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We study the oscillatory behavior of the solutions of the difference equation Δ𝑥(𝑛) + ∑
𝑚

𝑖=1
𝑝
𝑖
(𝑛)𝑥(𝜏

𝑖
(𝑛)) = 0, 𝑛 ∈ N

0
[∇𝑥 (𝑛) −

∑
𝑚

𝑖=1
𝑝
𝑖
(𝑛) 𝑥 (𝜎

𝑖
(𝑛)) = 0, 𝑛 ∈ N] where (𝑝

𝑖
(𝑛)), 1 ≤ 𝑖 ≤ 𝑚 are real sequences with oscillating terms, 𝜏

𝑖
(𝑛)[𝜎
𝑖
(𝑛)], 1 ≤ 𝑖 ≤ 𝑚

are general retarded (advanced) arguments, and Δ[∇] denotes the forward (backward) difference operator Δ𝑥(𝑛) = 𝑥(𝑛 + 1) −

𝑥(𝑛)[∇𝑥(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1)]. Examples illustrating the results are also given.

1. Introduction

In the present paper, we study the oscillatory behavior of the
solutions of the difference equation

Δ𝑥 (𝑛) +

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) = 0, 𝑛 ∈ N

0
, (ER)

where N ∋ 𝑚 ≥ 2, 𝑝
𝑖
, 1 ≤ 𝑖 ≤ 𝑚 are real sequences with

oscillating terms, and {𝜏
𝑖
(𝑛)}
𝑛∈N0

, 1 ≤ 𝑖 ≤ 𝑚 are sequences of
integers such that

𝜏
𝑖
(𝑛) ≤ 𝑛 − 1, 𝑛 ∈ N

0
, lim

𝑛→∞

𝜏
𝑖
(𝑛) = ∞, 1 ≤ 𝑖 ≤ 𝑚

(1)

and the (dual) advanced difference equation

∇𝑥 (𝑛) −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜎

𝑖
(𝑛)) = 0, 𝑛 ∈ N, (EA)

where N ∋ 𝑚 ≥ 2, 𝑝
𝑖
, 1 ≤ 𝑖 ≤ 𝑚 are real sequences with

oscillating terms and {𝜎
𝑖
(𝑛)}
𝑛∈N, 1 ≤ 𝑖 ≤ 𝑚, are sequences of

integers such that

𝜎
𝑖
(𝑛) ≥ 𝑛 + 1, 𝑛 ∈ N, 1 ≤ 𝑖 ≤ 𝑚. (2)

Here, N
0
= {0, 1, 2, . . .} and N = {1, 2, . . .}. Also, as usual, Δ

denotes the forward difference operator Δ𝑥(𝑛) = 𝑥(𝑛 + 1) −

𝑥(𝑛) and∇ denotes the backward difference operator∇𝑥(𝑛) =
𝑥(𝑛) − 𝑥(𝑛 − 1).

Strong interest in (ER) is motivated by the fact that it
represents a discrete analogue of the differential equation (see
[1] and the references cited therein)

𝑥
󸀠

(𝑡) +

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑡) 𝑥 (𝜏

𝑖
(𝑡)) = 0, 𝑡 ≥ 0, (3)

where, for every 𝑖 ∈ {1, . . . , 𝑚}, 𝑝
𝑖
is an oscillating continuous

real-valued function in the interval [0,∞), and 𝜏
𝑖
is a

continuous real-valued function on [0,∞) such that

𝜏
𝑖
(𝑡) ≤ 𝑡, 𝑡 ≥ 0, lim

𝑡→∞

𝜏
𝑖
(𝑡) = ∞, (4)

while, (EA) represents a discrete analogue of the advanced
differential equation (see [1] and the references cited therein)

𝑥
󸀠

(𝑡) −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑡) 𝑥 (𝜎

𝑖
(𝑡)) = 0, 𝑡 ≥ 1, (5)
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where, for every 𝑖 ∈ {1, . . . , 𝑚}, 𝑝
𝑖
is an oscillating continuous

real-valued function in the interval [1,∞) and 𝜎
𝑖
is a

continuous real-valued function on [1,∞) such that

𝜎
𝑖
(𝑡) ≥ 𝑡, 𝑡 ≥ 1. (6)

By a solution of (ER), wemean a sequence of real numbers
{𝑥(𝑛)}

𝑛≥−𝑤
which satisfies (ER) for all 𝑛 ∈ N

0
. Here,

𝑤 = −min
𝑛≥0

{𝜏
𝑖
(𝑛) : 1 ≤ 𝑖 ≤ 𝑚} . (7)

It is clear that, for each choice of real numbers
𝑐
−𝑤
, 𝑐
−𝑤+1

, . . . , 𝑐
−1
, 𝑐
0
, there exists a unique solution {𝑥(𝑛)}

𝑛≥−𝑤

of (ER) which satisfies the initial conditions 𝑥(−𝑤) = 𝑐
−𝑤
,

𝑥(−𝑤 + 1) = 𝑐
−𝑤+1

, . . . , 𝑥(−1) = 𝑐
−1
, and 𝑥(0) = 𝑐

0
.

By a solution of the advanced difference equation (EA), we
mean a sequence of real numbers {𝑥(𝑛)}

𝑛∈N0
which satisfies

(EA) for all 𝑛 ∈ N.
A solution {𝑥(𝑛)}

𝑛≥−𝑤
[{𝑥(𝑛)}

𝑛∈N0
] of (ER) [(EA)] is called

oscillatory, if the terms 𝑥(𝑛) of the sequence are neither
eventually positive nor eventually negative. Otherwise, the
solution is said to be nonoscillatory.

In the last few decades, the oscillatory behavior of all
solutions of difference equations has been extensively studied
when the coefficients 𝑝

𝑖
(𝑛) are nonnegative. See, for example,

[2–20] and the references cited therein. However, for the
general case when 𝑝

𝑖
(𝑛) are allowed to oscillate, it is difficult

to study the oscillation of (ER) [(EA)], since the difference
Δ𝑥(𝑛)[∇𝑥(𝑛)] of any nonoscillatory solution of (ER) [(EA)] is
always oscillatory.Thus, a small number of papers are dealing
with this case. See, for example, [1, 21–32] and the references
cited therein.

For (3) and (5) with oscillating coefficients, Fukagai and
Kusano [1] established the following theorems.

Theorem 1 (see [1,Theorem 3
󸀠

(i)]). Assume (4) and that there
is a continuous nondecreasing function 𝜏∗(𝑡) such that 𝜏

𝑖
(𝑡) ≤

𝜏
∗

(𝑡) ≤ 𝑡 for 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚. Suppose moreover that there
is a sequence {𝑡

𝑛
}
𝑛∈N such that lim

𝑛→∞
𝑡
𝑛
= ∞, the intervals

⋃
𝑛∈N[(𝜏

∗

)
𝑛

(𝑡
𝑛
), 𝑡
𝑛
] are disjoint, and

𝑝
𝑖
(𝑡) ≥ 0 ∀𝑡∈ ⋃

𝑛∈N

[(𝜏
∗

)
𝑛

(𝑡
𝑛
) , 𝑡
𝑛
] , 1 ≤ 𝑖 ≤ 𝑚. (8)

If there is a constant 𝑐 such that

∫

𝑡

𝜏
∗
(𝑡)

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑠) 𝑑𝑠 > 𝑐 >

1

𝑒
∀𝑡∈⋃

𝑛∈N

[(𝜏
∗

)
𝑛−1

(𝑡
𝑛
) , 𝑡
𝑛
] , (9)

then all solutions of (3) oscillate.

Theorem 2 (see [1, Theorem 3
󸀠

(ii)]). Assume (6) and that
there is a continuous nondecreasing function 𝜎

∗
(𝑡) such that

𝑡 ≤ 𝜎
∗
(𝑡) ≤ 𝜎

𝑖
(𝑡) for 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚. Suppose moreover

that there is a sequence {𝑡
𝑛
}
𝑛∈N such that lim

𝑛→∞
𝑡
𝑛
= ∞, the

intervals⋃
𝑛∈N[𝑡𝑛, (𝜎∗)

𝑛

(𝑡
𝑛
)] are disjoint, and

𝑝
𝑖
(𝑡) ≥ 0 ∀𝑡∈⋃

𝑛∈N

[𝑡
𝑛
, (𝜎
∗
)
𝑛

(𝑡
𝑛
)] , 1 ≤ 𝑖 ≤ 𝑚. (10)

If there is a constant 𝑐 such that

∫

𝜎∗(𝑡)

𝑡

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑠) 𝑑𝑠 > 𝑐 >

1

𝑒
∀𝑡∈⋃

𝑛∈N

[𝑡
𝑛
, (𝜎
∗
)
𝑛−1

(𝑡
𝑛
)] , (11)

then all solutions of (5) oscillate.

For (ER) and (EA) with oscillating coefficients, recently,
Bohner et al. [21, 23] established the following theorems.

Theorem 3 (see [23, Theorem 2.4]). Assume (1) and that the
sequences 𝜏

𝑖
are increasing for all 𝑖 ∈ {1, . . . , 𝑚}. Suppose also

that for each 𝑖 ∈ {1, . . . , 𝑚} there exists a sequence {𝑛
𝑖
(𝑗)}
𝑗∈N

such that lim
𝑗→∞

𝑛
𝑖
(𝑗) = ∞ and

𝑝
𝑘
(𝑛) ≥ 0 ∀𝑛 ∈

𝑚

⋂

𝑖=1

{

{

{

⋃

𝑗∈N

[𝜏 (𝜏 (𝑛
𝑖
(𝑗))) , 𝑛

𝑖
(𝑗)] ∩ N

}

}

}

̸= 0,

1 ≤ 𝑘 ≤ 𝑚,

(12)

where
𝜏 (𝑛) = max

1≤𝑖≤𝑚

𝜏
𝑖
(𝑛) , 𝑛 ∈ N

0
. (13)

If, moreover,

lim sup
𝑗→∞

𝑚

∑

𝑖=1

𝑛(𝑗)

∑

𝑞=𝜏(𝑛(𝑗))

𝑝
𝑖
(𝑞) > 1, (14)

where 𝑛(𝑗) = min{𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 𝑚}, then all solutions of (ER)

oscillate.

Theorem 4 (see [23, Theorem 3.4]). Assume (2) and that the
sequences 𝜎

𝑖
are increasing for all 𝑖 ∈ {1, . . . , 𝑚}. Suppose also

that for each 𝑖 ∈ {1, . . . , 𝑚} there exists a sequence {𝑛
𝑖
(𝑗)}
𝑗∈N

such that lim
𝑗→∞

𝑛
𝑖
(𝑗) = ∞ and

𝑝
𝑘
(𝑛) ≥ 0 ∀𝑛 ∈

𝑚

⋂

𝑖=1

{

{

{

⋃

𝑗∈N

[𝑛
𝑖
(𝑗) , 𝜎 (𝜎 (𝑛

𝑖
(𝑗)))] ∩ N

}

}

}

̸= 0,

1 ≤ 𝑘 ≤ 𝑚,

(15)

where
𝜎 (𝑛) = min

1≤𝑖≤𝑚

𝜎
𝑖
(𝑛) , 𝑛 ∈ N. (16)

If, moreover,

lim sup
𝑗→∞

𝑚

∑

𝑖=1

𝜎(𝑛(𝑗))

∑

𝑞=𝑛(𝑗)

𝑝
𝑖
(𝑞) > 1, (17)

where 𝑛(𝑗) = max{𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 𝑚}, then all solutions of (EA)

oscillate.
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Theorem 5 (see [21, Theorem 2.1]). Assume (1) and that the
sequences 𝜏

𝑖
are increasing for all 𝑖 ∈ {1, . . . , 𝑚}. Suppose also

that for each 𝑖 ∈ {1, . . . , 𝑚} there exists a sequence {𝑛
𝑖
(𝑗)}
𝑗∈N

such that lim
𝑗→∞

𝑛
𝑖
(𝑗) = ∞,

𝑝
𝑘
(𝑛) ≥ 0 ∀𝑛 ∈

𝑚

⋂

𝑖=1

{

{

{

⋃

𝑗∈N

[𝜏
𝑖
(𝜏
𝑖
(𝑛
𝑖
(𝑗))) , 𝑛

𝑖
(𝑗)] ∩ N

}

}

}

̸= 0,

1 ≤ 𝑘 ≤ 𝑚,

(18)

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) > 0

∀𝑛 ∈

𝑚

⋂

𝑖=1

{

{

{

⋃

𝑗∈N

[𝜏
𝑖
(𝜏
𝑖
(𝑛
𝑖
(𝑗))) , 𝑛

𝑖
(𝑗)] ∩ N

}

}

}

.

(19)

If, moreover,

lim inf
𝑗→∞

𝑚

∑

𝑖=1

𝑛𝑖(𝑗)−1

∑

𝑞=𝜏𝑖(𝑛𝑖(𝑗))

𝑝
𝑖
(𝑞) >

1

𝑒
, (20)

then all solutions of (ER) oscillate.

Theorem 6 (see [21, Theorem 3.1]). Assume (2) and that the
sequences 𝜎

𝑖
are increasing for all 𝑖 ∈ {1, . . . , 𝑚}. Suppose also

that for each 𝑖 ∈ {1, . . . , 𝑚} there exists a sequence {𝑛
𝑖
(𝑗)}
𝑗∈N

such that lim
𝑗→∞

𝑛
𝑖
(𝑗) = ∞,

𝑝
𝑘
(𝑛) ≥ 0 ∀𝑛 ∈

𝑚

⋂

𝑖=1

{

{

{

⋃

𝑗∈N

[𝑛
𝑖
(𝑗) , 𝜎

𝑖
(𝜎
𝑖
(𝑛
𝑖
(𝑗)))] ∩ N

}

}

}

̸= 0,

1 ≤ 𝑘 ≤ 𝑚,

(21)

lim sup
𝑛→∞

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) > 0

∀𝑛 ∈

𝑚

⋂

𝑖=1

{

{

{

⋃

𝑗∈N

[𝑛
𝑖
(𝑗) , 𝜎

𝑖
(𝜎
𝑖
(𝑛
𝑖
(𝑗)))] ∩ N

}

}

}

.

(22)

If, moreover,

lim inf
𝑗→∞

𝑚

∑

𝑖=1

𝜎𝑖(𝑛𝑖(𝑗))

∑

𝑞=𝑛𝑖(𝑗)+1

𝑝
𝑖
(𝑞) >

1

𝑒
, (23)

then all solutions of (EA) oscillate.

In the present paper, the authors study further (ER)
[(EA)] and derive new sufficient oscillation conditions when
neither (14) [(17)] nor (20) [(23)] is satisfied (cf. [6–8] and
the references cited therein in the case of the equations (ER)
[(EA)] with nonnegative coefficients 𝑝

𝑖
, 1 ≤ 𝑖 ≤ 𝑚). Examples

illustrating the results are also given.

2. Retarded Equations

In this section, we present new sufficient conditions for the
oscillation of all solutions of (ER) when the conditions (14)
and (20) are not satisfied, under the assumption that the
sequences 𝜏

𝑖
are increasing for all 𝑖 ∈ {1, . . . , 𝑚}. To that end,

the following lemma provides a useful tool.

Lemma 7. Assume that (1) holds, the sequences 𝜏
𝑖
are increas-

ing for all 𝑖 ∈ {1, . . . , 𝑚} and (𝑥(𝑛))
𝑛≥−𝑤

is a nonoscillatory
solution of (ER). Suppose also that for each 𝑖 ∈ {1, . . . , 𝑚} there
exists a sequence {𝑛

𝑖
(𝑗)}
𝑗∈N, such that lim𝑗→∞𝑛𝑖(𝑗) = ∞, and

(12) where 𝜏 is defined by (13). Set

𝛼 := lim inf
𝑗→∞

𝑚

∑

𝑖=1

𝑛(𝑗)−1

∑

𝑞=𝜏(𝑛(𝑗))

𝑝
𝑖
(𝑞) , (24)

where 𝑛(𝑗) = min{𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 𝑚}.

If 0 < 𝛼 < 1, then

lim inf
𝑗→∞

𝑥 (𝑛 (𝑗) + 1)

𝑥 (𝜏 (𝑛 (𝑗)))
≥

𝛼
2

4 (1 − 𝛼)
. (25)

Proof. Since the solution {𝑥(𝑛)}
𝑛≥−𝑤

of (ER) is nonoscillatory,
it is either eventually positive or eventually negative. As
{−𝑥(𝑛)}

𝑛≥−𝑤
is also a solution of (ER), we may restrict

ourselves only to the case where 𝑥(𝑛) > 0 eventually.
By (12), it is obvious that there exists 𝑗

0
∈ N such that

𝑝
𝑘
(𝑛) ≥ 0 ∀𝑛 ∈

𝑚

⋂

𝑖=1

[𝜏 (𝜏 (𝑛
𝑖
(𝑗
0
))) , 𝑛
𝑖
(𝑗
0
)] ∩ N,

1 ≤ 𝑘 ≤ 𝑚,

(26)

𝑥 (𝜏
𝑘
(𝑛)) > 0 ∀𝑛 ∈

𝑚

⋂

𝑖=1

[𝜏 (𝜏 (𝑛
𝑖
(𝑗
0
))) , 𝑛
𝑖
(𝑗
0
)] ∩ N,

1 ≤ 𝑘 ≤ 𝑚.

(27)

Also, by (24) we have

𝑚

∑

𝑖=1

𝑛(𝑗0)−1

∑

𝑞=𝜏(𝑛(𝑗0))

𝑝
𝑖
(𝑞) ≥ 𝛼 − 𝜀, (28)

where 𝜀 is an arbitrary real number with 0 < 𝜀 < 𝛼.
In view of (26) and (27), (ER) gives

𝑥 (𝑛 + 1) − 𝑥 (𝑛) = −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) ≤ 0, (29)

for every 𝑛 ∈ ⋂
𝑚

𝑖=1
[𝜏(𝜏(𝑛

𝑖
(𝑗
0
))), 𝑛
𝑖
(𝑗
0
)] ∩ N. This guaran-

tees that the sequence 𝑥 is decreasing on ⋂
𝑚

𝑖=1
[𝜏(𝜏(𝑛

𝑖
(𝑗
0
))),

𝑛
𝑖
(𝑗
0
)] ∩ N.
Assume that 0 < 𝛼 < 1, where 𝛼 is defined by (24). From

inequality (28), it is clear that there exists 𝑛∗(𝑗
0
) ≥ 𝑛(𝑗

0
) such

that

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)−1

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) <

𝛼 − 𝜀

2
,

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) ≥

𝛼 − 𝜀

2
. (30)
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This is because in the case where𝑝
𝑖
(𝑞) < (𝛼−𝜀)/2, there exists

𝑛
∗

(𝑗
0
) > 𝑛(𝑗

0
) such that (30) is satisfied, while in the case

where 𝑝
𝑖
(𝑞) ≥ (𝛼 − 𝜀)/2, then 𝑛∗(𝑗

0
) = 𝑛(𝑗

0
), and, therefore,

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)−1

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) =

𝑚

∑

𝑖=1

𝑛(𝑗0)−1

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞)

(by which we mean) = 0 <
𝛼 − 𝜀

2
,

(31)

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) =

𝑚

∑

𝑖=1

𝑛(𝑗0)

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) ≥ 𝑝

𝑖
(𝑛 (𝑗
0
)) ≥

𝛼 − 𝜀

2
. (32)

That is, in both cases (30) is satisfied.
Now, we will show that 𝜏(𝑛∗(𝑗

0
)) ≤ 𝑛(𝑗

0
) − 1. Indeed, in

the case where 𝑝
𝑖
(𝑛(𝑗
0
)) ≥ (𝛼 − 𝜀)/2, since 𝑛∗(𝑗

0
) = 𝑛(𝑗

0
), it

is obvious that 𝜏(𝑛∗(𝑗
0
)) = 𝜏(𝑛(𝑗

0
)) ≤ 𝑛(𝑗

0
) − 1. In the case

where 𝑝
𝑖
(𝑛(𝑗
0
)) < (𝛼 − 𝜀)/2, then 𝑛∗(𝑗

0
) > 𝑛(𝑗

0
). Assume, for

the sake of contradiction, that 𝜏(𝑛∗(𝑗
0
)) > 𝑛(𝑗

0
) − 1. Hence,

𝑛(𝑗
0
) ≤ 𝜏(𝑛

∗

(𝑗
0
)) ≤ 𝑛

∗

(𝑗
0
) − 1 and then

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)−1

∑

𝑞=𝜏(𝑛
∗
(𝑗0))

𝑝
𝑖
(𝑞) ≤

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)−1

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) <

𝛼 − 𝜀

2
, (33)

which contradicts (28). Thus, in both cases, we have
𝜏(𝑛
∗

(𝑗
0
)) ≤ 𝑛(𝑗

0
) − 1. Therefore

𝑚

∑

𝑖=1

𝑛(𝑗0)−1

∑

𝑞=𝜏(𝑛
∗
(𝑗0))

𝑝
𝑖
(𝑞) =

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)−1

∑

𝑞=𝜏(𝑛
∗
(𝑗0))

𝑝
𝑖
(𝑞) −

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)−1

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞)

> (𝛼 − 𝜀) −
𝛼 − 𝜀

2
=
𝛼 − 𝜀

2
.

(34)

Summing up (ER) from 𝑛(𝑗
0
) to 𝑛

∗

(𝑗
0
), and using the

fact that the function 𝑥 is decreasing and the function 𝜏 (as
defined by (13)) is increasing, we have

𝑥 (𝑛 (𝑗
0
)) = 𝑥 (𝑛

∗

(𝑗
0
) + 1) +

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) 𝑥 (𝜏

𝑖
(𝑞))

≥ 𝑥 (𝑛
∗

(𝑗
0
) + 1) +

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) 𝑥 (𝜏 (𝑞)) ,

(35)

or

𝑥 (𝑛 (𝑗
0
)) ≥ 𝑥 (𝑛

∗

(𝑗
0
) + 1) + 𝑥 (𝜏 (𝑛

∗

(𝑗
0
)))

𝑚

∑

𝑖=1

𝑛
∗
(𝑗0)

∑

𝑞=𝑛(𝑗0)

𝑝
𝑖
(𝑞) ,

(36)

which, in view of (30), gives

𝑥 (𝑛 (𝑗
0
)) ≥ 𝑥 (𝑛

∗

(𝑗
0
) + 1) +

𝛼 − 𝜀

2
𝑥 (𝜏 (𝑛

∗

(𝑗
0
))) . (37)

Summing up (ER) from 𝜏(𝑛
∗

(𝑗
0
)) to 𝑛(𝑗

0
) − 1, and using

the same arguments, we have

𝑥 (𝜏 (𝑛
∗

(𝑗
0
))) = 𝑥 (𝑛 (𝑗

0
)) +

𝑚

∑

𝑖=1

𝑛(𝑗0)−1

∑

𝑞=𝜏(𝑛
∗
(𝑗0))

𝑝
𝑖
(𝑞) 𝑥 (𝜏

𝑖
(𝑞))

≥ 𝑥 (𝑛 (𝑗
0
)) +

𝑚

∑

𝑖=1

𝑛(𝑗0)−1

∑

𝑞=𝜏(𝑛
∗
(𝑗0))

𝑝
𝑖
(𝑞) 𝑥 (𝜏 (𝑞)) ,

(38)

or

𝑥 (𝜏 (𝑛
∗

(𝑗
0
)))

≥ 𝑥 (𝑛 (𝑗
0
)) + 𝑥 (𝜏 (𝑛 (𝑗

0
) − 1))

𝑚

∑

𝑖=1

𝑛(𝑗0)−1

∑

𝑞=𝜏(𝑛
∗
(𝑗0))

𝑝
𝑖
(𝑞) ,

(39)

which, in view of (34), gives

𝑥 (𝜏 (𝑛
∗

(𝑗
0
))) > 𝑥 (𝑛 (𝑗

0
)) +

𝛼 − 𝜀

2
𝑥 (𝜏 (𝑛 (𝑗

0
) − 1)) . (40)

Combining inequalities (37) and (40), we obtain

𝑥 (𝑛 (𝑗
0
)) > 𝑥 (𝑛

∗

(𝑗
0
) + 1) +

𝛼 − 𝜀

2

× [𝑥 (𝑛 (𝑗
0
)) +

𝛼 − 𝜀

2
𝑥 (𝜏 (𝑛 (𝑗

0
) − 1))] ,

(41)

or

(1 −
𝛼 − 𝜀

2
) 𝑥 (𝑛 (𝑗

0
))

> 𝑥 (𝑛
∗

(𝑗
0
) + 1) + (

𝛼 − 𝜀

2
)

2.

𝑥 (𝜏 (𝑛 (𝑗
0
) − 1)) .

(42)

Thus

𝑥 (𝑛 (𝑗
0
)) >

(𝛼 − 𝜀)
2

2 [2 − (𝛼 − 𝜀)]
𝑥 (𝜏 (𝑛 (𝑗

0
) − 1)) . (43)

In view of (43), inequality (42) gives

𝑥 (𝑛 (𝑗
0
)) >

(𝛼 − 𝜀)
2

/ (2 [2 − (𝛼 − 𝜀)])

1 − ((𝛼 − 𝜀) /2)
𝑥 (𝜏 (𝑛

∗

(𝑗
0
)))

+
(𝛼 − 𝜀)

2

2 [2 − (𝛼 − 𝜀)]
𝑥 (𝜏 (𝑛 (𝑗

0
) − 1)) ,

(44)

which, in view of (40) becomes

𝑥 (𝑛 (𝑗
0
)) >

(𝛼 − 𝜀)
2

/ (2 [2 − (𝛼 − 𝜀)])

1 − ((𝛼 − 𝜀) /2)

× [𝑥 (𝑛 (𝑗
0
)) +

𝛼 − 𝜀

2
𝑥 (𝜏 (𝑛 (𝑗

0
) − 1))]

+
(𝛼 − 𝜀)

2

2 [2 − (𝛼 − 𝜀)]
𝑥 (𝜏 (𝑛 (𝑗

0
) − 1)) .

(45)
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Thus

𝑥 (𝑛 (𝑗
0
))

𝑥 (𝜏 (𝑛 (𝑗
0
) − 1))

>
(𝛼 − 𝜀)

2

4 [1 − (𝛼 − 𝜀)]
, (46)

or

𝑥 (𝑛 (𝑗
0
) + 1)

𝑥 (𝜏 (𝑛 (𝑗
0
)))

>
(𝛼 − 𝜀)

2

4 [1 − (𝛼 − 𝜀)]
. (47)

Hence,

lim inf
𝑗0→∞

𝑥 (𝑛 (𝑗
0
) + 1)

𝑥 (𝜏 (𝑛 (𝑗
0
)))

≥
(𝛼 − 𝜀)

2

4 [1 − (𝛼 − 𝜀)]
, (48)

which, for arbitrarily small values of 𝜀, implies (25).
The proof of the lemma is complete.

Theorem 8. Assume that (1) holds, the sequences 𝜏
𝑖
are

increasing for all 𝑖 ∈ {1, . . . , 𝑚} and 𝜏 is defined by (13).
Suppose also that for each 𝑖 ∈ {1, . . . , 𝑚} there exists a sequence
{𝑛
𝑖
(𝑗)}
𝑗∈N such that lim

𝑗→∞
𝑛
𝑖
(𝑗) = ∞, (12) and define 𝛼 by

(24), where 𝑛(𝑗) = min{𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 𝑚}.

If 0 < 𝛼 < 1, and

lim sup
𝑗→∞

𝑚

∑

𝑖=1

𝑛(𝑗)

∑

𝑞=𝜏(𝑛(𝑗))

𝑝
𝑖
(𝑞) > 1 −

𝛼
2

4 (1 − 𝛼)
, (49)

then all solutions of (ER) oscillate.

Proof. Assume, for the sake of contradiction, that {𝑥(𝑛)}
𝑛≥−𝑤

is an eventually positive solution of (ER). Then there exists
𝑗
0
∈ N such that

𝑝
𝑘
(𝑛) ≥ 0 ∀𝑛 ∈

𝑚

⋂

𝑘=1

[𝜏 (𝜏 (𝑛
𝑘
(𝑗
0
))) , 𝑛
𝑘
(𝑗
0
)] ∩ N,

1 ≤ 𝑘 ≤ 𝑚,

𝑥 (𝜏
𝑘
(𝑛)) > 0 ∀𝑛 ∈

𝑚

⋂

𝑘=1

[𝜏 (𝜏 (𝑛
𝑘
(𝑗
0
))) , 𝑛
𝑘
(𝑗
0
)] ∩ N,

1 ≤ 𝑘 ≤ 𝑚.

(50)

Therefore, by (ER) we have

𝑥 (𝑛 + 1) − 𝑥 (𝑛) = −

𝑚

∑

𝑖=1

𝑝
𝑖
(𝑛) 𝑥 (𝜏

𝑖
(𝑛)) ≤ 0, (51)

for every 𝑛 ∈ ⋂
𝑚

𝑘=1
[𝜏(𝜏(𝑛

𝑘
(𝑗
0
))), 𝑛
𝑘
(𝑗
0
)] ∩ N. This guarantees

that the sequence 𝑥 is decreasing on ⋂
𝑚

𝑘=1
[𝜏(𝜏(𝑛

𝑘
(𝑗
0
))),

𝑛
𝑘
(𝑗
0
)] ∩ N.

Summing up (ER) from 𝜏(𝑛(𝑗
0
)) to 𝑛(𝑗

0
), and using the

fact that the function 𝑥 is decreasing and the function 𝜏 (as
defined by (13)) is increasing, we obtain

𝑥 (𝜏 (𝑛 (𝑗
0
))) = 𝑥 (𝑛 (𝑗

0
) + 1) +

𝑚

∑

𝑖=1

𝑛(𝑗0)

∑

𝑞=𝜏(𝑛(𝑗0))

𝑝
𝑖
(𝑞) 𝑥 (𝜏

𝑖
(𝑞))

≥ 𝑥 (𝑛 (𝑗
0
) + 1) + 𝑥 (𝜏 (𝑛 (𝑗

0
)))

×

𝑚

∑

𝑖=1

𝑛(𝑗0)

∑

𝑞=𝜏(𝑛(𝑗0))

𝑝
𝑖
(𝑞) .

(52)

Consequently,
𝑚

∑

𝑖=1

𝑛(𝑗0)

∑

𝑞=𝜏(𝑛(𝑗0))

𝑝
𝑖
(𝑞) ≤ 1 −

𝑥 (𝑛 (𝑗
0
) + 1)

𝑥 (𝜏 (𝑛 (𝑗
0
)))

, (53)

which gives

lim sup
𝑗0→∞

𝑚

∑

𝑖=1

𝑛(𝑗0)

∑

𝑞=𝜏(𝑛(𝑗0))

𝑝
𝑖
(𝑞) ≤ 1 − lim inf

𝑗0→∞

𝑥 (𝑛 (𝑗
0
) + 1)

𝑥 (𝜏 (𝑛 (𝑗
0
)))

. (54)

Assume that 0 < 𝛼 < 1 and (49) holds. Then by Lemma 7,
inequality (25) is fulfilled, and so (54) leads to

lim sup
𝑗0→∞

𝑚

∑

𝑖=1

𝑛(𝑗0)

∑

𝑞=𝜏(𝑛(𝑗0))

𝑝
𝑖
(𝑞) ≤ 1 −

𝛼
2

4 (1 − 𝛼)
, (55)

which contradicts condition (49).
The proof of the theorem is complete.

3. Advanced Equations

Oscillation of all solutions of (EA) is described by the theorem
below. Note that the proof is an easymodification of the proof
of Theorem 8 and hence is omitted.

Theorem 9. Assume (2) holds, the sequences 𝜎
𝑖
are increasing

for all 𝑖 ∈ {1, . . . , 𝑚} and 𝜎 is defined by (16). Suppose also that
for each 𝑖 ∈ {1, . . . , 𝑚} there exists a sequence {𝑛

𝑖
(𝑗)}
𝑗∈N such

that lim
𝑗→∞

𝑛
𝑖
(𝑗) = ∞, (15) and

𝛼 := lim inf
𝑗→∞

𝑚

∑

𝑖=1

𝜎(𝑛(𝑗))

∑

𝑞=𝑛(𝑗)+1

𝑝
𝑖
(𝑞) , (56)

where 𝑛(𝑗) = max{𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 𝑚}.

If 0 < 𝛼 < 1 and

lim sup
𝑗→∞

𝑚

∑

𝑖=1

𝜎(𝑛(𝑗))

∑

𝑞=𝑛(𝑗)

𝑝
𝑖
(𝑞) > 1 −

𝛼
2

4 (1 − 𝛼)
, (57)

then all solutions of (EA) oscillate.

Remark 10. When 𝛼 → 0, then the conditions (49) and (57)
reduce to the conditions (14) and (17), respectively. However
the improvement is clear when 𝛼 → 1/𝑒.The lower bound in
(49) and (57) is 0.946475699. That is, when 0 < 𝛼 < 1/𝑒, our
conditions (49) and (57) essentially improve (14) and (17).
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4. Examples

The significance of the results is illustrated in the following
examples.

Example 1. Consider the retarded difference equation

Δ𝑥 (𝑛) + 𝑝
1
(𝑛) 𝑥 (𝑛 − 2) + 𝑝

2
(𝑛) 𝑥 (𝑛 − 3)

+ 𝑝
3
(𝑛) 𝑥 (𝑛 − 4) = 0, 𝑛 ∈ N

0
,

(58)

where 𝑝
1
(𝑛), 𝑝

2
(𝑛), and 𝑝

3
(𝑛) are oscillating coefficients, as

shown in Figure 1.
In view of (13), it is obvious that 𝜏(𝑛) = 𝑛 − 2. Observe

that for

𝑛
1
(𝑗) = 20𝑗 + 9, 𝑗 ∈ N, (59)

we have 𝑝
1
(𝑛) > 0 for every 𝑛 ∈ 𝐴, where

𝐴 = ⋃

𝑗∈N

[𝜏 (𝜏 (𝑛
1
(𝑗))) , 𝑛

1
(𝑗)] ∩ N

= ⋃

𝑗∈N

[20𝑗 + 5, 20𝑗 + 9] ∩ N.
(60)

For

𝑛
2
(𝑗) = 20𝑗 + 8, 𝑗 ∈ N, (61)

we have 𝑝
2
(𝑛) > 0 for every 𝑛 ∈ 𝐵, where

𝐵 = ⋃

𝑗∈N

[𝜏 (𝜏 (𝑛
2
(𝑗))) , 𝑛

2
(𝑗)] ∩ N

= ⋃

𝑗∈N

[20𝑗 + 4, 20𝑗 + 8] ∩ N
(62)

and, for

𝑛
3
(𝑗) = 20𝑗 + 9, 𝑗 ∈ N, (63)

we have 𝑝
3
(𝑛) ≥ 0 for every 𝑛 ∈ 𝐶, where

𝐶 = ⋃

𝑗∈N

[𝜏 (𝜏 (𝑛
3
(𝑗))) , 𝑛

3
(𝑗)] ∩ N

= ⋃

𝑗∈N

[20𝑗 + 5, 20𝑗 + 9] ∩ N.
(64)

Therefore,

𝑝
1
(𝑛) > 0, 𝑝

2
(𝑛) > 0, 𝑝

3
(𝑛) ≥ 0

∀𝑛 ∈ 𝐴 ∩ 𝐵 ∩ 𝐶

= ⋃

𝑗∈N

[20𝑗 + 5, 20𝑗 + 8] ∩ N ̸= 0.

(65)

Observe that

𝑛 (𝑗) = min {𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 3} = 20𝑗 + 8, 𝑗 ∈ N. (66)
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Figure 1

Now,

𝛼 = lim inf
𝑗→∞

𝑚

∑

𝑖=1

𝑛(𝑗)−1

∑

𝑞=𝜏(𝑛(𝑗))

𝑝
𝑖
(𝑞)

= lim inf
𝑗→∞

[

[

20𝑗+7

∑

𝑞=20𝑗+6

𝑝
1
(𝑞) +

20𝑗+7

∑

𝑞=20𝑗+6

𝑝
2
(𝑞) +

20𝑗+7

∑

𝑞=20𝑗+6

𝑝
3
(𝑞)]

]

= 2 ⋅
7

100
+ 2 ⋅

6

100
+ 2 ⋅

2

100
= 0.3,

lim sup
𝑗→∞

2

∑

𝑖=1

𝑛(𝑗)

∑

𝑞=𝜏(𝑛(𝑗))

𝑝
𝑖
(𝑞)

= lim sup
𝑗→∞

[

[

20𝑗+8

∑

𝑞=20𝑗+6

𝑝
1
(𝑞) +

20𝑗+8

∑

𝑞=20𝑗+6

𝑝
2
(𝑞) +

20𝑗+8

∑

𝑞=20𝑗+6

𝑝
3
(𝑞)]

]

= 3 ⋅
7

100
+ 2 ⋅

6

100
+

598

1000
+ 2 ⋅

2

100
= 0.968.

(67)

Observe that

0.968 > 1 −
𝛼
2

4 (1 − 𝛼)
≃ 0.967857142; (68)

that is, condition (49) ofTheorem 8 is satisfied and, therefore,
all solutions of equation (58) oscillate.

On the other hand,

0.968 < 1. (69)
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Observe that 𝑝
1
(𝑛) > 0 for every 𝑛 ∈ 𝐴

󸀠

= 𝐴, 𝑝
2
(𝑛) ≥ 0 for

every 𝑛 ∈ 𝐵󸀠, where

𝐵
󸀠

= ⋃

𝑗∈N

[𝜏
2
(𝜏
2
(𝑛
2
(𝑗))) , 𝑛

2
(𝑗)] ∩ N

= ⋃

𝑗∈N

[20𝑗 + 2, 20𝑗 + 8] ∩ N,
(70)

and 𝑝
3
(𝑛) ≥ 0 for every 𝑛 ∈ 𝐶󸀠, where

𝐶
󸀠

= ⋃

𝑗∈N

[𝜏
3
(𝜏
3
(𝑛
3
(𝑗))) , 𝑛

3
(𝑗)] ∩ N

= ⋃

𝑗∈N

[20𝑗 + 1, 20𝑗 + 9] ∩ N.
(71)

Therefore,

𝑝
1
(𝑛) > 0, 𝑝

2
(𝑛) > 0, 𝑝

3
(𝑛) ≥ 0

∀𝑛 ∈ 𝐴
󸀠

∩ 𝐵
󸀠

∩ 𝐶
󸀠

= ⋃

𝑗∈N

[20𝑗 + 5, 20𝑗 + 8] ∩ N ̸= 0.

(72)

Also,

lim inf
𝑗→∞

2

∑

𝑖=1

𝑛𝑖(𝑗)−1

∑

𝑞=𝜏𝑖(𝑛𝑖(𝑗))

𝑝
𝑖
(𝑞)

= lim inf
𝑗→∞

[

[

20𝑗+8

∑

𝑞=20𝑗+7

𝑝
1
(𝑞) +

20𝑗+7

∑

𝑞=20𝑗+5

𝑝
2
(𝑞) +

20𝑗+8

∑

𝑞=20𝑗+5

𝑝
3
(𝑞)]

]

= 2 ⋅
7

100
+ 3 ⋅

6

100
+ 2 ⋅

2

100
= 0.36 <

1

𝑒
.

(73)

Therefore none of the conditions (14) and (20) is satisfied.

Example 2. Consider the advanced difference equation

∇𝑥 (𝑛) − 𝑝
1
(𝑛) 𝑥 (𝑛 + 1) − 𝑝

2
(𝑛) 𝑥 (𝑛 + 2) = 0, 𝑛 ∈ N,

(74)

where𝑝
1
(𝑛) and𝑝

2
(𝑛) are oscillating coefficients, as shown in

Figure 2.

In view of (16), it is obvious that 𝜎(𝑛) = 𝑛 + 1. Observe
that for

𝑛
1
(𝑗) = 16𝑗, 𝑗 ∈ N, (75)

we have 𝑝
1
(𝑛) ≥ 0 for every 𝑛 ∈ 𝐴, where

𝐴 = ⋃

𝑗∈N

[𝑛
1
(𝑗) , 𝜎 (𝜎 (𝑛

1
(𝑗)))] ∩ N = ⋃

𝑗∈N

[16𝑗, 16𝑗 + 2] ∩ N.

(76)

Also, for

𝑛
2
(𝑗) = 16𝑗 + 1, 𝑗 ∈ N, (77)

0.5

0.15

8

7

15

16

n

p1(n)

0

0

· · ·

0.09

0.556

0.12

8

7

15

16
23

23

n

p2(n)

· · ·

Figure 2

we have 𝑝
2
(𝑛) > 0 for every 𝑛 ∈ 𝐵, where

𝐵 = ⋃

𝑗∈N

[𝑛
2
(𝑗) , 𝜎 (𝜎 (𝑛

2
(𝑗)))] ∩ N

= ⋃

𝑗∈N

[16𝑗 + 1, 16𝑗 + 3] ∩ N.
(78)

Therefore,

𝑝
1
(𝑛) > 0, 𝑝

2
(𝑛) > 0

∀𝑛 ∈ 𝐴 ∩ 𝐵 = ⋃

𝑗∈N

[16𝑗 + 1, 16𝑗 + 2] ∩ N ̸= 0.
(79)

Observe that

𝑛 (𝑗) = max {𝑛
𝑖
(𝑗) : 1 ≤ 𝑖 ≤ 2} = 16𝑗 + 1, 𝑗 ∈ N. (80)

Now

𝛼 = lim inf
𝑗→∞

2

∑

𝑖=1

𝜎(𝑛(𝑗))

∑

𝑞=𝑛(𝑗)+1

𝑝
𝑖
(𝑞)

= lim inf
𝑗→∞

[

[

16𝑗+2

∑

𝑞=16𝑗+2

𝑝
1
(𝑞) +

16𝑗+2

∑

𝑞=16𝑗+2

𝑝
2
(𝑞)]

]

=
15

100
+

12

100
= 0.27.

(81)

Also

lim sup
𝑗→∞

2

∑

𝑖=1

𝜎(𝑛(𝑗))

∑

𝑞=𝑛(𝑗)

𝑝
𝑖
(𝑞)

= lim sup
𝑗→∞

[

[

16𝑗+2

∑

𝑞=16𝑗+1

𝑝
1
(𝑞) +

16𝑗+2

∑

𝑞=16𝑗+1

𝑝
2
(𝑞)]

]

= 2 ⋅
15

100
+

12

100
+

556

1000
= 0.976.

(82)
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Observe that

0.976 > 1 −
𝛼
2

4 (1 − 𝛼)
≃ 0.975034246; (83)

that is, condition (57) ofTheorem 9 is satisfied and, therefore,
all solutions of equation (74) oscillate.

On the other hand,

0.976 < 1. (84)

Observe that 𝑝
1
(𝑛) ≥ 0 for every 𝑛 ∈ 𝐴

󸀠

= 𝐴 and 𝑝
2
(𝑛) ≥ 0

for every 𝑛 ∈ 𝐵󸀠, where

𝐵
󸀠

= ⋃

𝑗∈N

[𝑛
2
(𝑗) , 𝜎

2
(𝜎
2
(𝑛
2
(𝑗)))] ∩ N

= ⋃

𝑗∈N

[16𝑗 + 1, 16𝑗 + 5] ∩ N.
(85)

Therefore,

𝑝
1
(𝑛) > 0, 𝑝

2
(𝑛) > 0

∀𝑛 ∈ 𝐴
󸀠

∩ 𝐵
󸀠

= ⋃

𝑗∈N

[16𝑗 + 1, 16𝑗 + 2] ̸= 0.

(86)

Also,

lim inf
𝑗→∞

𝑚

∑

𝑖=1

𝜎𝑖(𝑛𝑖(𝑗))

∑

𝑞=𝑛𝑖(𝑗)+1

𝑝
𝑖
(𝑞)

= lim inf
𝑗→∞

[

[

16𝑗+1

∑

𝑞=16𝑗+1

𝑝
1
(𝑞) +

16𝑗+3

∑

𝑞=16𝑗+2

𝑝
2
(𝑞)]

]

=
15

100
+

12

100
+

9

100
= 0.36 <

1

𝑒
.

(87)

Therefore none of the conditions (17) and (23) is satisfied.
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