇒ 𝐼
𝑝

Φ
(𝑥 + 𝑦) ≤ 𝐼

𝑝

Φ
(𝑥) + 𝜀 ((𝑘

󸀠
)
𝑝

− 1) ,

(47)
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where 𝑘
󸀠󸀠

= sup{𝑘 : 𝑘 ∈ 𝐾
𝑝
(𝑥), ‖𝑥‖

𝜙,𝑝
= 1}. According to

Lemma 9, 𝑘󸀠󸀠 < ∞. Set inf
‖𝑥‖
Φ,𝑝

=1
𝐼
Φ
(𝑥) = 𝑐 > 0. If 𝐾(𝑙

Φ,𝑝
) =

2, then there exists 𝑥 ∈ 𝑆(𝑙
Φ,𝑝

) such that 𝑑
𝑥
> 2 − 𝛿, so 𝑑

𝑥,𝑘
>

2 − 𝛿 for all 𝑘 ∈ 𝐾
𝑝
(𝑥).

Since ∈ ∇
2
(0), we can find 𝜃 > 1 such that

Φ(
𝑢

2
) ≤

1

2𝜃
Φ (𝑢) , (|𝑢| ≤ 𝑞

+
(Ψ
−1

(
1

𝑐𝑝−1
))) .

(48)

Let us notice that

𝐼
Φ
(

𝛿𝑘

2 (2 − 𝛿)
𝑥) ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿𝑘

2(2 − 𝛿)
𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

=
𝛿𝑘

2 (2 − 𝛿)
≤

𝛿𝑘
󸀠󸀠

2 (2 − 𝛿)
.

(49)

Thus,

𝑘
𝑝
− 1

2𝑝
= 𝐼
𝑝

Φ
(

𝑘𝑥

𝑑
𝑥,𝑘

) < 𝐼
𝑝

Φ
(

𝑘𝑥

2 − 𝛿
)

= 𝐼
𝑝

Φ
(
𝑘𝑥

2
+

𝛿𝑘𝑥

2 (2 − 𝛿)
)

≤ 𝐼
𝑝

Φ
(
𝑘𝑥

2
) + 𝜀 ((𝑘

󸀠
)
𝑝

− 1)

≤
1

(2𝜃)
𝑝
𝐼
𝑝

Φ
(𝑘𝑥) + 𝜀 (𝑘

𝑝
− 1)

=
1

(2𝜃)
𝑝
(𝑘
𝑝
− 1) + 𝜀 (𝑘

𝑝
− 1)

= (
1

(2𝜃)
𝑝
+ 𝜀) (𝑘

𝑝
− 1) ;

(50)

we have 1/2𝑝 ≤ 1/(2𝜃)
𝑝
+𝜀. Since 𝜀 is arbitrary, we obtain 𝜃 <

1; this is a contradiction.Therefore,𝐾(𝑙
Φ,𝑝

) < 2 and 𝑃(𝑙
Φ,𝑝

) <

1/2.

Corollary 11. If𝑋 = 𝑙
𝑝
1 (1 < 𝑝

1
< ∞), then

𝐾(𝑙
𝑝
1) = 2

1/𝑝
1 , 𝑃 (𝑙

𝑝
1) =

1

1 + 21−(1/𝑝1)
. (51)

Proof. For any 𝑥 ∈ 𝑙
𝑝
1 ,

‖𝑥‖Φ,𝑝 = (𝑝
1
− 1)
−1/𝑝𝑞

1

𝑝
1/𝑝−1/𝑝

1

1
‖𝑥‖𝑙𝑝1

= (𝑝
1
− 1)
−1/𝑝𝑞

1

𝑝
1/𝑝−1/𝑝

1

1
Φ
−1

(𝐼
Φ (𝑥)) ,

(52)

where Φ(𝑢) = |𝑢|
𝑝
1/𝑝
1
and 1/𝑝 + 1/𝑞 = 1, 1/𝑝

1
+ 1/𝑞
1
= 1.

In fact, sinceΦ(𝑢) = |𝑢|
𝑝
1/𝑝
1
, thenΦ(‖𝑥‖

𝑙
𝑝

1

) = 𝐼
Φ
(𝑥) and

Φ
−1
(𝑢) = (𝑝

1
𝑢)
1/𝑝
1 . Set

𝑓 (𝑘) =
1

𝑘𝑝
(1 + 𝐼

𝑝

Φ
(𝑘𝑥)) =

1

𝑘𝑝
(1 + (

𝑘
𝑝
1‖𝑥‖
𝑝
1

𝑙
𝑝

1

𝑝
1

)

𝑝

) .

(53)

By 𝑓
󸀠
(𝑘) = 0, we get 𝑘

0
= (𝑝
1
− 1)
−1/𝑝𝑝

1𝑝
1/𝑝
1

1
1/‖𝑥‖

𝑙
𝑝

1

. Since
𝑓
󸀠󸀠
(𝑘
0
) < 0, we have

‖𝑥‖Φ,𝑝 = inf
𝑘>0

1

𝑘
(1 + 𝐼

𝑝

Φ
(𝑘𝑥))
1/𝑝

= (𝑓 (𝑘
0
))
1/𝑝

= (𝑝
1
− 1)
−1/𝑝𝑞

1

𝑝
1/𝑝−1/𝑝

1

1
‖𝑥‖𝑙𝑝1 .

(54)

Set 𝛼 = (𝑝
1
− 1)
−1/𝑝𝑞

1𝑝
1/𝑝−1/𝑝

1

1
. From the equation

𝑘
𝑝
− 1

2𝑝
= 𝐼
𝑝

Φ
(

𝑘𝑥

𝑑
𝑥,𝑘

) = Φ
𝑝
(
1

𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘𝑥

𝑑
𝑥,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Φ,𝑝

) = Φ
𝑝
(

𝑘

𝛼𝑑
𝑥,𝑘

) ,

(55)

we deduce that 𝑑
𝑥,𝑘

= (𝑘/𝛼)(Φ
−1
(((𝑘
𝑝
− 1)/2

𝑝
)
1/𝑝

))
−1

.There-
fore,

𝐾(𝑙
𝑝
1) = 𝑑 = sup

‖𝑥‖
Φ,𝑝

=1

inf
𝑘>1

𝑑
𝑥,𝑘

=
1

𝛼
inf
𝑘>1

{

{

{

𝑘(Φ
−1

((
𝑘
𝑝
− 1

2𝑝
)

1/𝑝

))

−1

}

}

}

= (𝑝
1
− 1)
1/𝑝𝑞
1

𝑝
−1/𝑝

1
2
1/𝑝
1 inf
𝑘>1

𝑘

(𝑘𝑝 − 1)
1/𝑝𝑝
1

= 2
1/𝑝
1 .

(56)

We have 𝐾(𝑙
𝑝
1) = 2

1/𝑝
1 . So 𝑃(𝑙

𝑝
1) = 1/(1 + 2)

1−(1/𝑝
1

) for 1 <

𝑝
1
< ∞.
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