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The basic viral infection models, proposed by Nowak et al. and Perelson et al., respectively, have been widely used to describe viral
infection such as HBV and HIV infection. However, the basic reproduction numbers of the two models are proportional to the
number of total cells of the host’s organ prior to the infection, which seems not to be reasonable. In this paper, we formulate an
amended model with a general standard incidence rate. The basic reproduction number of the amended model is independent of
total cells of the host’s organ.When the basic reproduction number 𝑅

0
< 1, the infection-free equilibrium is globally asymptotically

stable and the virus is cleared. Moreover, if 𝑅
0
> 1, then the endemic equilibrium is globally asymptotically stable and the virus

persists in the host.

1. Introduction

Mathematical models of viral infection have played a sig-
nificant role in the understanding of the disease in vivo
[1]. Analysis of the viral dynamics of a proper model can
not only provide important quantitative insights into the
pathogenesis, but also lead to design treatment strategies
which would more effectively bring the infection under
control [2].

The basic models of within-host viral infection, proposed
by Nowak and May [3] and Perelson and Nelson [4], have
been widely used in the studies of viral infection [5–13], such
asHBV andHIV infection. In both of these two basicmodels,
uninfected cells 𝑥 are assumed to become infected by free
virions V at the bilinear rate𝛽𝑥V, where𝛽 is a positive constant
rate. However, the basic reproduction number 𝑅

0
of these

two models is proportional to the number of total cells of
the host’s organ prior to the infection. This implies that an
individual with a smaller organmaybemore resistant to virus
infection than an individual with a larger one. Hence, Min
et al. [5] proposed the following amended Nowak and May’s
model with a standard incidence rate to describe the hepatitis
B virus infection:

𝑥
󸀠
= 𝜆 − 𝑑𝑥 − 𝛽

𝑥

𝑥 + 𝑦
V,

𝑦
󸀠
= 𝛽

𝑥

𝑥 + 𝑦
V − 𝑎𝑦,

V󸀠 = 𝑘𝑦 − 𝑢V.

(1)

The basic reproduction number 𝑅
0
of model (1) is indepen-

dent of the number of total cells of the host’s organ.
In the modelling the viral infection of disease, the

incidence rate, which is the rate of new infections, plays
an important role in describing the viral dynamics. Bilinear
and standard incidence rate are the most common incidence
rates in virus infection models. However, there are still some
other nonlinear incidence rates to describe disease infections.
Yorke and London [14] investigated an incidence rate 𝑥𝑔(V) =
𝛽𝑥V(1 − 𝑐V) for measles outbreaks. Liu et al. [15] studied a
nonlinear saturated mass action given by 𝛽𝑥(V𝑝/(1 + 𝛼V𝑞)),
where 𝛽, 𝑝, 𝛼, and 𝑞 > 0. When 𝑝 = 𝑞 = 1, the nonlinear
incidence rate becomes 𝛽𝑥(V/(1 + 𝛼V)), which has been
frequently used in the viral model with saturation response.
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In this paper, motivated by the above models, we formu-
late an amended viral infectionmodel with a general standard
incidence rate, which is described as follows:

𝑥
󸀠
= 𝜆 − 𝑑𝑥 − 𝛽

𝑥

𝑥 + 𝑦
𝑔 (V) ,

𝑦
󸀠
= 𝛽

𝑥

𝑥 + 𝑦
𝑔 (V) − 𝑎𝑦,

V󸀠 = 𝑘𝑦 − 𝑢V,

(2)

where 𝑔(0) = 0, 𝑔󸀠(V) > 0, and 𝑔󸀠󸀠(V) ⩽ 0 when V ⩾ 0. Under
this assumption, in the special case 𝑔(V) = V, the incidence
rate means the standard incidence rate. If 𝑔(V) = V/(1 + 𝛼V),
then that describes the model with the standard incidence
rate and saturation response.

The basic reproduction number of the model (2) is given
by𝑅
0
= (𝛽𝑘/𝑎𝑢)𝑔

󸀠
(0), which describes the average number of

secondary infections produced by a single infected cell during
the period of infection when all cells are uninfected. Clearly,
𝑅
0
ofmodel (2) is also independent of the number of the host’s

organ. The main purpose of this paper is to study the virus
dynamics of model (2).

The rest of this paper is organized as follows: Section 2
studies the existence and uniqueness of equilibria of model
(2). The stability of the infection-free equilibrium and the
endemic equilibrium is analyzed in Section 3. Finally, con-
cluding remarks are given in Section 4.

2. The Existence and Uniqueness of Equilibria

Before the analysis of the existence and uniqueness of
equilibria, we will show the positivity and boundedness of
solutions of model (2).

2.1. Positivity andBoundedness. Theproof of positive solution
is easy; we only show the boundedness of solution in the
following.

Theorem 1. There is an 𝑀 > 0, such that, for any positive
solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) of model (2), one has 𝑥(𝑡) < 𝑀,
𝑦(𝑡) < 𝑀, V(𝑡) < 𝑀.

Proof. Let

𝑉
1
(𝑡) = 𝑥 (𝑡) + 𝑦 (𝑡) +

𝑎

2𝑘
V (𝑡) . (3)

Calculating the derivative of 𝑉
1
along the solutions of model

(2) gives

𝑉
󸀠

1
(𝑡) = 𝜆 − 𝑑𝑥 −

𝑎

2
𝑦 −

𝑎𝑢

2𝑘
V

⩽ 𝜆 −min {𝑑, 𝑎
2
, 𝑢}𝑉
1
(𝑡) .

(4)

Denote ℎ = min{𝑑, 𝑎/2, 𝑢}; it follows that

𝑉
󸀠

1
(𝑡) ⩽ 𝜆 − ℎ𝑉

1
(𝑡) . (5)

Further

𝑉
1 (𝑡) ⩽

𝜆

ℎ
+ (𝑉
1 (0) −

𝜆

ℎ
) 𝑒
−ℎ𝑡
. (6)

Hence,𝑉
1
(𝑡) is bounded.Thenwe can conclude that𝑥(𝑡),𝑦(𝑡),

and V(𝑡) are eventually bounded. Thus, there exists an𝑀 > 0

such that 𝑥(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀, V(𝑡) < 𝑀. This completes the
proof.

Define

𝐷 = {(𝑥, 𝑦, V) ∈ 𝑅3
+
| 0 < 𝑥 (𝑡) ⩽

𝜆

𝑑
,

0 ⩽ 𝑦 (𝑡) , V (𝑡) ⩽ 𝑀} .

(7)

If 𝑥(0) ⩽ 𝜆/𝑑, from the first equation of model (2), we have
𝑥(𝑡) ⩽ 𝜆/𝑑 when 𝑡 > 0. It is easy to see that 𝐷 is a positively
invariant region for model (2).

2.2. Existence and Uniqueness of the Endemic Equilibrium.
Obviously, 𝑄

1
= (𝜆/𝑑, 0, 0) is the infection-free equilibrium

of model (2), which represents the extinction of the free
virus. As for the existence and uniqueness of the positive
equilibrium, we have the following theorem.

Theorem 2. If 𝑅
0
> 1, then the model (2) has a unique

endemic equilibrium of the form 𝑄
2
= (𝑥
∗
, 𝑦
∗
, V∗) with 0 <

𝑥
∗
< 𝜆/𝑑, 𝑦∗ > 0 and V∗ > 0.

Proof. At any equilibrium, the following equations hold:

𝜆 − 𝑑𝑥 −
𝛽𝑥

𝑥 + 𝑦
𝑔 (V) = 0,

𝛽𝑥

𝑥 + 𝑦
𝑔 (V) − 𝑎𝑦 = 0,

𝑘𝑦 − 𝑢V = 0.

(8)

By the first and the second equations of (8), we have 𝑦 =

(1/𝑎)(𝜆 − 𝑑𝑥). From the third equation, we get V = (𝑘/𝑢)𝑦.
Now, we consider the following function 𝐹(𝑥) defined on

the interval [0, 𝜆/𝑑]:

𝐹 (𝑥) = 𝛽𝑥
1

𝑥 + 𝑦
𝑔 (V) − 𝑎𝑦,

where 𝑦 = 1

𝑎
(𝜆 − 𝑑𝑥) , V =

𝑘

𝑢
𝑦.

(9)

Therefore

𝐹
󸀠
(𝑥) = 𝛽

1

𝑥 + 𝑦
𝑔 (V) − 𝛽𝑥𝑔 (V)

1

(𝑥 + 𝑦)
2
(1 −

𝑑

𝑎
)

+
𝛽𝑥

𝑥 + 𝑦
𝑔
󸀠
(V)

𝑘

𝑢
(−

𝑑

𝑎
) − 𝑎(−

𝑑

𝑎
)

=
𝛽𝑔 (V)
𝑥 + 𝑦

−
𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
+
𝑑

𝑎

𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
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+ 𝑑 − 𝑑
𝑥

𝑥 + 𝑦

𝛽𝑘

𝑎𝑢
𝑔
󸀠
(V)

=
𝛽𝑦𝑔 (V)
(𝑥 + 𝑦)

2
+
𝑑

𝑎

𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
+ 𝑑

− 𝑑
𝑥

𝑥 + 𝑦

𝛽𝑘

𝑎𝑢
𝑔
󸀠
(V) .

(10)

Clearly, 𝐹(0) = −𝜆 < 0, 𝐹(𝜆/𝑑) = 𝛽𝑔(0) = 0. Notice that
𝐹
󸀠
(𝜆/𝑑) = 𝑑 − 𝑑(𝛽𝑘/𝑎𝑢)𝑔

󸀠
(0) = 𝑑(1 − 𝑅

0
). Hence, we get

𝐹
󸀠
(𝜆/𝑑) < 0 when 𝑅

0
> 1. Therefore, there exists at least

one positive equilibrium 𝑄
2
= (𝑥
∗
, 𝑦
∗
, V∗) with 0 < 𝑥

∗
<

𝜆/𝑑, 𝑦
∗
> 0 and V∗ > 0.

Next, we will proof the uniqueness of the endemic
equilibrium. Observe the terms 𝑑 − 𝑑(𝑥

∗
/(𝑥
∗

+

𝑦
∗
))(𝛽𝑘/𝑎𝑢)𝑔

󸀠
(V∗) in 𝐹

󸀠
(𝑥
∗
). Since 𝑥

∗
/(𝑥
∗
+ 𝑦
∗
) =

𝑎𝑦
∗
/𝛽𝑔(V∗), 𝑦∗ = (𝑢/𝑘)V∗ at any positive equilibrium from

(8), we have

𝑑 − 𝑑
𝑥
∗

𝑥∗ + 𝑦∗

𝛽𝑘

𝑎𝑢
𝑔
󸀠
(V∗)

= 𝑑 − 𝑑
𝑎𝑢

𝛽𝑘

V∗

𝑔 (V∗)
𝛽𝑘

𝑎𝑢
𝑔
󸀠
(V∗)

= 𝑑𝑔 (V∗) (𝑔 (V∗) − V∗𝑔󸀠 (V∗))

= 𝑑𝑔 (V∗) (𝑔 (V∗) − 𝑔 (0) − V∗𝑔󸀠 (V∗))

= 𝑑𝑔 (V∗) (V∗𝑔󸀠 (𝜉) − V∗𝑔󸀠 (V∗))

= 𝑑V∗𝑔 (V∗) (𝑔󸀠 (𝜉) − 𝑔󸀠 (V∗)) ,

where 𝜉 ∈ (0, V∗) .

(11)

Since 𝑔󸀠󸀠 ⩽ 0, we get 𝑑 − 𝑑(𝑥∗/(𝑥∗ + 𝑦∗))(𝛽𝑘/𝑎𝑢)𝑔󸀠(V∗) ⩾ 0;
that is

𝑎𝑢 − 𝛽𝑘
𝑥
∗

𝑥∗ + 𝑦∗
𝑔
󸀠
(V∗) ⩾ 0. (12)

Consequently, we deduce that 𝐹󸀠(𝑥∗) > 0 at any positive
equilibrium. Suppose there are at least two positive equilibria
of𝐹(𝑥) = 0 in (0, 𝜆/𝑑); then theremust be 𝐹󸀠(𝑥∗) < 0 at some
equilibrium, which is a contradiction. Therefore, if 𝑅

0
> 1,

there exists a unique endemic equilibrium 𝑄
2
= (𝑥
∗
, 𝑦
∗
, V∗)

with 0 < 𝑥
∗
< 𝜆/𝑑, 𝑦

∗
> 0 and V∗ > 0. This completes the

proof.

3. Stability Analysis of Equilibria

In this section, wewill analyze the stability of those two steady
states. The Jacobian matrix of the vector field corresponding
to model (2) is

𝐽 =(

−𝑑 −
𝛽𝑦𝑔 (V)
(𝑥 + 𝑦)

2

𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
−
𝛽𝑥𝑔
󸀠
(V)

𝑥 + 𝑦

𝛽𝑦𝑔 (V)
(𝑥 + 𝑦)

2
−𝑎 −

𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2

𝛽𝑥𝑔
󸀠
(V)

𝑥 + 𝑦

0 𝑘 −𝑢

).

(13)

3.1. Stability of the Infection-Free Equilibrium 𝑄
1
. First of all,

we will study the stability of the infection-free equilibrium
𝑄
1
.

Theorem3. If𝑅
0
< 1, then𝑄

1
is globally asymptotically stable

and becomes unstable when 𝑅
0
> 1.

Proof. For𝑄
1
= (𝜆/𝑑, 0, 0), the characteristic equation of (13)

is given by

󵄨󵄨󵄨󵄨𝑠𝐸 − 𝐽 (𝑄1)
󵄨󵄨󵄨󵄨 = (𝑠 + 𝑑) (𝑠

2
+ (𝑎 + 𝑢) 𝑠 + 𝑎𝑢 − 𝛽𝑘𝑔

󸀠
(0)) = 0.

(14)

Note that 𝑑 > 0, 𝑎 + 𝑢 > 0 and 𝑎𝑢 − 𝛽𝑘𝑔󸀠(0) = 𝑎𝑢(1 − 𝑅
0
) > 0

when 𝑅
0
< 1; thus all eigenvalues of (14) have negative real

parts if 𝑅
0
< 1 and at least one eigenvalue becomes positive

when 𝑅
0
> 1. Hence, 𝑄

1
is locally asymptotically stable if

𝑅
0
< 1 and becomes unstable if 𝑅

0
> 1.

Consider the Lyapunov function

𝑉
2
= 𝑦 (𝑡) +

𝑎

𝑘
V (𝑡) . (15)

Calculating the derivative of 𝑉
2
along the solutions of the

model (2) gives

𝑉
󸀠

2
(𝑡) =

𝛽𝑥𝑔 (V)
𝑥 + 𝑦

−
𝑎𝑢

𝑘
V

⩽ 𝛽𝑔 (V) −
𝑎𝑢

𝑘
V

= 𝛽 (𝑔 (V) − 𝑔 (0)) −
𝑎𝑢

𝑘
V

= 𝛽V𝑔󸀠 (𝜉) −
𝑎𝑢

𝑘
V

⩽ 𝛽V𝑔󸀠 (0) −
𝑎𝑢

𝑘
V

=
𝑎𝑢

𝑘
V (𝑅
0
− 1) .

(16)

Since 𝑅
0
< 1, then 𝑉󸀠

2
(𝑡) ⩽ 0 and 𝑉󸀠

2
(𝑡) = 0 only if V = 0. By

the Lyapunov-Lasalle Theorem, solutions in 𝐷 approach the
largest positively invariant subset of the set 𝐸 where 𝑉󸀠

2
(𝑡) =

0. Thus, all solutions in the set 𝐸 approach the infection-free
equilibrium 𝑄

1
. This completes the proof.
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3.2. Stability of the Endemic Equilibrium 𝑄
2
. When 𝑅

0
>

1, there physically exists another steady state 𝑄
2
. We now

consider the local stability of the endemic steady state 𝑄
2
=

(𝑥
∗
, 𝑦
∗
, V∗) when 𝑅

0
> 1.

Theorem 4. If 𝑅
0
> 1, then𝑄

2
is locally asymptotically stable.

Proof. The Jacobian matrix of (13) at 𝑄
2
becomes

𝐽 (𝑄
2
) = (

−𝑑 −
𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

−
𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗

𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

−𝑎 −
𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗

0 𝑘 −𝑢

) .

(17)

The characteristic equation associated with 𝐽(𝑄
2
) is given by

󵄨󵄨󵄨󵄨𝑠𝐸 − 𝐽 (𝑄2)
󵄨󵄨󵄨󵄨 = 𝑠
3
+ 𝑎
1
𝑠
2
+ 𝑎
2
𝑠 + 𝑎
3
= 0, (18)

where

𝑎
1
= 𝑎 + 𝑢 + 𝑑 +

𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
+
𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
,

𝑎
2
= 𝑢𝑑 + 𝑎𝑑 + 𝑢

𝛽𝑔 (V∗)
𝑥∗ + 𝑦∗

+
𝛽𝑎𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

+ (𝑎𝑢 −
𝛽𝑘𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗
)

𝑎
3
= 𝑢𝑑 ⋅

𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
+ 𝑢 ⋅

𝛽𝑎𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

+ 𝑑 ⋅ (𝑎𝑢 −
𝛽𝑘𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗
) .

(19)

From the inequality of (12), we get 𝑎
1
> 0, 𝑎

2
> 0, 𝑎
3
> 0. By

Routh-Hurwitz criterion, we are only to show 𝑎
1
𝑎
2
> 𝑎
3
. In

fact, all the terms of 𝑎
1
, 𝑎
2
, and 𝑎

3
are nonnegative, and all the

three terms in 𝑎
3
appear in the expansion of 𝑎

1
𝑎
2
. Hence, 𝑄

2

is locally asymptotically stable when 𝑅
0
> 1.

Furthermore, to analyze the global asymptotic stability of
𝑄
2
, we introduce the results of Theorem 2.5 in [16].

Lemma 5. Assume that

(1) there exists a compact absorbing set K ⊂ D and the
system (2) has a unique equilibrium 𝑥 in D;

(2) the system (2) satisfies the Poincaré-Bendixson prop-
erty;

(3) For each periodic solution 𝑥 = 𝑝(𝑡) to (2) with
𝑝(0) ∈ 𝐷, the second additive compound matrix of the
Jacobian (17) is asymptotically stable;

(4) (−1)𝑛 det((𝜕𝑓/𝜕𝑥)(𝑥)) > 0.

Then the unique equilibrium 𝑥 is globally asymptotically stable
in D.

Therefore, we only need to prove that model (2) at the𝑄
2

satisfies this lemma when 𝑅
0
> 1.Then we have the following

conclusion.

Theorem 6. If 𝑅
0
> 1, then 𝑄

2
is globally asymptotically

stable.

Proof. Firstly, the assumption (1) of Lemma 5 is equivalent to
the uniform persistence of the model (2) [17]. Clearly, the 𝑄

1

is a unique steady state at the boundary of𝐷. And the uniform
persistence of (2) is equivalent to the instability of the𝑄

1
[18].

Since the infected-free steady state 𝑄
1
is unstable when 𝑅

0
>

1, the assumption (1) of Lemma 5 holds.
Secondly, in order to verify assumption (2) of Lemma 5,

we only need to show that model (2) is competitive in
the convex region 𝐷. Taking the diagonal matrix 𝐻 =

diag(1, −1, 1), it is easy to verify that the matrix 𝐻𝐽𝐻 has
nonpositive off-diagonal elements, where 𝐽 is the Jacobian
matrix (17). Hence, model (2) is competitive. So model (2)
satisfies the Poincaré-Bendixson property.

Next, we will show that model (2) satisfies assumption (3)
of Lemma 5. The second additive compound matrix of the
Jacobian matrix (13) is

𝐽
[2]
=(

−𝑑 − 𝑎 −
𝛽𝑔 (V)
𝑥 + 𝑦

𝛽𝑥𝑔
󸀠
(V)

𝑥 + 𝑦

𝛽𝑥𝑔
󸀠
(V)

𝑥 + 𝑦

𝑘 −𝑑 − 𝑢 −
𝛽𝑦𝑔 (V)
𝑥 + 𝑦

𝛽𝑥𝑔 (V)

(𝑥 + 𝑦)
2

0
𝛽𝑦𝑔 (V)

(𝑥 + 𝑦)
2
−𝑢 − 𝑎 −

𝛽𝑥𝑔 (V)

(𝑥 + 𝑦)
2

).

(20)

The second compound system (2) along a periodic solution
𝑝(𝑡) = (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) is

𝑊
󸀠

1
= (−𝑑 − 𝑎 −

𝛽𝑔 (V)
𝑥 + 𝑦

)𝑊
1
+
𝛽𝑥𝑔
󸀠
(V)

𝑥 + 𝑦
(𝑊
2
+𝑊
3
) ,

𝑊
󸀠

2
= 𝑘𝑊

1
− (𝑑 + 𝑢 +

𝛽𝑦𝑔 (V)
𝑥 + 𝑦

)𝑊
2
+
𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
𝑊
3
,

𝑊
󸀠

3
=

𝛽𝑦𝑔 (V)
(𝑥 + 𝑦)

2
𝑊
2
− (𝑢 + 𝑎 +

𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
)𝑊
3
.

(21)

To show that the model (21) is asymptotically stable,
consider a Lyapunov function

𝑉 (𝑊
1
,𝑊
2
,𝑊
3
, 𝑝) = sup{󵄨󵄨󵄨󵄨𝑊1

󵄨󵄨󵄨󵄨 ,
𝑦 (𝑡)

V (𝑡)
(
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨)} .

(22)

From the uniform persistence, there exists a constant 𝜂 > 0

such that

𝑉 ⩾ 𝜂 ⋅ sup {󵄨󵄨󵄨󵄨𝑊1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨} . (23)
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The right derivative of𝑉 along a solution (𝑊
1
,𝑊
2
,𝑊
3
) to

(21) and (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) can be estimated as follows:

𝐷
+

󵄨󵄨󵄨󵄨𝑊1
󵄨󵄨󵄨󵄨 ⩽ (−𝑑 − 𝑎 −

𝛽𝑔 (V)
𝑥 + 𝑦

)
󵄨󵄨󵄨󵄨𝑊1

󵄨󵄨󵄨󵄨

+
𝛽𝑥𝑔
󸀠
(V)

𝑥 + 𝑦
(
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨) ,

𝐷
+

󵄨󵄨󵄨󵄨𝑊2
󵄨󵄨󵄨󵄨 ⩽ 𝑘

󵄨󵄨󵄨󵄨𝑊1
󵄨󵄨󵄨󵄨 − (𝑑 + 𝑢 +

𝛽𝑦𝑔 (V)
𝑥 + 𝑦

)
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨

+
𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2

󵄨󵄨󵄨󵄨𝑊3
󵄨󵄨󵄨󵄨 ,

𝐷
+

󵄨󵄨󵄨󵄨𝑊3
󵄨󵄨󵄨󵄨 ⩽

𝛽𝑦𝑔 (V)
(𝑥 + 𝑦)

2

󵄨󵄨󵄨󵄨𝑊2
󵄨󵄨󵄨󵄨 − (𝑢 + 𝑎 +

𝛽𝑥𝑔 (V)
(𝑥 + 𝑦)

2
)
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨 .

(24)

Then, we will get

𝐷
+

𝑦 (𝑡)

V (𝑡)
(
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨)

= (
𝑦
󸀠
(𝑡)

𝑦 (𝑡)
−
V󸀠 (𝑡)
V (𝑡)

)
𝑦 (𝑡)

V (𝑡)
(
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨)

+
𝑦 (𝑡)

V (𝑡)
𝐷
+
(
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨)

⩽ 𝑘
𝑦

V
󵄨󵄨󵄨󵄨𝑊1

󵄨󵄨󵄨󵄨 +
𝑦

V
(
𝑦
󸀠

𝑦
−
V󸀠

V
− 𝑢 −min (𝑎, 𝑑))

× (
󵄨󵄨󵄨󵄨𝑊2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑊3

󵄨󵄨󵄨󵄨) .

(25)

Therefore,

𝐷
+
𝑉 (𝑡) ⩽ sup (𝑔

1
(𝑡) , 𝑔
2
(𝑡)) 𝑉 (𝑡) , (26)

where

𝑔
1 (𝑡) = −𝑑 − 𝑎 −

𝛽𝑔 (V)
𝑥 + 𝑦

+
V
𝑦

𝛽𝑥

𝑥 + 𝑦
𝑔
󸀠
(V)

⩽ −𝑑 − 𝑎 +
1

𝑦

𝛽𝑥

𝑥 + 𝑦
V𝑔󸀠 (V) ,

𝑔
2 (𝑡) = 𝑘

𝑦

V
+
𝑦
󸀠

𝑦
−
V󸀠

V
− 𝑢

−min (𝑎, 𝑑) =
𝑦
󸀠

𝑦
−min (𝑎, 𝑑) .

(27)

Notice that 𝑔󸀠󸀠 < 0, 𝑔(V) = 𝑔(V) − 𝑔(0) = V𝑔󸀠(𝜉) ⩾ V𝑔󸀠(V),
where 𝜉 ∈ (0, V). We get

𝑔
1
(𝑡) ⩽ −𝑑 − 𝑎 +

1

𝑦

𝛽𝑥

𝑥 + 𝑦
𝑔 (V)

= −𝑑 − 𝑎 +
1

𝑦
(𝑦
󸀠
+ 𝑎𝑦) = −𝑑 +

𝑦
󸀠

𝑦
.

(28)

Denote ℎ = min(𝑎, 𝑑); we get

sup (𝑔
1
(𝑡) , 𝑔
2
(𝑡)) ⩽

𝑦
󸀠

𝑦
− ℎ. (29)

By inequality (26) and Gronwall inequality, we have

𝑉 (𝑡) ⩽ 𝑉 (0) 𝑦 (𝑡) 𝑒
−ℎ𝑡

⩽ 𝑉 (0)𝑀𝑒
−ℎ𝑡
. (30)

This implies that 𝑉(0) → 0 when 𝑡 → +∞. And from
inequality (23), we get (𝑊

1
(𝑡),𝑊

2
(𝑡),𝑊

3
(𝑡)) → 0 when 𝑡 →

+∞. As a result, the second additive compoundmatrix of the
Jacobian (17) is asymptotically stable.

At last, we will prove that model (2) satisfies assumption
(4) of Lemma 5. Let 𝐽(𝑄

2
) be the Jacobianmatrix of (2) at𝑄

2
.

Then

det (𝐽 (𝑄
2
))

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑑 −
𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

−
𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗

𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

−𝑎 −
𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗

0 𝑘 −𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −𝑢(𝑑 +
𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
)(𝑎 +

𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
)

− 𝑘
𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
⋅
𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗

+ 𝑢
𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

+ 𝑘
𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗
⋅ (𝑑 +

𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
)

= −𝑎𝑢𝑑 − 𝑢𝑑
𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

− 𝑎𝑢
𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
+ 𝑘𝑑

𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗

= −𝑑(𝑎𝑢 − 𝑘
𝛽𝑥
∗
𝑔
󸀠
(V∗)

𝑥∗ + 𝑦∗
) − 𝑢𝑑

𝛽𝑥
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2

− 𝑎𝑢
𝛽𝑦
∗
𝑔 (V∗)

(𝑥∗ + 𝑦∗)
2
.

(31)

From the inequality of (12), we can conclude that all the
terms of det(𝐽(𝑄

2
)) are negative, so det(𝐽(𝑄

2
)) < 0. This

verifies assumption (4) of Lemma 5. Hence, 𝑄
2
is globally

asymptotically stable if 𝑅
0
> 1 by Lemma 5. This completes

the proof.
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4. Concluding Remarks

In this paper, we consider a viral infection model with
a general standard incidence rate. The basic reproduction
number of model (2) is independent of the number of
the host’s organ prior to the infection, which avoids the
emergence of the unreasonable situation for the basic viral
models of Nowak and May and Perelson and Nelson. This
general incidence rate represents a variety of possible inci-
dences such as saturation response and standard incidence.
The existence and uniqueness of the positive equilibrium of
model (2) have been proved in this paper. We also show the
positivity and boundedness of solutions of model (2). The
global stability of the infection-free equilibrium and endemic
equilibrium has been analyzed, respectively. When the basic
reproduction number 𝑅

0
< 1, the infection-free equilibrium

is globally asymptotically stable and the virus is cleared.
Moreover, if 𝑅

0
> 1, then the endemic equilibrium is globally

asymptotically stable and the virus persists in the host.
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