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A nonlinear impulsive integrodifference equation within the frame of g;-quantum calculus is investigated by applying using fixed
point theorems. The conditions for existence and uniqueness of solutions are obtained.

1. Introduction

Recently, by introducing and applying the fractional differ-
ence operators to real world problems (see, e.g., [1-7] and
the references therein) we revitalized the importance of the
quantum calculus [8]. However the real world phenomena are
usually described by complex model based involving different
types of operators. In this way we hope to understand deeper
the dynamics of complex or hypercomplex systems and to
reveal their hidden aspects.

On this line of thought in this paper, we study the
existence and uniqueness of solutions for nonlinear q-
integrodifference equation with nonlocal boundary condi-
tion and impulses:

Dqku(t) =f(t,u(®)+ tqukg(t,u(t)) ,

0<g. <1, te],
9k J )

Au(tk)=1k(u(tk)), k=1,2,...,m,

u(0)=hu)+uy, uyeR,

where D, tk

0,1,2,...,m), respectively. f, g € C(J x R,R), I, h
CR,R),J = [0,TI(T > 0),0 =t; <t; <+ <t <

Iq are g -derivatives and g -integrals (k =
k

A M

tyy <ty = ToJ =T\ {ti byt b Aulty) = uty) — u(ty),
where u(t;) and u(t;) denote the right and the left limits of
u(t) att = t;(k = 1,2,...,m), respectively.

2. Preliminaries

Letusset J, = [0,£;], J; = (¢ 6 )s oo os Toney = (et o) T =
(t,,» T] and introduce the space:

PC(LR)={u:]—>R|ueC(J), k=0,1,...,m,
)
and u (t;) exist, k= 1,2,...,m},

with the norm [lul| = sup,;|u(t)|. Then, PC(J, R) is a Banach
space.

For convenience, let us recall some basic concepts of gy-
calculus [9].

For 0 < g, < 1 and t € Ji, we define the g, -derivatives of
a real valued continuous function f as

F@&) - flaet + (1 - q) ti)

>

(1—qi) (t—t;) (3)
D, f(t) = th_{?quk f@).

Dqkf(t) =
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Higher order gy -derivatives are given by

Dy f() = f(t), D} f(t)=D, D" f(t),

A 9k (4)
neN, tej.
The g, -integral of a function f is defined by
t
W f O | fOdys= (1= (=1
k
©)

< Y qif (det+(1-gp)t),
n=0

t €

provided the series converges. If a € (f;,t) and f is defined
on the interval (t,t), then

a

Lt fs)dy s = JZ f(s)dy s th f(s)d,s. 6)

Observe that

D, (tqukf(t)) =D, Li f(s)dys=f(),

1, (Daef ) = LDqkf (9)dg,s= f(0), ?)

(P f®) = [ D) dys= £ - f(@,
a € (tk,t).

For t € ], the following reversing order of g,-integration
holds

th L f(rd,rd,s= th J;kr+(lqk)tk fr)d,sd,r. (8)

Note that if t;, = 0 and g; = g in (3) and (5), then Dqkf =

qu, bl f = Oqu, where D, and ol are the well-known
g-derivative and g-integral of the function f(t) defined by
J0 - flat)
D, f(t
0= Fp T

©)
A O = | FOds = Ye-a)a'f ().
n=0

Lemmal. Forgiveny, € C (J,R), the functionu € PC(J,R)
is a solution of the impulsive qy-integrodifference equation

Dyu(t)=y, (), 0<g <1 te],
Au(tk) :Ik (M(tk)), k: 1,2,...,m, (10)
u(0)=hu) +uy, uyeR,

Abstract and Applied Analysis

if and only if u satisfies the qy-integral equation

'ryq (s)d ,SHhw) +u, te
k-1
u(t) =1 J Yo, (8)dg,s + Z J Vg, (8)dgs (11)
+ZIi (u(t;)) +h W)+ uy, teJ,.
i=1

Proof. Let u be a solution of g -difference equation (10). For
t € Jy, applying the operator , I, on both sides of D, u(t) =
Vg, (£), we have

W) =)+ ol O =u©)+ [ 3, Odys @)
Thus,

u(t))=u(0)+ Ll Vg, () dg,s. (13)

Similarly, for t € J;, applying the operator & Iq on both
sides of D, u(t) = y, (t), then

t
ut)=u(t))+ J't Y, (9)dys. (14)
In view of Au(t,) = u(t]) — u(t;) = I, (u(t,)), it holds

t t
u(t)=u(0)+ L Y, (8) dqls + Jo Vg, (8) d%s

(15)
+1, (u(ty)), Vte],.
Repeating the above process, we can get
t k-1 iy
u(t) =u(0)+ Jt Vg, (8)dg, s + Z J Vg, (8)dys
k i=0 vt
(16)

t e

21 (t).

Using the boundary value condition given in (10), it
follows

k-1

u(t) = J Ya. (s)qus+ZJ Ya, (s)d S

i

(17)
k
+ Zli (u(t,))+h@W) +uy tej.

i=1

Conversely, assume that u satisfies the impulsive gy-
integral equation (11); applying D, on both sides of (1) and
substituting ¢ = 0 in (11), then (10) holds. This completes the
proof. O
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3. Main Results

Letting y,, (t)

Lemma 1, we introduce an operator Q
PC(J,R) as

ftu(t) + o1, g(t,u(t)), in view of
" PC(J,R) —

@@= [reuer [ grumnd,r]d,s

k-1

. Z Jt.ﬁl [f (S,l/l (s)) + J: g (T’,M (T)) dqir:I

i=0 18)

X (s) dqis

k

+ Zli (u(t;) +h W) +u,.

i=1

By reversing the order of integration, we obtain
t
(Qu) () = J [F (s (o) + [(t-t) - g (s — )]
123

xg (s,u(s))] dg,s

k-1 ti+1
ey [
i=0 Yl 19)

+ [t = 1) —gi (s = ;)]
xg (s,u(s))] dys

k

+ ZI,- (u(t;) +h W) + u,.

i=1

Then, the impulsive g -integrodifference equation (1) has a
solution if and only if the operator equation u = Qu has a
fixed point.

In order to prove the existence of solutions for (1), we need
the following known result [10].

Theorem 2. Let E be a Banach space. Assume thatT : E — E
is a completely continuous operator and the set V = {x € E |
x = uT'x,0 < u < 1} is bounded. Then T has a fixed point in
E.

Theorem 3. Assume the following.

(H,) There exist nonnegative bounded functions M;(t) (i =
1,2,3,4) such that

|f (t,u)| <M, () + M, () |ul,

(20)
g (t,w)] < My () + M, (t) |ul,
foranyte ], ueR.
(H,) There exist positive constants L, L such that
| <L |h@wl <L (21)

foranyu e R, k=1,2,...,m.

Then problem (1) has at least one solution provided

2 (t 1)
sup [TM, (1) + M, () Y ~—2 | < 1. (22)
te]

= 1+g;

Proof. Firstly, we prove the operator Q PC(J,R) —
PC(J,R) is completely continuous. Clearly, continuity of the
operator Q follows from the continuity of f, g, I, and h. Let
Q ¢ PC(J,R) be bounded. Then Vt € ], u € ; there exist
positive constants L; (i = 1,2, 3,4) such that | f(t,u)| < L,,
lg(t,u)| < L,, |, (u)| < Ls, |h(u)| < L,. Thus

@0O1< [ 11 ]+ (-1 - au(s-10)]

x|g (s,u(s)|]d,s

k=1 et
wy [ u)
i=0 Yt
+[(ti —t) —q: (s = 1))
x|g (s,u(s)|]d,s
k

+ 2 1L ()] + 1h )]+ [

i=1

< [ 6= 8- a1l Ll dy s

k-1 ti+1
+ Z J [Ly+[(ti - 1) (23)
i=0 Yt
-q; (s—t;)]L,]d,s

k
+ ZL3 + Ly + ug]

i=1
(t-t)°

1+qk

<L (t-t)+L,

k-1 (t~ _ t‘)Z
+ Ly (ty, —t;) + Ly~
;) 1 i+l i 2 1+ q;

+mLy + Ly + |uy
& (L _ti)z
STL, + L,y ~—" +mL,
o 1ta

+ Ly + |up| := & (constant) .

This implies ||Qu|| < Z.



Furthermore, for any t', t" € J. (k = 0,1,2,...,m)
satisfying t' < ¢, we have

t”

@ (") - @) ()] < || 11 o)

+ [(t” - tk) —q (s - tk)]
x|g (s,u(s))]] dg,s

_ J: [1f (s, (5)
+ [(tl - tk) —q(s- tk)]

x|g (s, u(s))|]dy,s

"

<, Feu©)

+ [(t" - tk) —qi (s - tk)]

xg (s,u(s))|qus

t,
+ J (¢" -t
b

X |g(s,u(s))|qus

< J: [1f su(s)]+(t" = t;)
x|g (s, ()] dy s
+Ly (- t) (" —1t")
<L+ Ly (" -1)] (£ -1)

+Ly (¢ —t) (¢ -1,
(24)

Ast’ — t", the right hand side of the above inequality tends

to zero. Thus, Q(Q) is relatively compact. As a consequence of

Arzela Ascoli’s theorem, Q is a compact operator. Therefore,
Q is a completely continuous operator.
Define the set #" = {u € PC(J,R) | u = AQu,0 < A < 1}.
Next, we show 7 is bounded. Let u € #’; then u = AQu,
0 < A < 1. Foranyt € J, by conditions (H,) and (H,), we
have

lu(B)] = A1(Qu) ()]

. j (1 (s ()] + [t = 1) — i (s - 1))

x|g (s,u(s))] dgs
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k-1 ti1

3| s u)

i=0 Y
+ (i — 1) —qi (s = ;)]
x|g (s, u(s))|]d, s

k
+ Z |1 (u ()] + 11 @)l + [uao]

t
< Jt [M, (s) + M, (s) |u(s)]

+[(t = 1) = qi (s - 1))
X [Mj (s) + My (s) |u()[]] dy, s

k=1 ety
+ j [M, (s) + M, (s) [u ()|
i=0 fi
+ (i — ;) —qi (s = ;)]
X [M (5) + M, (5) [u (9)]]] dy
k —
+ ZL + L+ |uy)

i=1

< (M, + My ull) (¢ = t.) + (M + M, |lul)

(t- tk)2 =
x =+ 3 | (M, + M, [ull) (i, - t;)
1+ dk i=0

(tir — ti)z

+ (Mg + My Jul) 2

i
+mL+ L+ |ug]

< (M + M, lul) T + (M; + M, |lul)

ot -t - -
XZM+THL+L+|MO|
i=0 1+qi

)

Mot —t
< M,T + M3Z(’;1—
iz Ltdi

+mL

= L (t‘+1 - t')2
+ L up| + | MT + M, Y ~— | ],
= 1+g;

1

(25)

which implies

flell
3 MT+M;Y!", ((tH1 - t,-)z/ (1+ qi)) +mL+ L+ [ug]
- 1- [M2T+M4 Yo ((tm -1)’/(1 +‘1i))]

:= constant.

(26)
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So, the set 7 is bounded. Thus, Theorem 2 ensures the
impulsive g -integrodifference equation (1) has at least one
solution. O

Corollary 4. Assume the following.

(H;) There exist nonnegative constants L; (i = 1,2,3,4)
such that

|f w| <Ly,
|Ik (u)| <Lj,

|g (t, u)| <L,
lh(W)| < Ly,

(27)

foranyte J,ueR, k=1,2,...,m

Then problem (1) has at least one solution.

Theorem 5. Assume the following.

(H,) There exist nonnegative bounded functions M(t) and
N(t) such that

|f (tw) = FEV| <M (@) Ju-1,

(28)
|g(t,u) —g(t,v)| <SN@®)|u-v|,
fort e J,u,veR.
(Hs) There exist positive constants K, G such that
| ) - L )| <K |u-v|, h(uw)-hW)| <Glu-1v|,
(29)

foru,v e Randk =1,2,...,m

(Hg) H =
N(t) Z:Z()((tHl

sup,;[M()t + mK + G +
—t)*/(1+g))] < 1.

Then problem (1) has a unique solution.

Proof. Denote sup,;|M(t)| = M, sup,;IN(t)] = N. For
Yu,v € PC(J,R), by (H,) and (Hg), we have

1(Qu) (8) - QW) (®)
t
SL[uumc»—fuvwn

+[(t = t) = g (s = )]
X |g(s,u(s)) =g (s,v()|]d,s

" s u©) - fsv)

+[(ti —t) —q; (s = 1,)]

x |g(s,u(s) =g (sv(s)|]d,s

+ _i |L; (u(5) = L (v (£:)| + 1R (w) = R (V)]

<[ Mo+ 16-1)-al-wING)

x| =) (9] dy s

+ZJ [M(s) + [(tiys —t;) —qi (s = t;)]

X N ()] (u—v)(s)ldys
k
+ ZK |(u=v)(t;)| + Glu-vl
i=1

NGNS

1+ gy

< [M(t—tk)

+kZI[M(,+1 t)+N('Jrl t) ]

iz 1 +g;

+mK + G] [lee = v|

- fz’)z
flee = vl
qi

m
t.
< [Mt+mK+G+NZ(’+11—
i Lt

<H|u-v|.
(30)

As F < 1by (Hy), then [[Qu—Qv| < [lu—v|. Therefore, Q
is a contractive map. Thus, the conclusion of the Theorem 5
follows by Banach contraction mapping principle. O

4. Example

Consider the following nonlinear g -integrodifference equa-
tion with impulses

t2
Dyt () =8+ 3Vt +1n (1 +56 + 5 |u(t)|)

t 3
s
+ J [105 + —sinu(s) | dy/pi)S
1/(1+2k) 3

tel[0,1], t#———,
[0,1] qE1+2k

1 1
Au<1+2k>_cos<u(1+2k>)’ k=12,...,6,

2
u(0)=5+e 2,

(31)



Obviously, g, = 1/2 + k) (k = 0,1,2,...,6), t;, = 1/(1 +
2k) (k= 1,2,...,6), f(t,u) = 8+3Vt +1In(1+5t> +(£*/5)|ul),

g(t,u) =10t + (£2/3) sinu, I (u) = cosu, and h(u) = e
By a simple calculation, we can get

2
t
|f(t,u)|g8+3\/?+5t3+g|u|,

£ 32
|g(t,u)|£10t+§|u|, (32)

|Ik (u)| <1, |h(u)] < 1.

Take M,(t) = 8 + 3+t + 5t°, M,(t) = t*/5, M,(t) =
10t, M,(t) = £*/3,and L = L = 1. Then all conditions
of Theorem 3 hold. By Theorem 3, nonlinear impulsive g-
integrodifference (31) has at least one solution.
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