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We extend work by Pei-Ping and Gui-Xia, 2007, to a global optimization problem for more general functions. Pei-Ping and Gui-Xia
treat the optimization problem for the linear sum of polynomial fractional functions, using a branch and bound approach. We
prove that this extension makes possible to solve the following nonconvex optimization problems which Pei-Ping and Gui-Xia,
2007, cannot solve, that the sum of the positive (or negative) first and second derivatives function with the variable defined by sum
of polynomial fractional function by using branch and bound algorithm.

1. Introduction

The optimization problem is widely used in sciences, espe-
cially in engineering and economy [1–3]. In 2007, Pei-Ping
and Gui-Xia considered one global optimization problem in
[4]:

min 𝜔 (𝑥) =

𝑃

∑

𝑗=1

𝑐
𝑗

𝑏
𝑗 (
𝑥)

𝑎
𝑗 (
𝑥)

s.t. 𝑔
𝑘 (
𝑥) ≤ 0, 𝑥 ∈ 𝑋,

(𝑃)

where 𝑋 := {𝑥 ∈ R𝑁 | 0 < 𝑥
𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑖
< ∞ (𝑖 =

1, 2, . . . , 𝑁)}, 𝑎
𝑗
(𝑥), 𝑏
𝑗
(𝑥), 𝑔

𝑘
(𝑥) are given generalized poly-

nomial. One has

𝑎
𝑗 (
𝑥) :=

𝑇
𝑎

𝑗

∑

𝑡=1

𝛽
𝑎

𝑗𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑎

𝑗𝑡𝑖

𝑖
, 𝑏

𝑗 (
𝑥) :=

𝑇
𝑏

𝑗

∑

𝑡=1

𝛽
𝑏

𝑗𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑏

𝑗𝑡𝑖

𝑖
,

𝑔
𝑘 (
𝑥) :=

𝑇
𝑔

𝑘

∑

𝑡=1

𝛽
𝑎

𝑘𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑔

𝑘𝑡𝑖

𝑖
.

(1)

Sum of rations problems like (𝑃) attract a lot of attention,
and the reason is that these problems are applied to various
economical problems [4].

Pei-Ping and Gui-Xia proposed the method to solve
these problems globally by using branch and bound algo-
rithm in [4]. In the above problem, the objective function
and constrained function are sums of generalized polynomial
fractional functions. We extend these functions to more
general functions like below:

min 𝑤 (𝑥) =

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗 (
𝑥)

𝑎
𝑗 (
𝑥)

)

s.t. 𝑔
𝑘 (
𝑥) =

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥)

𝑐
𝑘 ́𝑗
(𝑥)

) ≤ 0

( ́𝑗 = 1, . . . , 𝑃
𝐾
, 𝑘 = 1, . . . ,𝑀) ,

𝑥 ∈ 𝑋,

(𝑃0)

where 𝑎
𝑗
(𝑥) > 0, 𝑏

𝑗
(𝑥) > 0, 𝑐

𝑘 ́𝑗
(𝑥) > 0, 𝑑

𝑘 ́𝑗
(𝑥) > 0 𝑥 ∈ 𝑋; that

is,

𝑎
𝑗 (
𝑥) :=

𝑇
𝑎

𝑗

∑

𝑡=1

𝛽
𝑎

𝑗𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑎

𝑗𝑡𝑖

𝑖
, 𝑏

𝑗 (
𝑥) :=

𝑇
𝑏

𝑗

∑

𝑡=1

𝛽
𝑏

𝑗𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑏

𝑗𝑡𝑖

𝑖
,

𝑐
𝑘 ́𝑗
(𝑥) :=

𝑇
𝑐

𝑘 ́𝑗

∑

𝑡=1

𝛽
𝑐

𝑘 ́𝑗𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑐

𝑘 ́𝑗𝑡

𝑖
,
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𝑑
𝑘 ́𝑗
(𝑥) :=

𝑇
𝑑

𝑘 ́𝑗

∑

𝑡=1

𝛽
𝑑

𝑘 ́𝑗𝑡

𝑁

∏

𝑖=1

𝑥

𝛾
𝑑

𝑘 ́𝑗𝑡

𝑖
,

(𝑗 = 1, 2, . . . , 𝑃, ́𝑗 = 1, 2, . . . , 𝑃
𝑘
, 𝑘 = 1, 2, . . . ,𝑀) ,

(2)

where 𝑇𝑎
𝑗
, 𝑇𝑏
𝑗
, 𝑇𝑐
𝑘 ́𝑗
, 𝑇𝑑
𝑘 ́𝑗
are natural numbers, and 𝛽

𝑎

𝑗𝑡
, 𝛽𝑏
𝑗𝑡
, 𝛽𝑐
𝑘 ́𝑗𝑡
,

𝛽
𝑑

𝑘 ́𝑗𝑡
are real constants not zero, and 𝛾

𝑎

𝑗𝑡𝑖
, 𝛾𝑏
𝑗𝑡𝑖
, 𝛾𝑐
𝑘 ́𝑗𝑡
, 𝛾𝑑
𝑘 ́𝑗𝑡

are real
constants.

We assume that ℎ
𝑗
(𝑦
𝑗
), ℎ
𝑘 ́𝑗
(𝑦
𝑘 ́𝑗
) : R 󳨃→ R are sec-

ondly differentiable functions and monotone increasing or
monotone decreasing functions.We divide these functions to
monotone increasing or monotone decreasing as follows:

ℎ
󸀠

𝑗
> 0 (𝑗 = 1, . . . , 𝐾) , ℎ

󸀠

𝑗
< 0 (𝑗 = 𝐾 + 1, . . . , 𝑃) ,

ℎ
󸀠

𝑘 ́𝑗
> 0 ( ́𝑗 = 1, . . . , 𝐾

𝑘
) ,

ℎ
󸀠

𝑘 ́𝑗
< 0 ( ́𝑗 = 𝐾

𝑘
+ 1, . . . , 𝑃

𝑘
) .

(3)

Furthermore, we assume the following conditions for the
second derivatives:

{ℎ
𝑗
∘ exp (𝑧

𝑗
)}

󸀠󸀠

> 0, {ℎ
𝑗
∘ exp (𝑧

𝑗
)}

󸀠󸀠

< 0,

{ℎ
𝑘 ́𝑗
∘ exp (𝑧

𝑘 ́𝑗
)}

󸀠󸀠

> 0, {ℎ
𝑘 ́𝑗
∘ exp (𝑧

𝑘 ́𝑗
)}

󸀠󸀠

< 0

(𝑗 = 1, . . . , 𝑃, ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀) .

(4)

To solve the above problem (𝑃0), we transform the problem
(𝑃0) to the equivalent problems (𝑃1), (𝑃2) and transform
(𝑃2) into the linear relaxation problem. We prove the equiv-
alency of the problems under above assumption, and we cal-
culate the equivalent problem using branch and bound algo-
rithm corresponding to [4–6].

For example, according to this extension at approach, we
can calculate the following global optimization problem:

min sin(
𝑥
2

1
+ 3𝑥
2
− 2𝑥
2

2
+ 1

𝑥
2

1
+ 𝑥
2
+ 2

)

+ cos(
−𝑥
2

2
+ 2𝑥
1
+ 2𝑥
2

𝑥
1
+ 2.5

)

s.t. 𝑥
2

1
−

𝑥
1

𝑥
2

− 1 ≤ 0

𝑥
1
+ 3

𝑥
2

𝑥
1

− 5 ≤ 0

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 3, 1 ≤ 𝑥

2
≤ 3} .

(5)

In this paper, we explain how to make equivalent relax-
ation linear problem from original problem in Section 2. In
Section 3, we present the branch and bound algorithm and
its convergence. In Section 4, we introduce numerical exper-
iments result.

2. Equivalence Transformation and
Linear Relaxation

In this section we firstly transform the problem (𝑃0) to the
equivalent problems (𝑃1) and secondly transform (𝑃1) to
(𝑃2). Thirdly we linearize the problem (𝑃2) corresponding to
[4].

2.1. Translation of the Problem (𝑃0) into (𝑃1). For the prob-
lem (𝑃0), we put newvariables𝑚

𝑗
, 𝑙
𝑗
, 𝑡
𝑘 ́𝑗
and 𝑠
𝑘 ́𝑗
, and the func-

tion 𝜌(𝑙, 𝑚) and 𝜉
𝑘
(𝑠, 𝑡) depending on ℎ

𝑗
, ℎ
𝑘 ́𝑗
in the original

problem (𝑃0):

𝜌 (𝑙, 𝑚) :=

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
𝑗

𝑙
𝑗

) (𝑗 = 1, 2, . . . , 𝑃) ,

𝜉
𝑘 (
𝑠, 𝑡) :=

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑡
𝑘 ́𝑗

𝑠
𝑘 ́𝑗

) ( ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀) .

(6)

Since 𝑎
𝑗
(𝑥), 𝑏
𝑗
(𝑥), 𝑐
𝑘 ́𝑗
(𝑥), 𝑑

𝑘 ́𝑗
(𝑥) are polynomials on closed

interval 𝑋, it is easy to calculate the minimums and maxi-
mums of the functions on𝑋; we denote them by 𝑎

𝑗
, 𝑎
𝑗
, 𝑏
𝑗
, 𝑏
𝑗
,

𝑐
𝑘 ́𝑗
, 𝑐
𝑘 ́𝑗
, 𝑑
𝑘 ́𝑗
, 𝑑
𝑘 ́𝑗
.

Let𝐻 be the closed interval:

𝐻 := { (𝑙, 𝑚, 𝑠, 𝑡) ∈ R𝑃sum |

𝑎
𝑗
≤ 𝑙
𝑗
≤ 𝑎
𝑗
, 𝑏
𝑗
≤ 𝑚
𝑗
≤ 𝑏
𝑗
,

𝑐
𝑘 ́𝑗
≤ 𝑠
𝑘 ́𝑗
≤ 𝑐
𝑘 ́𝑗
, 𝑑
𝑘 ́𝑗
≤ 𝑡
𝑘 ́𝑗
≤ 𝑑
𝑘 ́𝑗
} ,

(7)

where 𝑃sum = 2(𝑃 + ∑
𝑀

𝑘=1
𝑃
𝑘
).

Let 𝑍
𝐻
be the following closed domain in𝑋 ×𝐻; that is,

𝑍
𝐻
:= { (𝑥, 𝑙, 𝑚, 𝑠, 𝑡) ∈ 𝑋 × 𝐻 |

𝜉
𝑘 (
𝑠, 𝑡) ≤ 0 (𝑘 = 1, . . . ,𝑀) ,

𝑙
𝑗
− 𝑎
𝑗 (
𝑥) ≤ 0, 𝑏

𝑗 (
𝑥) − 𝑚

𝑗
≤ 0

(𝑗 = 1, . . . , 𝐾) ,

𝑎
𝑗 (
𝑥) − 𝑙
𝑗
≤ 0, 𝑚

𝑗
− 𝑏
𝑗 (
𝑥) ≤ 0

(𝑗 = 𝐾 + 1, . . . , 𝑃) ,

𝑠
𝑘 ́𝑗
− 𝑐
𝑘 ́𝑗
(𝑥) ≤ 0, 𝑑

𝑘 ́𝑗
(𝑥) − 𝑡

𝑘 ́𝑗
≤ 0

( ́𝑗 = 1, . . . , 𝐾
𝑘
, 𝑘 = 1, . . . ,𝑀) ,

𝑐
𝑘 ́𝑗
(𝑥) − 𝑠

𝑘 ́𝑗
≤ 0, 𝑡

𝑘 ́𝑗
− 𝑑
𝑘 ́𝑗
(𝑥) ≤ 0

( ́𝑗 = 𝐾
𝑘
+ 1, . . . , 𝑃

𝑘
, 𝑘 = 1, . . . ,𝑀)} .

(8)
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We give the problem (𝑃1) on 𝑍
𝐻
. Consider

min 𝜌 (𝑙, 𝑚)

s.t. 𝜉
𝑘 (
𝑠, 𝑡) ≤ 0, (𝑘 = 1, . . . ,𝑀) ,

(𝑥, 𝑙, 𝑚, 𝑠, 𝑡) ∈ 𝑍
𝐻
.

(𝑃1)

Nowwe obtainTheorem 1 that proves the equivalence of (𝑃0)
and (𝑃1).

Theorem 1. The problem (𝑃0) on 𝑋 is equivalent to the prob-
lem (𝑃1) on 𝑍

𝐻
.

Proof. Let 𝑥∗ be the optimal solution for (𝑃0); we denote

𝑙
∗

𝑗
:= 𝑎
𝑗
(𝑥
∗
) , 𝑚

∗

𝑗
:= 𝑏
𝑗
(𝑥
∗
) ,

𝑠
∗

𝑘 ́𝑗
:= 𝑐
𝑘 ́𝑗
(𝑥
∗
) , 𝑡

∗

𝑘 ́𝑗
:= 𝑑
𝑘 ́𝑗
(𝑥
∗
) ,

(9)

and then

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗
(𝑥
∗
)

𝑎
𝑗 (
𝑥
∗
)

) =

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
∗

𝑗

𝑙
∗

𝑗

) ,

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥
∗
)

𝑐
𝑘 ́𝑗
(𝑥
∗
)

) =

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑡
∗

𝑘 ́𝑗

𝑠
∗

𝑘 ́𝑗

) .

(10)

Furthermore let (𝑥♯, 𝑙♯, 𝑚♯, 𝑠♯, 𝑡♯) be the optimal solution
for (𝑃1). Then by the restricted condition we have the follow-
ing:

for 𝑗 = 1, . . . , 𝐾, 0 < 𝑙
♯

𝑗
≤ 𝑎
𝑗
(𝑥
♯
) and 0 < 𝑏

𝑗
(𝑥
♯
) ≤ 𝑚

♯

𝑗
;

that is, 0 < 𝑏
𝑗
(𝑥
♯
)/𝑎
𝑗
(𝑥
♯
) ≤ 𝑚

♯

𝑗
/𝑙
♯

𝑗
;

for 𝑗 = 𝐾 + 1, . . . , 𝑃, 0 < 𝑎
𝑗
(𝑥
♯
) ≤ 𝑙
♯

𝑗
and 0 < 𝑚

♯

𝑗
≤

𝑏
𝑗
(𝑥
♯
); that is, 0 < 𝑚

♯

𝑗
/𝑙
♯

𝑗
≤ 𝑏
𝑗
(𝑥
♯
)/𝑎
𝑗
(𝑥
♯
);

for ́𝑗 = 1, . . . , 𝐾
𝑘
and 𝑘 = 1, . . . ,𝑀, 0 < 𝑠

♯

𝑘 ́𝑗
≤ 𝑐
𝑘 ́𝑗
(𝑥
♯
)

and 0 < 𝑑
𝑘 ́𝑗
(𝑥
♯
) ≤ 𝑡
♯

𝑘 ́𝑗
; that is, 0 < 𝑑

𝑘 ́𝑗
(𝑥
♯
)/𝑐
𝑘 ́𝑗
(𝑥
♯
) ≤

𝑡
♯

𝑘 ́𝑗
/𝑠
♯

𝑘 ́𝑗
;

for ́𝑗 = 𝐾
𝑘
+ 1, . . . , 𝑃

𝑘
and 𝑘 = 1, . . . ,𝑀, 0 < 𝑐

𝑘 ́𝑗
(𝑥
♯
) ≤

𝑠
♯

𝑘 ́𝑗
and 0 < 𝑡

♯

𝑘 ́𝑗
≤ 𝑑
𝑘 ́𝑗
(𝑥
♯
); that is, 0 < 𝑡

♯

𝑘 ́𝑗
/𝑠
♯

𝑘 ́𝑗
≤

𝑑
𝑘 ́𝑗
(𝑥
♯
)/𝑐
𝑘 ́𝑗
(𝑥
♯
).

The conditions ℎ󸀠
𝑗
> 0 (𝑗 = 1, . . . , 𝐾), or ℎ󸀠

𝑗
< 0 (𝑗 = 𝐾 +

1, . . . , 𝑃) and ℎ
󸀠

𝑘 ́𝑗
> 0 ( ́𝑗 = 1, . . . , 𝐾

𝑘
), or ℎ󸀠

𝑘 ́𝑗
< 0 ( ́𝑗 = 𝐾

𝑘
+

1, . . . , 𝑃
𝑘
) lead to

ℎ
𝑗
(

𝑏
𝑗
(𝑥
♯
)

𝑎
𝑗
(𝑥
♯
)

) ≤ ℎ
𝑗
(

𝑚
♯

𝑗

𝑙
♯

𝑗

) (𝑗 = 1, . . . , 𝑃) ,

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥
♯
)

𝑐
𝑘 ́𝑗
(𝑥
♯
)

) ≤ ℎ
𝑘 ́𝑗
(

𝑡
♯

𝑘 ́𝑗

𝑠
♯

𝑘 ́𝑗

)

( ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀) .

(11)

Therefore we obtain

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗
(𝑥
♯
)

𝑎
𝑗
(𝑥
♯
)

) ≤

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
♯

𝑗

𝑙
♯

𝑗

) ,

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥
♯
)

𝑐
𝑘 ́𝑗
(𝑥
♯
)

) ≤

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑡
♯

𝑘 ́𝑗

𝑠
♯

𝑘 ́𝑗

) .

(12)

Now,

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥
♯
)

𝑐
𝑘 ́𝑗
(𝑥
♯
)

) ≤

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑡
♯

𝑘 ́𝑗

𝑠
♯

𝑘 ́𝑗

) ≤ 0, (13)

that is, 𝑥♯ satisfied constant for (𝑃0).
Since the optimal solution for (𝑃0) is 𝑥∗, we obtain

ℎ
𝑗
(

𝑏
𝑗
(𝑥
∗
)

𝑎
𝑗 (
𝑥
∗
)

) ≤ ℎ
𝑗
(

𝑏
𝑗
(𝑥
♯
)

𝑎
𝑗
(𝑥
♯
)

) , (14)

so

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
∗

𝑗

𝑙
∗

𝑗

) =

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗
(𝑥
∗
)

𝑎
𝑗 (
𝑥
∗
)

) ≤

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
♯

𝑗

𝑙
♯

𝑗

) ,

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
∗

𝑗

𝑙
∗

𝑗

) ≤

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
♯

𝑗

𝑙
♯

𝑗

) .

(15)

For the optimal solution 𝑥
∗ of (𝑃0), we denote

𝑙
∗

𝑗
:= 𝑎
𝑗
(𝑥
∗
) , 𝑚

∗

𝑗
:= 𝑏
𝑗
(𝑥
∗
) ,

𝑠
∗

𝑘 ́𝑗
:= 𝑐
𝑘 ́𝑗
(𝑥
∗
) , 𝑡

∗

𝑘 ́𝑗
:= 𝑑
𝑘 ́𝑗
(𝑥
∗
) ;

(16)

then

𝜌 (𝑙
∗
, 𝑚
∗
) = 𝑤 (𝑥

∗
) , 𝜉

𝑘
(𝑠
∗
, 𝑡
∗
) = 𝑔 (𝑥

∗
) . (17)

The element (𝑥∗, 𝑙∗, 𝑚∗, 𝑠∗, 𝑡∗) satisfies the conditions for𝑍
𝐻
.

Since (𝑥
♯
, 𝑙
♯
, 𝑚
♯
, 𝑠
♯
, 𝑡
♯
) is the optimal solution for (𝑃1), it

satisfies ∑𝑃
𝑗=1

ℎ
𝑗
(𝑚
♯

𝑗
/𝑙
♯

𝑗
) ≤ ∑
𝑃

𝑗=1
ℎ
𝑗
(𝑚
∗

𝑗
/𝑙
∗

𝑗
).

Hence ∑𝑃
𝑗=1

ℎ
𝑗
(𝑚
♯

𝑗
/𝑙
♯

𝑗
) = ∑

𝑃

𝑗=1
ℎ
𝑗
(𝑚
∗

𝑗
/𝑙
∗

𝑗
); that is, the two

problems are equivalent.

2.2. Translation of the Problem (𝑃1) into (𝑃2). We change the
variables by the logarithmic function log. Since 𝑥

𝑖
, 𝑙
𝑗
,𝑚
𝑗
, 𝑠
𝑘 ́𝑗
,

𝑡
𝑘 ́𝑗
are positive, we can write 𝑥

𝑖
, 𝑙
𝑗
, 𝑚
𝑗
, 𝑠
𝑘 ́𝑗
, 𝑡
𝑘 ́𝑗
as exp(𝑦

𝑛
) are

using new variables 𝑦
𝑛
(𝑛 = 1, . . . , 𝑁 + 𝑃sum); that is, 𝑦𝑖 :=

ln𝑥
𝑖
, 𝑦
𝑁+𝑗

:= ln 𝑙
𝑗
, 𝑦
𝑁+𝑃+𝑗

:= ln𝑚
𝑗
, 𝑦
𝑁+2𝑃+(𝑘−1)𝑃

𝑘
+ ́𝑗

:= ln 𝑠
𝑘 ́𝑗
,

and 𝑦
𝑁+2𝑃+(𝑀+𝑘−1)𝑃

𝑘
+ ́𝑗

:= ln 𝑡
𝑘 ́𝑗
.
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The closed domain 𝑍
𝐻
corresponds to the following 𝑆

0,
where

𝑆
0
:= {𝑦 ∈ R𝑁+𝑃sum |

ln𝑥
𝑖
≤ 𝑦
𝑖
≤ ln𝑥

𝑖
,

ln 𝑎
𝑗
≤ 𝑦
𝑁+𝑗

≤ ln 𝑎
𝑗
,

ln 𝑏
𝑗
≤ 𝑦
𝑁+𝑃+𝑗

≤ ln 𝑏
𝑗
,

ln 𝑐
𝑘 ́𝑗
≤ 𝑦
𝑁+2𝑃+(𝑘−1)𝑃

𝑘
+ ́𝑗

≤ ln 𝑐
𝑘 ́𝑗
,

ln 𝑑
𝑘 ́𝑗
≤ 𝑦
𝑁+2𝑃+(𝑀+𝑘−1)𝑃

𝑘 ́𝑗

≤ ln 𝑑
𝑘 ́𝑗
} .

(18)

Using such transformation of variables, the objective function
and the restricted functions of (𝑃1) are changed to the
following:

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑚
𝑗

𝑙
𝑗

) =

𝑃

∑

𝑗=1

ℎ
𝑗
∘ exp (𝑦

𝑁+𝑃+𝑗
− 𝑦
𝑁+𝑗

) ,

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑡
𝑘 ́𝑗

𝑠
𝑘 ́𝑗

)

=

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
∘ exp (𝑦

𝑁+2𝑃+(𝑀+𝑘−1)𝑃
𝑘
+ ́𝑗
− 𝑦
𝑁+2𝑃+(𝑘−1)𝑃

𝑘
− ́𝑗
) ,

𝑙
𝑗
− 𝑎
𝑗 (
𝑥) = exp (𝑦

𝑁+𝑗
) −

𝑇
𝑎

𝑗

∑

𝑡=1

𝛽
𝑎

𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑎

𝑗𝑡𝑖
𝑦
𝑖
) ,

𝑏
𝑗 (
𝑥) − 𝑚

𝑗
=

𝑇
𝑏

𝑗

∑

𝑡=1

𝛽
𝑏

𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑏

𝑗𝑡𝑖
𝑦
𝑖
) − exp (𝑦

𝑁+𝑃+𝑗
) ,

𝑠
𝑘 ́𝑗
− 𝑐
𝑘 ́𝑗
(𝑥) = exp (𝑦

𝑁+2𝑃+(𝑘−1)𝑃
𝑘
+ ́𝑗
)

−

𝑇
𝑐

𝑗

∑

𝑡=1

𝛽
𝑐

𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑐

𝑗𝑡𝑖
𝑦
𝑖
) ,

𝑑
𝑘 ́𝑗
(𝑥) − 𝑡

𝑘 ́𝑗
=

𝑇
𝑑

𝑗

∑

𝑡=1

𝛽
𝑑

𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑑

𝑗𝑡𝑖
𝑦
𝑖
)

− exp (𝑦
𝑁+2𝑃+(𝑀+𝑘−1)𝑃

𝐾
+ ́𝑗
) .

(19)

Now 𝜌(𝑙, 𝑚), 𝜉
𝑘
(𝑠, 𝑡), 𝑙

𝑗
− 𝑎
𝑗
(𝑥), 𝑏
𝑗
(𝑥) − 𝑚

𝑗
, 𝑠
𝑘 ́𝑗

− 𝑐
𝑘 ́𝑗
(𝑥),

𝑑
𝑘 ́𝑗
(𝑥) − 𝑡

𝑘 ́𝑗
, are represented as

𝑇
𝑚

∑

𝑡=1

Ψ
𝑚𝑡

∘ exp(
𝑁+𝑃sum

∑

𝑖=1

𝜆
𝑚𝑡𝑖

𝑦
𝑖
) , (20)

where 𝜆
𝑚𝑡𝑖

is real number and Ψ
𝑚𝑡

satisfies Ψ󸀠
𝑚𝑡
(𝑥) > 0 or

Ψ
󸀠

𝑚𝑡
(𝑥) < 0, and {Ψ

𝑚𝑡
∘ exp(𝑦)}󸀠󸀠 > 0 or {Ψ

𝑚𝑡
∘ exp(𝑦)}󸀠󸀠 < 0.

Let 𝑓
𝑚𝑡
(𝑦) be Ψ

𝑚𝑡
∘ exp(𝑦) and let 𝜇

𝑚
(𝑦) be

∑
𝑇
𝑚

𝑡=1
𝑓
𝑚𝑡
(∑
𝑁+𝑃sum
𝑖=1

𝜆
𝑚𝑡𝑖

𝑦
𝑖
).

Then the objective function 𝜌(𝑙, 𝑚) and the restricted
functions are changed functions which are changed to 𝜇

0
(𝑦)

and 𝜇
𝑚
(𝑦) (𝑚 = 1, . . . ,𝑀 + 2(𝑃 + ∑

𝑀

𝑘=1
𝑃
𝑘
)).

Now we put

𝑆
0

𝜇
:= {𝑦 ∈ 𝑆

0
|

𝜇
𝑚
(𝑦) ≤ 0(𝑚 = 1, 2, . . . ,𝑀 + 2(𝑃 +

𝑀

∑

𝑘=1

𝑃
𝑘
))} .

(21)

Then the problem (𝑃1) is transformed naturally to the follow-
ing problem (𝑃2):

min 𝜇
0
(𝑦)

s.t. 𝑦 ∈ 𝑆
0

𝜇
.

(𝑃2)

2.3. Linearization of the Problem (𝑃2). The objective and
restricted function for (𝑃2) are nonlinear. On 𝑆0

𝜇
, we approxi-

mate 𝜇
𝑚
(𝑦) to lower bounded linear functions, and we can

transform (𝑃2) into the linear optimization problem. The
solution of it is lower bound of the optimal value on (𝑃2). We
denote 𝑦

𝑖
, 𝑦
𝑖
, 𝑦
𝑁+𝑗

, 𝑦
𝑁+𝑗

, 𝑦
𝑁+𝑃+𝑗

, 𝑦
𝑁+𝑃+𝑗

, 𝑦
𝑁+2𝑃+(𝑘−1)𝑃

𝑘
+ ́𝑗
,

𝑦
𝑁+2𝑃+(𝑘−1)𝑃

𝑘
+ ́𝑗
, 𝑦
𝑁+2𝑃+(𝑀+𝑘−1)𝑃

𝑘
+ ́𝑗
, 𝑦
𝑁+2𝑃+(𝑀+𝑘−1)𝑃

𝑘
+ ́𝑗

as min-

imums and maximums for ln𝑥
𝑖
, ln𝑥
𝑖
, ln 𝑎
𝑗
, ln 𝑎
𝑗
, ln 𝑏
𝑗
, ln 𝑏
𝑗
,

ln 𝑐
𝑘 ́𝑗
, ln 𝑐
𝑘 ́𝑗
, ln 𝑑
𝑘 ́𝑗
, ln 𝑑
𝑘 ́𝑗

(𝑗 = 1, . . . , 𝑃, ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 =

1, . . . ,𝑀).
And we denote 𝑆𝑞 ⊂ 𝑆

0

𝜇
; that is,

𝑆
𝑞
:= {𝑦 ∈ R𝑁+𝑃sum |

𝑦
𝑖
≤ 𝑦
𝑞

𝑖
≤ 𝑦
𝑖
≤ 𝑦
𝑞

𝑖
≤ 𝑦
𝑖

(𝑖 = 1, . . . , 𝑁 + 𝑃sum) } ,

𝑌
𝑆
𝑞

𝑚𝑡
:=

𝑁+𝑃sum

∑

𝑖=1

𝜆
𝑚𝑡𝑖

𝑦
𝑖
,

𝑌
𝑆
𝑞

𝑚𝑡
:=

𝑁+𝑃sum

∑

𝑖=1

min {𝜆
𝑚𝑡𝑖

𝑦
𝑞

𝑖
, 𝜆
𝑚𝑡𝑖

𝑦
𝑞

𝑖
} ,

𝑌

𝑆
𝑞

𝑚𝑡
:=

𝑁+𝑃sum

∑

𝑖=1

max {𝜆
𝑚𝑡𝑖

𝑦
𝑞

𝑖
, 𝜆
𝑚𝑡𝑖

𝑦
𝑞

𝑖
} ,

(𝑚 = 0, 1, 2, . . . ,𝑀 + 2(𝑃 +

𝑀

∑

𝑘=1

𝑃
𝑘
) , 𝑡 = 1, . . . , 𝑇

𝑚
) .

(22)

Now, 𝑓󸀠
𝑚𝑡
(𝑦) > 0 or 𝑓󸀠

𝑚𝑡
(𝑦) < 0, and 𝑓

󸀠󸀠

𝑚𝑡
(𝑦) > 0 or

𝑓
󸀠󸀠

𝑚𝑡
(𝑦) < 0, and 𝑓

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) is monotonic convex function on

[𝑌
𝑆
𝑞

𝑚𝑡
, 𝑌

𝑆
𝑞

𝑚𝑡
]. And there exist the upper and lower bounded

linear functions (𝐹𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) and 𝐺

𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
)) of 𝑓

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
).
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We denote

𝐹
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) :=

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
)

+ 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) .

(23)

As𝑓
𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) is continuous on [𝑌𝑆

𝑞

𝑚𝑡
, 𝑌

𝑆
𝑞

𝑚𝑡
] and differentiable on

(𝑌
𝑆
𝑞

𝑚𝑡
, 𝑌

𝑆
𝑞

𝑚𝑡
), there exists 𝑐𝑆

𝑞

𝑚𝑡
∈ (𝑌
𝑆
𝑞

𝑚𝑡
, 𝑌

𝑆
𝑞

𝑚𝑡
), such that

𝑓
󸀠

𝑚𝑡
(𝑐
𝑆
𝑞

𝑚𝑡
) =

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

,
(24)

by the mean value theorem.
Since 𝑓󸀠

𝑚𝑡
(𝑦) > 0 or 𝑓󸀠

𝑚𝑡
(𝑦) < 0, 𝑓

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) is monotonic

function on [𝑌
𝑆
𝑞

𝑚𝑡
, 𝑌

𝑆
𝑞

𝑚𝑡
], there exists the inverse function of

𝑓
𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
). Hence 𝑐𝑆

𝑞

𝑚𝑡
is uniquely decided, 𝑓−1

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
), such that

𝑐
𝑆
𝑞

𝑚𝑡
= 𝑓
−1

𝑚𝑡
(

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

), (25)

and we define

𝐺
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) :=

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
− 𝑐
𝑆
𝑞

𝑚𝑡
)

+𝑓
𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
) ,

𝐿
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) :=

{
{

{
{

{

𝐺
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) (𝑓

󸀠󸀠

𝑚𝑡
(𝑦) > 0)

𝐹
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) (𝑓

󸀠󸀠

𝑚𝑡
(𝑦) < 0) .

(26)

By the definition, 𝑓
𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) ≥ 𝐿
𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
).

For all 𝑦 ∈ 𝑆
𝑞, 𝜇
𝑚
(𝑦) := ∑

𝑇
𝑚

𝑡=1
𝑓
𝑚𝑡
(𝑦) ≥ ∑

𝑇
𝑚

𝑡=1
𝐿
𝑆
𝑞

𝑚𝑡
(𝑦).

Let 𝐿𝑆
𝑞

𝑚
(𝑦) := ∑

𝑇
𝑚

𝑡=1
𝐿
𝑆
𝑞

𝑚𝑡
(𝑦) (0 ≤ 𝑚 ≤ 𝑀+ 2(𝑃 +∑

𝑀

𝑘=1
𝑃
𝑘
)).

Then 𝐿
0
(𝑦) is a linear function which is lower function for

the convex envelope of 𝜇
0
(𝑦) on the rectangle.

(LRP (𝑆𝑞)) is the linear problem of (𝑃2) by the lower
bounded function of 𝜇

𝑚
(𝑦):

min 𝐿
𝑆
𝑞

0
(𝑦)

s.t. 𝐿
𝑆
𝑞

𝑚
(𝑦) ≤ 0

(𝑚 = 1, 2, . . . ,𝑀 + 2(𝑃 +

𝑀

∑

𝑘=1

𝑃
𝑘
)) .

(LRP (𝑆𝑞))

By the definition (LRP (𝑆𝑞)), any 𝑦 in 𝑆
𝑞 satisfying the

restricted condition of (𝑃2) satisfy the restricted condition of
(LRP (𝑆𝑞)).

Lemma 2. The value of (LRP (𝑆𝑞)) is less than the optimal
value for the problem (𝑃2) on 𝑆

𝑞.

Proof. The definition of (LRP (𝑆𝑞)) implies the statement
naturally.

Lemma 3. Assume that 𝑆𝑞+1 ⊂ 𝑆
𝑞
⊂ ⋅ ⋅ ⋅ ⊂ 𝑆

0
⊂ 𝑅
𝑁+𝑃sum , and

⋂
∞

𝑞=0
𝑆
𝑞
= {𝑦
∗
}. For each 𝑚 = 0, 1, 2, . . . ,𝑀 + 2(𝑃 + ∑

𝑀

𝑘=1
𝑃
𝑘
)

and 𝑡 = 1, 2, . . . , 𝑇
𝑚
, lim
𝑞→∞

max
𝑦∈𝑆
𝑞 |𝐹
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)| = 0

and lim
𝑞→∞

max
𝑦∈𝑆
𝑞 |𝐺
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)| = 0.

Proof. Let 𝑦𝑞 := {𝑦 ∈ 𝑆
𝑞
| min(𝜆

𝑚𝑡𝑖
𝑦
𝑞

𝑖
, 𝜆
𝑚𝑡𝑖

𝑦
𝑞

𝑖
) (𝑖 = 1, . . . ,

𝑁 + 𝑃sum)} and 𝑦
𝑞
:= {𝑦 ∈ 𝑆

𝑞
| max(𝜆

𝑚𝑡𝑖
𝑦
𝑞

𝑖
, 𝜆
𝑚𝑡𝑖

𝑦
𝑞

𝑖
) (𝑖 =

1, . . . , 𝑁 + 𝑃sum)}.
Since ⋂

∞

𝑞=0
𝑆
𝑞

= {𝑦
∗
}, the values 𝑦

𝑞 and 𝑦
𝑞 satisfy

lim
𝑞→∞

𝑦
𝑞
= lim
𝑞→∞

𝑦
𝑞
= 𝑦
∗.

Hence, 𝑌𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
= ∑
𝑁+𝑃sum
𝑖=1

|𝜆
𝑚𝑡𝑖

|(𝑦
𝑞

𝑖
− 𝑦
𝑞

𝑖
)

𝑞→∞

󳨀󳨀󳨀󳨀󳨀→ 0.
Now,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
)

+𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.
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The function |𝐹
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)| is concave on [𝑌

𝑆
𝑞

𝑚𝑡
, 𝑌

𝑆
𝑞

𝑚𝑡
];

therefore 𝑐𝑆
𝑞

𝑚𝑡
attains themaximum value of |𝐹𝑆

𝑞

𝑚𝑡
(𝑦)−𝑓

𝑚𝑡
(𝑦)| :

max
𝑦∈𝑆
𝑞 |𝐹
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)|

max
𝑦∈𝑆
𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
𝑆
𝑞

𝑚𝑡
(𝑐
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
)

+𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.
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We denote

𝐼
𝑆
𝑞

𝑚𝑡
= 𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
, 𝑐

𝑆
𝑞

𝑚𝑡
= 𝑌
𝑆
𝑞

𝑚𝑡
+ 𝜃
𝑆
𝑞

𝑚𝑡
𝐼
𝑆
𝑞

𝑚𝑡
(0 < 𝜃

𝑆
𝑞

𝑚𝑡
< 1) .

(29)
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Since 𝐼𝑆
𝑞

𝑚𝑡
→ 0 for 𝑞 → ∞,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
)

+𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝐼
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌
𝑆
𝑞

𝑚𝑡
+ 𝐼
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝜃
𝑆
𝑞

𝑚𝑡
𝐼
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡
)

+ 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝜃
𝑆
𝑞

𝑚𝑡
𝐼
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝐼
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌
𝑆
𝑞

𝑚𝑡
+ 𝐼
𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝜃
𝑆
𝑞

𝑚𝑡
𝐼
𝑆
𝑞

𝑚𝑡
)

+𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝜃
𝑆
𝑞

𝑚𝑡
𝐼
𝑆
𝑞

m𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝐼
𝑆
𝑞

𝑚𝑡
) 𝜃
𝑆
𝑞

𝑚𝑡
− 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) 𝜃
𝑆
𝑞

𝑚𝑡
+ 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

−𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
+ 𝜃
𝑆
𝑞

𝑚𝑡
𝐼
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞→∞

󳨀󳨀󳨀󳨀󳨀→

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡
𝑌
𝑆
𝑞

𝑚𝑡
𝜃
𝑆
𝑞

𝑚𝑡
− 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) 𝜃
𝑆
𝑞

𝑚𝑡

+𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0.
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Thus
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐺
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐺
𝑆
𝑞

𝑚𝑡
(𝑌
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
𝑚𝑡

(𝑌

𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

𝑌

𝑆
𝑞

𝑚𝑡
− 𝑌
𝑆
𝑞

𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
− 𝑐
𝑆
𝑞

𝑚𝑡
)

+ 𝑓
𝑚𝑡

(𝑐
𝑆
𝑞

𝑚𝑡
) − 𝑓
𝑚𝑡

(𝑌
𝑆
𝑞

𝑚𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.
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On the other hand |𝐺
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)| is a convex func-

tion by the same argument, and we obtain the following
max
𝑦∈𝑆
𝑞 |𝐺
𝑆
𝑞

𝑚𝑡
(𝑦) − 𝑓

𝑚𝑡
(𝑦)| → 0 for 𝑞 → ∞.

Lemma 4. Under the same assumption of Lemma 3
max
𝑦∈𝑆
𝑞 |𝐿
𝑆
𝑞

𝑚
(𝑦) − 𝜇

𝑚
(𝑦)| → 0 for 𝑞 → ∞ and each 𝑚 =

0, 1, 2, . . . ,𝑀 + 2(𝑃 + ∑
𝑀

𝑘=1
𝑃
𝑘
).

Proof. Lemma 3 and the definitions 𝐿
𝑆
𝑞

𝑚
(𝑦), 𝜇

𝑚
(𝑦) imply

Lemma 4, standardly.

3. Branch and Bound Algorithm and
Its Convergence

In Section 2, we transformed the initial problem (𝑃0) into the
equivalent problem (𝑃2), and we make the linear relaxation
problem (LRP) of (𝑃2) to find the approximate value of (𝑃2)
easily. Now we get it by using branch and bound algorithm.

3.1. Branch and Bound Algorithm. We solve the linear relax-
ation problem on initial domain 𝑆

0 to get the linear optimal
value as lower bound of (𝑃2) and upper bound of (𝑃2). For
preparing to separate the active domains, we let the active
domains set beQ

𝑞
and active domain 𝑆𝑞(𝑘) ⊂ 𝑆

0. 𝑞 presents the
times of the cutting domains and stage number and 𝑘 presents
the number of active domains on stage 𝑞. If 𝑆𝑞(𝑘) is active
domain, we divide 𝑆𝑞(𝑘) into half domains 𝑆𝑞(𝑘)⋅1, 𝑆𝑞(𝑘)⋅2 and
linearize (𝑃2) on each domain and solve the linear problems.
After the above calculations, we get the lower and upper
bound value of (𝑃2). After the repeat calculations, we get the
convergence for the sequences of the lower and upper bound
values, and we get the optimal value and solution.

3.1.1. Branching Rule. We denote that 𝑆𝑞(𝑘) = {𝑦 | 𝑦
𝑞(𝑘)

𝑛
≤

𝑦
𝑞(𝑘)

𝑛
≤ 𝑦
𝑞(𝑘)

𝑛
, 𝑛 = 1, . . . , 𝑁 + 𝑃sum} ⊆ 𝑆

0. We select the bran-
ching variable 𝑖 such that 𝑖 = 𝑛 max{𝑦𝑞(𝑘)

𝑛
− 𝑦
𝑞(𝑘)

𝑛
, 𝑛 = 1, 2,

. . . , 𝑁+𝑃sum}, andwe divide the interval [𝑦
𝑞(𝑘)

𝑖
, 𝑦
𝑞(𝑘)

𝑖
] into half

intervals: [𝑦𝑞(𝑘)
𝑖

, (𝑦
𝑞(𝑘)

𝑖
+𝑦
𝑞(𝑘)

𝑖
)/2] and [(𝑦𝑞(𝑘)

𝑖
+𝑦
𝑞(𝑘)

𝑖
)/2, 𝑦
𝑞(𝑘)

𝑖
].

3.1.2. Algorithm Statement

Step 0. Firstly, we let 𝑞 be 0 and let 𝑘 be 1. Andwe set an appro-
priate 𝜖-value as a convergence tolerance, the initial upper
bound 𝑉

∗
= ∞, and Q

0
= 𝑆
0(1). We solve LRP(𝑆0(1)), and

we denote the linear optimal solution and optimal value by
𝑦(𝑆
0(1)

) and LB
0(1)

. If 𝑦(𝑆0(1)) is feasible for (𝑃2), then update
𝑉
∗
= 𝜇
0
(𝑦(𝑆
0(1)

)) and we set the initial lower bound LB =

LB
0(1)

. If𝑉∗ −LB ≤ 𝜖, then we get the 𝜖-approximate optimal
value 𝜇

0
(𝑦(𝑆
0(1)

)) and optimal solution 𝑦(𝑆0(1)) of (𝑃2), so we
stop this algorithm. Otherwise, we proceed to Step 1.

Step 1. For all 𝑘, we divide 𝑆𝑞(𝑘) to get two half domains, 𝑆𝑞(𝑘)⋅1

and 𝑆
𝑞(𝑘)⋅2, according to the above branching rule.

Step 2. For all 𝑘 and each domain 𝑆
𝑞(𝑘)⋅V

(V = 1, 2), we
calculate

𝜇
𝑚
(V) =

Γ
𝑚

∑

𝑡=1,𝑐
𝑚𝑡
>0

𝑐
𝑚𝑡

exp (𝑌𝑆
𝑞(𝑘)⋅V

𝑚𝑡
) +

Γ
𝑚

∑

𝑡=1,𝑐
𝑚𝑡
<0

𝑐
𝑚𝑡

exp (𝑌𝑆
𝑞(𝑘)⋅V

𝑚𝑡
)

(𝑚 = 1, . . . ,𝑀 + 2(𝑃 +

𝑀

∑

𝑘=1

𝑃
𝑘
)) ,

(32)

where 𝑐
𝑚𝑡
, 𝑌𝑆
𝑞(𝑘)⋅V

𝑚𝑡
, and 𝑌

𝑆
𝑞(𝑘)⋅V

𝑚𝑡
are defined in Section 2.3.
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If there is the 𝜇
𝑚
(V) that satisfy 𝜇

𝑚
(V) > 0 for some 𝑚 ∈

{1, 2, . . . ,𝑀 + 2(𝑃 + ∑
𝑀

𝑘=1
𝑃
𝑘
)}, 𝑆𝑞(𝑘)V is infeasible domain for

(𝑃2), then we delete the domain from Q
𝑞
. If 𝑆𝑞(𝑘)⋅V (V = 1, 2)

are all deleted for all 𝑘, then the problem has no feasible
solutions.

Step 3. For left domains, we compute𝐴𝑆
𝑞(𝑘)⋅V

𝑚𝑡
,𝐵𝑆
𝑞(𝑘)⋅V

𝑚𝑡
,𝑌𝑆
𝑞(𝑘)⋅V

𝑚𝑡
, and

𝑌

𝑆
𝑞(𝑘)⋅V

𝑚𝑡
as defined in Sections 2.2 and 2.3. We solve the

LRP(𝑆𝑞(𝑘)⋅V) by simplex algorithm, and we denote the
obtained linear optimal solutions and values by (𝑦(𝑆

𝑞(𝑘)⋅V
),

LB
𝑞(𝑘)⋅V). Then if 𝑦(𝑆𝑞(𝑘)⋅V) is feasible for (𝑃2), we update

𝑉
∗
= min{𝑉∗, 𝜇

0
(𝑦(𝑆
𝑞(𝑘)⋅V

))}. If LB
𝑞(𝑘)⋅V > 𝑉

∗, then delete the
corresponding domains fromQ

𝑞
. If𝑉∗−LB

𝑞(𝑘)⋅V ≤ 𝜖, then we
get the 𝜖-approximate optimal value 𝜇

0
(𝑦(𝑆
𝑞(𝑘)⋅V

)) and opti-
mal solution 𝑦(𝑆

𝑞(𝑘)⋅V
) of (𝑃2), so we stop this algorithm.

Otherwise, we proceed to Step 4.

Step 4. We update the index of left domains 𝑆𝑞(𝑘)⋅V to 𝑆
𝑞+1(𝑘);

then we initialize 𝑘. And we settle that Q
𝑞+1

is a set of 𝑆𝑞+1(𝑘),
and go to Step 1.

3.2.The Convergence of the Algorithm. Corresponding to [4],
we obtain the convergence of the algorithm (cf. [4]).

Theorem 5. Suppose that problem (𝑃2) has a global optimal
solution, and let 𝜇∗

0
be the global optimal value of (𝑃2). Then

one has the following:
(i) for the case 𝜖 > 0, the algorithm always terminates

after finitelymany iterations yielding a global 𝜖-optimal
solution 𝑦

∗ and a global 𝜖-optimal value 𝑉∗ for prob-
lem (𝑃2) in the sense that

𝑦
∗
∈ 𝑆, 𝑉

∗
− 𝜖 ≤ 𝜇

∗

0
𝑤𝑖𝑡ℎ 𝑉

∗
= 𝜇
0
(𝑦
∗
) ; (33)

(ii) for the case 𝜖 → 0, we assume the sequence 𝜖
𝑛
is

convergence tolerance, such that 𝜖
1
> 𝜖
2
>, . . . , > 𝜖

𝑛
>

𝜖
𝑛+1

>, . . . , > 0; that is, lim
𝑛→∞

𝜖
𝑛

= 0. And we
assume the sequence 𝑦∗

𝑛
is optimal solution of (𝑃2) cor-

responding to 𝜖
𝑛
. Then the accumulation point of 𝑦∗

𝑛
is

global optimal solution of (𝑃2).

Proof. (i) It is obvious by algorithm statement.
(ii) We assume that the upper bound corresponding to 𝜖

𝑛

is 𝑉∗
𝑛
:

𝜇
0
(𝑦
∗

𝑛
) ∈ [𝑉

∗

𝑛
− 𝜖, 𝑉

∗

𝑛
] ; (34)

𝑦
∗

𝑛
is the point sequence on bounded closed set, so 𝑦

∗

𝑛
has a

converge subsequence 𝑦∗
𝑛𝑖
. We assume that lim

𝑖→∞
𝑦
∗

𝑛𝑖
= 𝑦
∗;

then
𝑉
∗

𝑛𝑖
− 𝜖
𝑛𝑖
≤ 𝜇
0
(𝑉
∗

𝑛𝑖
) ≤ 𝑉
∗

𝑛𝑖
𝑖 󳨀→ ∞,

then 𝑛𝑖 󳨀→ ∞, so lim
𝑛𝑖→∞

𝜖
𝑛𝑖
= 0.

(35)

𝑉
∗

𝑛
is monotone decreasing sequence, so it converges. We

assume that lim
𝑛→∞

𝑉
∗

𝑛
= 𝜇
∗

0
:

lim
𝑖→∞

(𝑉
∗

𝑛𝑖
− 𝜖
𝑛𝑖
) ≤ lim
𝑖→∞

𝜇
0
(𝑦
∗

𝑛𝑖
) ≤ lim
𝑖→∞

𝑉
∗

𝑛𝑖 ; (36)

𝜇
0
(𝑦) is continuous function, so lim

𝑖→∞
𝜇
0
(𝑦
𝑛𝑖
) = 𝜇

0
(𝑦
∗
).

And𝜇∗
0
≤ 𝜇
𝑦
∗

0
≤ 𝜇
∗

0
; that is,𝜇

0
(𝑦
∗
) = 𝜇
∗

0
. For∀𝑚,𝜇

𝑚
(𝑦
∗

𝑛
) ≤ 0.

As 𝜇
𝑚
(𝑦
∗
) is continuous, lim

𝑛→∞
𝜇
𝑚
(𝑦
∗

𝑛
) = 𝜇
𝑚
(𝑦
∗
) ≤ 0.

4. Numerical Experiment

In this chapter, we show the numerical experiments of these
optimization problems according to the former rules. We
make the algorithms coded with MATLAB. In these codes,
we useMATLAB’s unique function code “linprog” to solve the
linear optimization problems.

Example 1. Consider

min ℎ (𝑥) = sin(
𝑥
2

1
+ 3𝑥
2
− 2𝑥
2

2
+ 1

𝑥
2

1
+ 𝑥
2
+ 2

)

+ cos(
−𝑥
2

2
+ 2𝑥
1
+ 2𝑥
2

𝑥
1
+ 2.5

)

s.t. 𝑥
2

1
−

𝑥
1

𝑥
2

− 1 ≤ 0

𝑥
1
+ 3

𝑥
2

𝑥
1

− 5 ≤ 0

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 3, 1 ≤ 𝑥

2
≤ 3} .

(37)

We set 𝜖 = 0.0001. After the algorithm, we found a global
𝜖-optimal value 𝑉

∗
= 1.0748 when the global 𝜖-optimal

solution is (𝑥
1
, 𝑥
2
)
𝑇
= (1.34977, 1.64232).

Example 2. Consider

min exp(
−𝑥
2

1
+ 3𝑥
1
+ 2𝑥
2

2
+ 3𝑥
2
+ 3.5

𝑥
1
+ 1

)

− exp( 𝑥
2

𝑥
2

1
− 2𝑥
1
+ 𝑥
2

2
− 8𝑥
2
+ 20

)

s.t. 𝑥
1
−

𝑥
2

𝑥
1

≤ 1

2

𝑥
1

𝑥
2

+ 𝑥
2
+ ≤ 6

2𝑥
1
+ 𝑥
2
≤ 8

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 3, 1 ≤ 𝑥

2
≤ 3} .

(38)

We set 𝜖 = 0.0001. After the algorithm, we found a global
𝜖-optimal value 𝑉

∗
= 58.2723 when the global 𝜖-optimal

solution is (𝑥
1
, 𝑥
2
)
𝑇
= (1, 1.6180).

Example 3. Consider

min sin(
𝑥
2

1
+ 2𝑥
2
− 2𝑥
1
+ 𝑥
2

2
+ 1

𝑥
1
+ 𝑥
2

2
+ 2

)

+ cos(
3𝑥
2

1
− 3𝑥
2
+ 2𝑥
1
+ 𝑥
2

2
+ 5

𝑥
2

1
+ 2𝑥
2

2
+ 10

)
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s.t. sin(
𝑥
2

1
+ 3𝑥
2
− 2𝑥
2

2
+ 2

𝑥
2

1
+ 𝑥
2
+ 2

)

+ cos(
−𝑥
2

2
+ 2𝑥
1
+ 2𝑥
2

𝑥
1
+ 2.5

) ≤ 2

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 2, 1 ≤ 𝑥

2
≤ 2} .

(39)

We set 𝜖 = 0.0001. After the algorithm, we found a global
𝜖-optimal value 𝑉

∗
= 1.09133 when the global 𝜖-optimal

solution is (𝑥
1
, 𝑥
2
)
𝑇
= (2, 1).

Example 4. Consider

min exp(
𝑥
2

1
− 2𝑥
2

2
+ 8

2𝑥
2

1
+ 𝑥
2
+ 1

)

+ exp(
3𝑥
1
− 𝑥
2

2
+ 5

𝑥
2

1
− 𝑥
1
+ 𝑥
2

2
− 3𝑥
2
+ 10

)

s.t. 𝑥
2

1
− 2𝑥
2
≤ 1

𝑥
1
−

𝑥
2

𝑥
1

≤ 1

2𝑥
1
+ 𝑥
2

2
≤ 6

𝑋 = {𝑥 : 1.5 ≤ 𝑥
1
≤ 2, 1.5 ≤ 𝑥

2
≤ 2} .

(40)

We set 𝜖 = 0.0001. After the algorithm, we found a global
𝜖-optimal value 𝑉

∗
= 3.9378 when the global 𝜖-optimal

solution is (𝑥
1
, 𝑥
2
)
𝑇
= (1.5, 1.7321).

5. Concluding Remarks

In this paper, we proved that we can solve the nonconvex
optimization problemswhich [4] cannot solve that the sumof
the positive (or negative) first and second derivatives function
with the variable defined by sum of polynomial fractional
function by using branch and bound algorithm.
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