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The sign stability concept in ecological systems is introduced into the analysis and synthesis of switched linear system to explore
new control design technique. The necessary and sufficient condition for sign stability of a switched linear system under arbitrary
switching is achieved via the notion of complete isogenous sign stable set (CISSS). A new approach for the stabilization of switched
system is presented. Although the controllers are devised for each subsystem, respectively, the switched system is sign stabilized
by the constitution of CISSS. The provided method has natural robustness and more design freedoms than the familiar Lyapunov
functionmethod, which bears relative conservativeness as the requirement of solving LMIs.The presented technique is validated by
an example of flight control within a large-scale flight envelop. Simulation results indicate that the proposed method can stabilize
the flight attitude under large variations of system parameters and external perturbations.

1. Introduction

The sign stability (or qualitative stability) concept is first
proposed in bionomics and utilized to analyze the interac-
tions of different species in a large-scale ecosystem which
lacks exact model but presents high robustness under various
perturbations [1, 2].The sign stability approach is also applied
to population biology and economics in respect that these
systems are also short of quantitative mathematical models.
This qualitative analysis technique provides an avenue to
research the linear system stability by the Jacobian matrix
with only signs, and still attracts growing attention in system
science community [3, 4].

For a given matrix, the signs (+, −, or 0) of its elements
are taken to make up a new matrix named the sign-pattern.
A matrix is called sign stable if arbitrary matrix which
has the same sign-pattern is Hurwitz stable, regardless of
the elements’ magnitudes. Hence, the sign stability of a
matrix equates to that of the corresponding sign-pattern.
Jeffries developed necessary and sufficient conditions for sign
stability ofmatrix and proposed an approach named the color

test to verify an arbitrary matrix in ecological terms [5, 6].
Yedavalli translated the color test conditions in matrix theory
notation and devised a programmable set of conditions for
the color test in an irreducible matrix [7]. It is worth noticing
that the conclusions in this work are based on the conditions
and criterions for the matrix sign stability presented in the
aforementioned literatures.

Based on theoretical researches, the sign stability tech-
nique is applied in control engineering, especially the robust
controllers design for aerospace flight control system. A
three-axis attitude stabilization controller for an axisym-
metric satellite is provided in [7]. The closed-loop system
matrix is designed to possess the specific sign-pattern and
sign stability property which will bring the system robust
stability under arbitrarily large variations in the spin angular
velocity. In [8], the effect of the elements’ signs on the
matrix properties such as eigenvalues and condition number
is shown. Efforts are made to identify target closed-loop
systems that incorporate the desirable features of ecological
systems, and an algorithm for the design of controller is

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 391617, 9 pages
http://dx.doi.org/10.1155/2014/391617

http://dx.doi.org/10.1155/2014/391617


2 Journal of Applied Mathematics

given. The control design procedure is illustrated with two
applications in the aerospace field: satellite attitude control
and aircraft lateral dynamics control.

However, the existing applications of sign stability only
consider linear time-invariant systems which cannot approx-
imate the flight dynamics within the full flight envelope.
One of the alternative solutions is the switched linear system
which is a good approximation of complicated system char-
acteristics. Flight-control-oriented analysis and synthesis of
switched systems are studied in the prior literatures and show
large potential in engineering practice [9–12]. For example,
the gain schedule control that is widely applied in flight
control systems can be abstracted as a switching control law
if variations of system parameters are regarded as a series of
switching with the transition of the schedule variable. Hence,
the aim of this paper is to generalize the sign stability concept
to switched linear system and develop a new and practicable
control scheme.

Compared to the prior references, the significant con-
tribution of this work is the conclusion on sign stability
analysis of switched linear system, which is presented by a
necessary and sufficient condition.The systemmodel treated
with sign stability approach is extended from LTI system to
a hybrid system. The mix of continuous linear systems and
discrete signals make switched system suitable to describe a
wide range of engineering systems such as power systems,
automotive engine control, flight control, and networked
control systems. As a result, the application areas of sign
stability approach are enlarged remarkably.

Another important contribution is that a new stabi-
lization technique of switched system is presented. As for
the asymptotic stability of switched system under arbitrary
switching, the common Lyapunov function is a necessary
and sufficient condition and a usual method. In [13, 14], the
existing condition of common quadratic Lyapunov function
for switched linear system is discussed. Furthermore, mul-
tiple Lyapunov functions method [15], dwell-time method
[16], and average dwell-time method [17] are proposed to
adapt different design situations. In recent years, Zhao and
his coworkers propose the mode-dependent average dwell-
time method in order to decrease conservativeness [18,
19]. To utilize the above methods, the LMI technique is
widely used, whereas the feasible solution of LMI is only a
sufficient condition for the existence of common Lyapunov
function, and an expectant controller may not exist or may
not be found even if one does exist [20]. That leads to
uncertainty of the controller solvability, even thoughmodern
mathematic tools are utilized. In contrast, the sign stability
theory offers a fire-new approach with which designers
can configure target sign-patterns of closed-loop switched
subsystems via state feedback and guarantee the stability
under arbitrary switching.The primary advantage of the sign
stability technique is that there is no need to solve LMIs.
That provides more design freedoms than Lyapunov function
approach. Besides, the provided control synthesis technique
possesses natural robustness because the sign stability is
independent of the elements’ magnitudes. This property
allows the sign stabilization controllers to fit discretionarily

large sign-preserving parameter perturbations, especially in
the flight control system.

With this consideration, the paper is organized as follows.
In Section 2, the basic concepts and conditions for the sign
stability ofmatrix are reviewed.Thedefinition of sign stability
for switched linear system is presented to formulate the main
issue of this paper. In Section 3, themain result of this paper is
given in the form of necessary and sufficient condition for the
sign stability of switched system along with a new approach
for the stabilization problem. In Section 4, the proposed
technique is illustrated by an application to flight control
of the HiMAT vehicle. Finally, Section 5 provides a detailed
conclusion of this work.

2. Problem Formulation

In this section, preliminary knowledge about the sign stability
is reviewed, and then the definition of sign stability for
switched linear system is proposed to formulate the main
problem of this paper.

2.1. Preliminary Knowledge. A switched linear autonomous
system is usually described as

�̇� (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) , (1)

in which 𝜎(𝑡) : [0, 𝑡) → Ω = {1, 2, . . . , 𝑛} is the switching
signal and {𝐴

𝑖
, 𝑖 ∈ Ω} is the set of switching subsystem

matrices. Then the aim of this section is to establish the
concept of sign stability for the switched system (1). Above
all, basic knowledge and results are needed.

For the 𝑛×𝑛 real matrix𝐴 = (𝑎
𝑖𝑗
) and𝐵 = (𝑏

𝑖𝑗
), if sgn 𝑎

𝑖𝑗
=

sgn 𝑏
𝑖𝑗
, for all 𝑖, 𝑗, it is defined that the two matrices have the

same sign-pattern. The sign-pattern can be represented as a
matrix, of which all the entries simply consist of signs +, −,
or 0. The sgn(𝐴) is defined as the sign-pattern matrix of 𝐴.
Similarly, sgn{𝐴

𝑖
, 𝑖 ∈ Ω} is defined as the sign-pattern set of

the matrix set {𝐴
𝑖
, 𝑖 ∈ Ω}; that is, sgn{𝐴

𝑖
} = {sgn(𝐴

𝑖
), 𝑖 ∈

Ω}. For two sets of matrices {𝐴
𝑖
, 𝑖 ∈ Ω} and {𝐵

𝑗
, 𝑗 ∈ Δ}, if

for all 𝑖 ∈ Ω sgn(𝐴
𝑖
) ∈ sgn{𝐵

𝑗
} and for all 𝑗 ∈ Δ sgn(𝐵

𝑗
) ∈

sgn{𝐴
𝑖
}, it is defined that the two matrix sets have the same

sign-pattern set.

Definition 1. The 𝑛 × 𝑛 real matrix 𝐴 = (𝑎
𝑖𝑗
) is sign stable if

eachmatrix 𝐵 = (𝑏
𝑖𝑗
) of the same sign-pattern as𝐴 is Hurwitz

stable.

The necessary and sufficient condition for the sign stabil-
ity of matrix is provided in referenced researches [5, 21–23].
The main necessary conditions are listed in Lemma 2 as the
foundation of main results in this paper.

Lemma 2. The following are necessary conditions for sign
stability of matrix 𝐴 = (𝑎

𝑖𝑗
).

(1) For all 𝑖, 𝑎
𝑖𝑖
≤ 0.

(2) 𝑎
𝑖𝑖
< 0 for at least one 𝑖.

(3) For all 𝑖 ̸= 𝑗, 𝑎
𝑖𝑗
𝑎
𝑗𝑖
≤ 0.
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(4) 𝑎
𝑖𝑗
𝑎
𝑗𝑘

⋅ ⋅ ⋅ 𝑎
𝑞𝑟
𝑎
𝑟𝑖

= 0 for any sequences of three or more
distinct indices 𝑖, 𝑗, 𝑘, . . . , 𝑞, 𝑟.

(5) det𝐴 ̸= 0.

It is worth announcing that the color test, given by Jeffries
in [5], is confirmed as the criterion for the sign stability of any
matrix or sign-pattern in this work.

2.2. Problem Statement. Comparedwith the definition of sign
stability for matrix, sign stability of switched linear system is
defined as below.

Definition 3. The switched linear system (1) is sign stable
under arbitrary switching if each switched system �̇�(𝑡) =

𝐴
𝜎(𝑡)

𝑥(𝑡) which has the same sign-pattern set as {𝐴
𝜎(𝑡)

} is
asymptotically stable under arbitrary switching.

From Definition 3 it is seen that, for a given switched
system, that is, sign stable, it is obviously asymptotically
stable under arbitrary switching. Besides, the determinant of
sign stability is the sign-pattern set, and the concept of sign
stability for the sign-pattern set sgn{𝐴

𝜎
} is similar to that

for the switched system. We can also know that a sign stable
switched systemwill be achieved by assigning arbitrary values
for elements of sign-patterns in a sign-pattern set which is
sign stable. In addition, the number of subsystems will not
affect the stability of the switched system.

Remark 4. In a sign stable switched system, there may be
several subsystems of which the matrices have the same sign-
pattern. In other words, the switched system derived from a
given sign stable sign-pattern set is stable even if more than
one matrices are built according to the same sign-pattern.

Remark 5. The subset of an arbitrary sign stable switched
system (or sign-pattern set) is also sign stable.The conclusion
is obtained under arbitrary switching laws.

With the concept given in Definition 3, we are now
interested in the properties of a sign stable switched linear
system, and it is also important to develop a technique to
constitute a sign stable switched system. Towards the above
targets, the main results are provided in the next section.
To accomplish the proof of the main theorem, a primary
conclusion given by [24] is used and presented here as a
lemma.

Lemma 6. The following statements are equivalent:

(1) the switched linear system

�̇� (𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) , (2)

where 𝐴
𝜎(𝑡)

∈ {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑁
} is asymptotically

stable under arbitrary switching;

(2) the linear time-variant system

�̇� (𝑡) = 𝐹 (𝑡) 𝑥 (𝑡) ,

𝐹 (𝑡) = {

𝑁

∑
𝑖=1

𝛼
𝑖
(𝑡) 𝐴
𝑖
| 𝛼
𝑖
(𝑡) ≥ 0,

𝑁

∑
𝑖=1

𝛼
𝑖
(𝑡) = 1}

(3)

is asymptotically stable.

3. Main Results

3.1. Necessary Condition. From Definition 3 and Lemma 6,
the sign stability of the switched linear system (2) under
arbitrary switching implies that each sign-pattern in sgn{𝐴

𝜎
}

is sign stable. The necessary conditions of a sign stable
switched linear system are given in the following theorem,
where 𝑎𝑘

𝑖𝑗
denotes the 𝑖 × 𝑗th element of the 𝑘th subsystem

matrix of switched system (2).

Theorem 7. The following are necessary conditions for sign
stability of switched linear system (2)under arbitrary switching.

(1) For all 𝐴𝑘, which is the 𝑘𝑡ℎ subsystem matrix
of switched system (2), the necessary conditions in
Lemma 2 are satisfied.

(2) For all 𝑝 ̸= 𝑞, for all 𝑖 ̸= 𝑗, one of the following three
conditions is satisfied: (i) 𝑎𝑝

𝑖𝑗
= 𝑎
𝑞

𝑖𝑗
= 0; (ii) 𝑎𝑝

𝑗𝑖
= 𝑎
𝑞

𝑗𝑖
= 0;

(iii) 𝑎𝑝
𝑖𝑗
𝑎
𝑞

𝑖𝑗
≥ 0.

Proof. For (1), noting that each subsystem of switched system
(2) is sign stable, the conclusion is obvious.

For (2), with no loss of generality, it is supposed that there
are 2 subsystems in switched system (2). From Lemma 6, the
linear time-variant system (3) is asymptotically stable, and the
system matrix can be written as

𝐹 (𝑡) = {𝛼
1
(𝑡) 𝐴
1

+ 𝛼
2
(𝑡) 𝐴
2

|

𝛼
1
(𝑡) , 𝛼
2
(𝑡) ≥ 0, 𝛼

1
(𝑡) + 𝛼

2
(𝑡) = 1} .

(4)

It is easily understood that 𝐹(𝑡) is sign stable because the
elements of 𝐴1 and 𝐴2 may take arbitrary values. Define 𝑓

𝑖𝑗

as the 𝑖 × 𝑗th element of 𝐹(𝑡), and it holds that

𝑓
𝑖𝑗
(𝑡) = 𝛼

1
(𝑡) 𝑎
1

𝑖𝑗
+ 𝛼
2
(𝑡) 𝑎
2

𝑖𝑗
. (5)

Due to condition (3) of Lemma 2, the following inequality
holds for all 𝑖 ̸= 𝑗:

𝑓
𝑖𝑗
(𝑡) 𝑓
𝑗𝑖
(𝑡) = (𝛼

1
(𝑡) 𝑎
1

𝑖𝑗
+ 𝛼
2
(𝑡) 𝑎
2

𝑖𝑗
) (𝛼
1
(𝑡) 𝑎
1

𝑗𝑖
+ 𝛼
2
(𝑡) 𝑎
2

𝑗𝑖
)

≤ 0.

(6)

(i) For the situation that 𝑓
𝑖𝑗
(𝑡)𝑓
𝑗𝑖
(𝑡) = 0, since 𝛼

1
(𝑡) and

𝛼
2
(𝑡)may take arbitrary values, it must hold that 𝑎1

𝑖𝑗
= 𝑎2
𝑖𝑗
= 0

or 𝑎1
𝑗𝑖
= 𝑎2
𝑗𝑖
= 0. That is, for all 𝑝 ̸= 𝑞, for all 𝑖 ̸= 𝑗, 𝑎𝑝

𝑖𝑗
= 𝑎
𝑞

𝑖𝑗
= 0

or 𝑎𝑝
𝑗𝑖
= 𝑎
𝑞

𝑗𝑖
= 0 is satisfied.
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(ii) For the situation that 𝑓
𝑖𝑗
(𝑡)𝑓
𝑗𝑖
(𝑡) < 0, with no loss of

generality, supposing 𝛼
1
(𝑡) = 𝛼

2
(𝑡) ≡ 0.5 gives

(𝑎
1

𝑖𝑗
+ 𝑎
2

𝑖𝑗
) (𝑎
1

𝑗𝑖
+ 𝑎
2

𝑗𝑖
) < 0, ∀𝑖 ̸= 𝑗. (7)

That is,

𝑎
1

𝑖𝑗
𝑎
1

𝑗𝑖
+ 𝑎
2

𝑖𝑗
𝑎
1

𝑗𝑖
+ 𝑎
1

𝑖𝑗
𝑎
2

𝑗𝑖
+ 𝑎
2

𝑖𝑗
𝑎
2

𝑗𝑖
< 0, ∀𝑖 ̸= 𝑗. (8)

Considering that all the elements permit arbitrary sign-
preserving variations, let


𝑎
1

𝑖𝑗


=

𝑎
2

𝑗𝑖


,


𝑎
2

𝑖𝑗


=

𝑎
1

𝑗𝑖

 (9)

which leads to

𝑎
1

𝑖𝑗
𝑎
1

𝑗𝑖
= sgn (𝑎

1

𝑗𝑖
𝑎
2

𝑖𝑗
) 𝑎
1

𝑖𝑗
𝑎
2

𝑖𝑗
,

𝑎
2

𝑖𝑗
𝑎
1

𝑗𝑖
= sgn (𝑎

1

𝑗𝑖
𝑎
2

𝑖𝑗
) (𝑎
2

𝑖𝑗
)
2

,

𝑎
1

𝑖𝑗
𝑎
2

𝑗𝑖
= sgn (𝑎

1

𝑖𝑗
𝑎
2

𝑗𝑖
) (𝑎
1

𝑖𝑗
)
2

,

𝑎
2

𝑖𝑗
𝑎
2

𝑗𝑖
= sgn (𝑎

1

𝑖𝑗
𝑎
2

𝑗𝑖
) 𝑎
1

𝑖𝑗
𝑎
2

𝑖𝑗
,

(10)

with sgn(𝑎) denoting the sign of 𝑎.
From condition (3) of Lemma 2, it is known that 𝑎1

𝑖𝑗
and

𝑎1
𝑗𝑖
have the opposite signs (including 0), so do 𝑎2

𝑖𝑗
and 𝑎2

𝑗𝑖
.

It implies that 𝑎1
𝑖𝑗
𝑎2
𝑗𝑖
and 𝑎1

𝑗𝑖
𝑎2
𝑖𝑗
have the same sign. That is,

sgn(𝑎1
𝑖𝑗
𝑎2
𝑗𝑖
) = sgn(𝑎1

𝑗𝑖
𝑎2
𝑖𝑗
). Then (8) can be rewritten as

sgn (𝑎
1

𝑖𝑗
𝑎
2

𝑗𝑖
) (𝑎
1

𝑖𝑗
𝑎
2

𝑖𝑗
+ (𝑎
2

𝑖𝑗
)
2

+ (𝑎
1

𝑖𝑗
)
2

+ 𝑎
1

𝑖𝑗
𝑎
2

𝑖𝑗
) < 0, ∀𝑖 ̸= 𝑗.

(11)

That is,

sgn (𝑎
1

𝑖𝑗
𝑎
2

𝑗𝑖
) (𝑎
1

𝑖𝑗
+ 𝑎
2

𝑖𝑗
)
2

< 0, ∀𝑖 ̸= 𝑗. (12)

To ensure (12), 𝑎1
𝑖𝑗
and 𝑎2

𝑗𝑖
must have the opposite signs.

Therefore, 𝑎1
𝑖𝑗
and 𝑎2

𝑖𝑗
have the same sign (including 0). That

is, for all 𝑝 ̸= 𝑞, for all 𝑖 ̸= 𝑗, 𝑎𝑝
𝑖𝑗
𝑎
𝑞

𝑖𝑗
≥ 0.

Synthesizing situations (i) and (ii), condition (2) is
proved.

It can be concluded by Theorem 7 that, for all the
subsystem matrices of a sign stable switched system, the
elements in the samepositionmust satisfy specific conditions.
According to this, the definition of an isogenous sign-pattern
set and correlative corollary are given as below.

Definition 8. A sign-pattern set is called an isogenous set if
the elements in the same position of all the sign-patterns
satisfy one of the following terms: (i) they have the same
sign (including 0); (ii) they are all 0; (iii) the elements in the
opposite position are all 0.

Corollary 9. The sign-pattern set of a sign stable switched
system is an isogenous set.

Remark 10. We also say that two sign-patterns are isoge-
nous with each other if they conform to the condition of
Definition 8. Apparently, if arbitrary two sign-patterns of
a known set are isogenous, this set is an isogenous set.
Corollary 9 can be acquired fromTheorem 7 andDefinition 8
easily. However, it should be noticed that the isogenous set is
only a necessary condition for sign stable switched system.
For example, an isogenous set by 3×3 is in (13). However, the
set is not sign stable as the first sign-pattern is not sign stable
obviously:

{

{

{

[

[

− + +

− 0 −

0 + −

]

]

,[

[

− 0 +

− − −

0 0 −

]

]

,[

[

0 + −

− − 0

0 + −

]

]

}

}

}

. (13)

Considering an arbitrary isogenous sign-pattern set, we
define the joining operation of all the sign-patterns to develop
a special sign-pattern named the original sign-pattern of the
set. The joining operation should keep the following rules.

(1) If elements in a certain position of all the sign-
patterns have the same nonzero sign or 0, then the
corresponding element of the original sign-pattern is
the same nonzero sign.

(2) If elements in a certain position of all the sign-
patterns are all 0, then the corresponding element of
the original sign-pattern is 0.

(3) If elements in a certain position of all the sign-
patterns have different signs, then the corresponding
element of the original sign-pattern is written as ∗ to
denote arbitrary signs.

The original sign-pattern obtained from a known isoge-
nous setmay be a new sign-pattern or an existent onewhich is
already in the set.The original sign-pattern of set (13) is given
in as follows as an illustration:

[

[

− + ∗

− − −

0 + −

]

]

. (14)

Furthermore, it is obvious that the new original sign-
pattern and the known isogenous set can be joined to build a
new set which is still isogenous. Actually, new sign-patterns
can be derived to extend the isogenous set by replacing
some nonzero elements of the original sign-pattern by 0. To
demonstrate the aforementioned operation, the set which is
developed from (13) is given belowwith the first matrix as the
original sign-pattern and the last two as accessorial ones:

{

{

{

[

[

− + ∗

− − −

0 + −

]

]

,[

[

− + +

− 0 −

0 + −

]

]

,[

[

− 0 +

− − −

0 0 −

]

]

,

[

[

0 + −

− − 0

0 + −

]

]

,[

[

− + −

− − −

0 + 0

]

]

,[

[

− + 0

0 − −

0 + −

]

]

}

}

}

.

(15)

Of course, we can continue to add new isogenous sign-
patterns of (15) on the basis of the original sign-pattern and
list all the other ones. However, among all these sign-patterns,
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the sign stable ones are what we focused on and can be
selected out.That leads to another important definition in this
paper.

Definition 11. A sign-pattern set is named a complete isoge-
nous sign stable set (CISSS) if it contains a sign stable original
sign-pattern and all of the derivative isogenous sign-patterns
that are sign stable.

Remark 12. Definition 11 indicates that we can obtain a CISSS
from an isogenous set, for example, (15), if the original sign-
pattern and some other ones are sign stable. Unfortunately, as
the original sign-pattern of (15) is not sign stable, the subset
of (15) cannot be a CISSS. It can be seen that a sign stable
original sign-pattern is necessary for a CISSS.This notion can
be interpreted by another example. Set (16) is an isogenous
set, but not a CISSS even though all the sign-patterns are sign
stable. Actually, the original sign-pattern given by (17) is not
included in (16), and it is more important that the original
sign-pattern is not sign stable:

{[
− 0

− −
] , [

− −

0 −
]} , (16)

[
− −

− −
] . (17)

Remark 13. It also should be emphasized that the selection
of the uncertain element ∗ does not affect the sign stability,
which is related to the products of the off-diagonal pairs.
Since the sign ∗ must appear in the form of an off-diagonal
pair “0 and ∗,” leading the product to 0 at all time, the above
pair can still exist in CISSS.

3.2. Necessary and Sufficient Condition. In what follows, the
main result of this work is proposed.

Theorem 14. The necessary and sufficient condition for sign
stability of switched linear system (2) under arbitrary switching
is that the sign-pattern set of (2) is a subset of a CISSS.

Proof. (1) The necessity can be easily proved by Corollary 9
and Definition 11.

(2) If the sign-pattern set sgn{𝐴
𝜎
} of (2) is a subset of

a CISSS, then all the sign-patterns of sgn{𝐴
𝜎
} are isogenous

and sign stable. For another arbitrary matrix set {𝐴
𝑖
} that has

the same sign-pattern set sgn{𝐴
𝜎
} and {𝛼

𝑖
| 𝛼
𝑖
≥ 0,∑

𝑁

𝑖=1
𝛼
𝑖
=

1}, let

𝐴
∗

=

𝑁

∑
𝑖=1

𝛼
𝑖
𝐴
𝑖
. (18)

According to Definition 11, it is certain that sgn(𝐴∗)
belongs to the foregoing CISSS. Hence, 𝐴∗ is sign stable and
thus Hurwitz stable. By Lemma 6, the switched system �̇�(𝑡) =

𝐴
𝜎(𝑡)

𝑥(𝑡) is asymptotically stable. At last, by Definition 3, the
sufficiency is proved.

With Theorem 14, it is easy to judge whether a given
switched system is sign stable. To construct a sign stable

switched system, the original sign-pattern and the CISSS are
required first. Furthermore, a sign stable original sign-pattern
with the least element “0” is the basis to constitute a CISSS.

3.3. Simple Examples. Two simple examples are given to
illuminate the constitution of CISSS.

Example 1. For 2×2matrices, the setsΔ
1
, Δ
2
given by (19) are

CISSS with the first sign-pattern as the original sign-pattern
of each set, respectively:

Δ
1
= {[

− +

− −
] , [

0 +

− −
] , [

− +

− 0
] , [

− +

0 −
] , [

− 0

− −
] , [

− 0

0 −
]} ,

Δ
2
= {[

− −

+ −
] , [

0 −

+ −
] , [

− −

+ 0
] , [

− −

0 −
] , [

− 0

+ −
] , [

− 0

0 −
]} .

(19)

It has been summarized that the original sign-pattern is
needed to have as few “0” elements as possible. Hence, all the
diagonal elements are chosen to be “−,” and the off-diagonal
elements are selected to possess as many pairs of opposite
signs as possible. For 2 × 2 matrices, it is not necessary for
us to configure any “0” element in the original sign-pattern as
shown in Example 1, whereas, for 3×3matrix𝐴

3×3
= (𝑎
𝑖𝑗
)
3×3

,
according to condition (4) of Lemma 2, there must be at least
two “0” elements in the off-diagonal positions to guarantee
𝑎
12
𝑎
23
𝑎
31

= 0 and 𝑎
13
𝑎
32
𝑎
21

= 0. It then can be concluded
that, in the 3 × 3 matrix below, there must be at least one 0
in the positions represented by & and one 0 in the positions
represented by #, respectively:

[

[

− & #
# − &
& # −

]

]

. (20)

Example 2. Consider the 3×3 sign stable original sign-pattern
given in (21), where each ∗ presents an uncertain sign that
may be +, −, or 0. The aim is to discover the corresponding
CISSS:

[

[

− 0 0

∗ − +

∗ − −

]

]

. (21)

Utilizing the criterion in [5] to select sign stable sign-
patterns in the isogenous set of (21), the CISSS is acquired
and shown in (22), with each ∗ denoting an arbitrary sign. As
each sign-pattern in (22) contains 9 (= 3 × 3) sign-patterns,
there is a total of 54 (= 6 × 9) sign-patterns in the CISSS:

{

{

{

[

[

− 0 0

∗ − +

∗ − −

]

]

,[

[

− 0 0

∗ 0 +

∗ − −

]

]

,[

[

− 0 0

∗ − +

∗ − 0

]

]

,

[

[

− 0 0

∗ − 0

∗ − −

]

]

,[

[

− 0 0

∗ − +

∗ 0 −

]

]

,[

[

− 0 0

∗ − 0

∗ 0 −

]

]

}

}

}

.

(22)

In fact, in the above process of finding CISSS, the two
pairs of “0 and ∗” do not need to be changed. The first term
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Figure 1: Partial flight envelope and operating points.
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Figure 2: Switching law of the flight trajectory.

of the diagonal is also unchangeable. As a result, the only way
is to transform the 2 × 2 block on the lower-right. Indeed, it
can be seen that the lower-right blocks are the same as the set
Δ
1
of Example 1.

4. Example

The controller design problem for the highly maneuverable
technology (HiMAT) vehicle is presented to demonstrate the
main results in this paper. As declared in [10], a switched
system can be applied to describe flight conditions with
fast varying parameters. Controllers for the subsystems can
be synthesized via a switching law to adapt the parameter
variations among different operating points. In this section,
the sign stability approach is utilized to design a switching
control scheme for the unstable longitudinal dynamics. The
considered flight envelope and 14 operating points within
it are depicted in Figure 1. We suppose that the dynamics
in the contiguous region of each operating point can be
approximated by the corresponding linear subsystem. These
linear models are given in [25].

The linearization model for each operating point is
regarded as a subsystem of the switched system.The switched
system is then given by

�̇� (𝑡) = 𝐴
𝜎
𝑥 (𝑡) + 𝐵

𝜎
𝑢 (𝑡) , 𝜎 ∈ {1, 2, . . . , 14} , (23)

where 𝑥(𝑡) ∈ 𝑅3 is the state vector consisting of three state
variables𝛼 (angle of attack), 𝑞 (pitch rate), and𝜙 (pitch angle),
and 𝑢(𝑡) ∈ 𝑅4 is the control vector consisting of 𝛿

𝑒
(elevator),

𝛿V (elevon), 𝛿𝑐 (canard), and 𝛿
𝑠
(symmetric aileron).

The system matrices and control matrices for several
operating points are shown to illustrate the sign-patterns:

𝐴
1
= [

[

−0.8435 0.97505 −0.0048

8.7072 −1.1643 0.0026

0 1 0

]

]

,

𝐵
1
= [

[

−0.1299 −0.092 −0.0107 −0.0827

−7.6833 −4.7974 4.8178 −5.7416

0 0 0 0

]

]

,

𝐴
6
= [

[

−1.8997 0.98312 −0.00073

11.720 −2.6316 0.00088

0 1 0

]

]

,

𝐵
6
= [

[

−0.2436 −0.1708 −0.00497 −0.1997

−46.206 −31.604 22.396 −31.179

0 0 0 0

]

]

,

𝐴
13

= [

[

−1.2206 0.99411 −0.00084

−64.071 −1.8876 0.00046

0 1 0

]

]

,

𝐵
13

= [

[

−0.0662 −0.0315 −0.0141 −0.0749

−27.333 −13.163 11.058 −26.878

0 0 0 0

]

]

.

(24)

Furthermore, the sign-pattern set of the open-loop sys-
tem matrices is given by the following:

{

{

{

[

[

− + −

+ − +

0 + 0

]

]

,[

[

− + −

− − +

0 + 0

]

]

}

}

}

. (25)

As explained in Section 3, a subset of a CISSS is required
for the closed-loop switched system matrices. According to
the structure of {𝐵

𝜎
}, the original sign-pattern is chosen as

follows:

[

[

− ∗ ∗

0 − −

0 + 0

]

]

. (26)

Although the complete form of the CISSS derived from
(26) has more sign-patterns, we can regard (26) as the target
sign-pattern of closed-loop subsystems directly. Compared
to the sign-patterns in (25), it is only needed to change two
signs in each subsystemmatrix. A state feedback control gain
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Figure 3: Time histories of system states and control inputs under perturbations: (a) angle of attack, (b) pitch rate, (c) pitch angle, (d) elevator,
(e) elevon, (f) canard, and (g) symmetric aileron.
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is designed for each operating point in the envelope, and the
results for several points are given as follows:

𝐴
1𝑐

= [

[

−0.9555 0.8066 −0.1616

0 −13.6041 −11.7700

0 1 0

]

]

,

𝐾
1
=
[
[
[

[

0.2618 0.6935 0.6468

0.4362 0.4339 0.4005

−0.3589 −0.4278 −0.4323

0.5007 0.5171 0.4875

]
]
]

]

,

𝐴
6𝑐

= [

[

−1.9582 −0.6336 −0.3349

0 −18.4138 −67.8792

0 1 0

]

]

,

𝐾
6
=
[
[
[

[

−0.0031 2.6675 0.6795

0.1577 2.4566 0.4644

−0.0794 11.6769 −0.3393

0.1636 2.4505 0.4557

]
]
]

]

,

𝐴
13𝑐

= [

[

−1.0714 0.9009 0.4040

0 −42.1910 −28.9097

0 1 0

]

]

,

𝐾
13

=
[
[
[

[

−1.6277 0.6241 −1.3513

−0.2504 0.3005 −1.6873

0.2634 −0.2534 −11.2900

−0.4974 0.6134 −1.3687

]
]
]

]

.

(27)

It can be seen that the closed-loop system matrices 𝐴
1𝑐
,

𝐴
6𝑐
, and 𝐴

13𝑐
have different sign-patterns. However, these

sign-patterns (also including those of other operating points)
belong to the CISSS derived from the original sign-pattern
(26). Based on Theorem 14, the closed-loop switched system
is sign stable under arbitrary switching.

The simulation across different regions of the flight
envelope is taken to validate the proposed technique. The
flight trajectory travels through vicinities of 7 operating
points (3 → 6 → 8 → 9 → 11 → 12 → 13; see
Figure 1). The switching law is depicted in Figure 2.

To validate the stability within the full flight envelope,
gust disturbance is considered in the form of perturbations
acted on the angle of attack, which is a group of pulse signals
with a period of 10 seconds, a width of 1 second, and a
magnitude of 3 degrees. The initial values of the angle of
attack, pitch rate, and pitch angle are set to 3 degrees, 3
degrees per second, and 5 degrees, respectively. To illustrate
the robustness of the proposed approach, multiplicative
perturbations on the closed-loop subsystem matrices are
introduced. Each element in the matrices is multiplied by
an arbitrary positive value, which will preserve all the signs

of the products. The perturbation matrices are given by the
following:

Δ
1
= [

[

1.5 1.2 0.9

0.8 1.8 1.3

1.4 0.6 0.7

]

]

,

Δ
2
= [

[

1.2 1.6 1.3

0.5 1.2 1.1

1.5 0.8 1.4

]

]

, Δ
3
= [

[

0.5 0.6 1.1

1.4 2.2 1.8

0.5 1.6 2.4

]

]

.

(28)

The resulted closed-loop subsystemmatrices are obtained
by multiplying each element of the original matrix with the
corresponding element in the perturbation matrix. Thus,
it leads to 3 closed-loop switched systems with different
multiplicative perturbations.The time histories of the system
states and control surface deflections are depicted in Figure 3.

As depicted in Figure 3, the system states converge
quickly under gust disturbances and keep stable while
the switching occurs along the flight trajectory. There are
vibrations in the deflections of the control surfaces at the
time of the first switching, nevertheless the amplitudes are
acceptable. It is concluded that the devised approach is
robust for the sign-preserving parameter perturbations on
the closed-loop systems.

5. Conclusion

A new concept of sign stable switched linear system is
established to develop novel techniques for flight control.
The main result is provided in the form of necessary and
sufficient condition for the sign stability of switched system
under arbitrary switching. Hence, the application areas of
sign stability approach are enlarged remarkably. A new robust
stabilization approach for switched linear system is proposed
via the notion of CISSS. The sign stabilization controllers are
devised for each subsystem, respectively; therefore the design
process possesses more freedoms. Compared with the tradi-
tional Lyapunov function method, the proposed technique
has natural robustness and decreased conservativeness. The
aforementioned points are verified by a stabilization control
problem of aircraft with a large-scale flight envelope.
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