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We characterize the boundedness and compactness of the Hankel operator with conjugate analytic symbols on the weighted L"-

Bergman spaces with exponential type weights.

1. Introduction

Let D be the unit disc in the complex plane C and dA(z)
the area measure on D, and denote by H(D) the space of all
analytic functions in D. Let ¢ € C*(D) with Ag > 0. For 0 <
P < 00, the weighted Bergman space AIZ, is the space of func-

tions f € H(D) such that

”f"‘;,(p = JD |f (2) e_(p(z)'PdA (z) <oo for 0 < p< oo,

£l = sup1f @] e
@

Note that AZ is the closed subspace of L{; = LP(D,e P?dA)
consisting of analytic functions. Since the space A%P isarepro-
ducing kernel Hilbert space, for each z € D, there are func-
tions K, € Afp with f(z) = (f,K,), where (-,-) is the usual
inner product in L%P. The orthogonal projection from pr to

A%p is given by
Pf(2) = J f (W) K (w,2) A (w), @)
D

where K(w, z) = K, (w).

Given o € C'(D) so that there exists a dense subset & of
A%p withof € pr for f € 9, the big Hankel operator H, with

symbol ¢ is densely defined by
H,f = of - P(of),

where P is the orthogonal projection of pr onto A%P.

fe9, 3)

We write 0 = 0/0Z. Then the d-equation can be written
by

ou = f. (4)

For f € Afp, we look for a solution v € qu) of minimal L%P—
norm. Notice that the solution of minimal norm is the one
that is orthogonal to the kernel of 0 on pr; thatis, v L Afp.

Then, ifu € pr solves (4), we get
v=U-Pu. (5)
The linear operator N : Afp - pr given by
N(f)=v (6)

is called the canonical solution operator to @ on Afp.
2 . Sz £
For any f € A, obviously d(zf) = f and

N(f)=-P)(zf) = Hzf. ?)
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That is, the canonical solution operator coincides with the big
Hankel operator acting on Afp with symbol z. Motivated by
this fact, we now consider Hankel operators with conjugate
. 2 2 .
analytic symbols on A For f, g € A{, we do not necessarily
havegf € pr. Let @ := Span{K, : z € D}. Then & is dense

in Afp. For symbol g € Afp such that
gK, €L}, VzeD, (8)

we consider the densely defined big Hankel operator on Afp
given by

Hyf = (1- P)(3f). ©)

A positive function 7 on D is said to belong to the class &
if it satisfies the following three properties.

(a) There exists a constant C; > 0 such that

7(z)<C,(1-|2]), forzeD. (10)

(b) There exists a constant C, > 0 such that

T (z) —1(w)| < C,|lz-w|, forzweD. 11)
(c) For each m > 1, there are constants b,, > 0 and 0 <
t,, < 1/msuch that

T(z) <t(W)+t,|lz-w|, for |z-w|>b,7(w).

(12)

In this paper, we characterize the boundedness and com-
pactness of the Hankel operator with conjugate analytic sym-
bols on the weighted L”-Bergman spaces with exponential
type weights as follows.

p 2 ;
Theorem 1. Let1 < p < coand g € AQ. Let ¢ € C°(D) with

A > 0, and the function 1(z) = (A(p(z))fl/2 is in the class &.
Then Hy extends to a bounded linear operator on A‘:';J if and

only if

su[g T(2) |g' (z)| < 0. (13)

P 2 ~
Theorem 2. Let1 < p < coand g € Ay, Let ¢ € C°(D) with

A > 0, and the function 1(z) = (A(p(z))fl/2 is in the class &.
Then Hg extends to a compact linear operator on Ai ifand only

if
|z}i—>mrT (2) 'g' (z)| =0. (14)

In [1], Luecking firstly proved the same results in the
context of the ordinary L*>-Bergman spaces. For L>-Bergman
spaces with exponential type weights, the same results were
proved in [2-4]. Moreover, Schatten-class Hankel operators
are also indicated in their papers.

The expression f < g means that there is a constant C
independent of the relevant variables such that f < Cg, and
f = gmeansthat f < gandg < f.
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2. Preliminaries

From now on we assume that ¢ € C*(D), Ag > 0, and the
function 7(z) = (Ago(z))_l/ % is in the class &. The following
notations will be frequently used:
min (1,C;', C;'
o (1LCLGT) 5)
4
where C, and C, are the constants in the conditions (a) and
(b) in Section 1 and

|z - wl

d, (z,w) = (16)

min [7(2), 7 (w)]’
Lemma 3 (see [5]). For each M > 1, there exists a constant
C > 0 (depending on M) such that for z,w € D, one has

IK (w,2)| < C<

@(2)+p(w) _ 1 M
@i ™" [ ] 7)

1, —
d, (z,w)
By using the upper estimates for K(w,z) in Lemma 3,

Arroussi and Pau [5] proved that the orthogonal projection
P projects Lﬁ, boundedly onto AZ forl < p <oo.

Lemma 4 (see [6]). Let 0 < p < m, and w € D. Then,

Zr(w) <71(2) < Zr(w), z € Df (w). (18)

By using the third Green formula, we get the following
two approximation results.

Lemma 5 (see [7]). For small K > 0, there exists A = A(K) >
0 such that

sup |¢(w)—¢(z) —h, (w)| <A,
o | | (19

where h, is a harmonic function in DX(z) with h,(z) = 0.

Lemma 6 (see [7]). For small K > 0, one has the estimate

% Ok

K
30 w 30 for we D" (z), (20)

(w)| <

“r(w)

where h, is defined in Lemma 5.

The following is a certain submean value property of
| f(2)|e”?. We follow the proof of ([8], Lemma 19).

Lemma 7. Let 0 < p < 0o. For any small v > 0, there exists
C = C(r) > 0 such that for any f € A and z € D

@) 1f(2)le @ < C((1/7(2)*) JD,(Z) |fIPe?? dA)'P;
(b) V(I fle ®)(2)] < C(1/7(2))((1/(2)%) IDT(Z) Vil
e P2 dA)?, provided f(z) #0.

Proof. (a) By Lemma 5, there exists some constant A =
A(K) > 0 such that

sup Iq) (w) -9 (Z) - hz (w)l < A> (21)

weDX(z)
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for z € D. Since h, is harmonic, there is an analytic function
®, on DX (2) such that ®,(z) =0and Red, = h, on DX(2).
Thus we have [e®| = ¢=. Hence by the submean value prop-
erty together with Lemma 5, we get

|f(Z)|P = |f(z) e—(l/P)(DZ(z)|P

1 (
: (nK7 (2))? JDK(z) |fe
o1 ~(1/p)h, |P (22)
= ) JDK(z) |fe dA

(nK7 (2))*
¥(2)
el I L
17(2)" JDX(z)
(b) We begin as follows:
_ _ 0 09
v, ¢ ¢ T
A = 3 T - Ufle 5
5]
19 _ 51,9 9P
<|fe 2fe awl
<|fle?-2fe? +|2fe ‘P - 2fe 99 ‘
r . Oh, o 0 ago‘
S| -2f5z| e’ +fle aw o
(23)

Since h, is harmonic, there is an analytic function ®, ¢
H(DX(2)) such that

®,(2)=0, @ = 2%, |e%| = €™. (24)
ow
Note that
V(fe)@|=|f @ - f @, (2)
(25)
(@)-2f ()52 (2)
On the other hand,
-@,(0)
IV(fe ™)) < jl o )—f E()—eC)Z d(,“‘
z T(Z z (26)
1 ~h,({) d
- T(Z)2 -[IZ—CI:T(Z) lf(()le | {l
For |z — {| = 7(z), we have
|f (c)l e @ < lf (Ol o O+
(27)
1 P -p¢ )1/p 9(2)
) (‘r(z)2 JDK(Z) e rda) e
Hence we have
v (fe ) (2)] < ( ! j |f[PeP0d A)”P e
7(2)\ 1(2)? Joxea) '
(28)

3
Thus
-9 1 P -po >1/P
VU@l 2 25 f, e a0
(29)
O

Despite that the next result was proved in [4], we give the
proof of different method by using Lemma 7.

Proposition 8. There is anr > 0 independent of z such that
P@row)

()7 W)’
Proof. Letr > 0. By (b) of Lemma 7, we have

K (w,2)| 2 weD (2). (30)

IK @, 2)[e "™ - K (z,2)| 7|

< |1.U—Z|< 1 J lK(( Z)|2e—2‘ﬂ(()dA(C)>l/2
T o1(2) \1(2)* o) ’

ﬁ1<(z )% weD (2).
(31
Hence it follows that
K (w,2)] e ™) 2 K (z,2) e " - ——K(z,2)"%,
7(2) (32)
weD (2).
Note that by Lemma 3 and (a) of Lemma 7, we have
K(z,2) =~ 1(2) 2e¥?, zeD. (33)
Thus we have
IK (w,2)| e ™ > 17(2) 2@ - r1(z) 2@
> (1-r)1(z) 2@, (34)
weD (z),
if we choose small r > 0. O

3. Hankel Operators on A‘Z)

For the proof of boundedness of Hankel operator on L*-Berg-
man spaces with exponential type weights in [2-4], they used

Hormander’s L*-estimates for 0. However, for L?-Bergman
spaces, we need the following L -estimates for 0.

Theorem 9 (see [6]). Let ¢ € C*(D) with Agp > 0. Suppose
that the function 1(z) = (Aqo(z))_l/2 satisfies conditions (a)
and (b) in Section 1. Let 1 < p < 00. Then there is a solution u
to the equation Ou = f such that

—¢|P fe__q) g
Jmlue PdA (2) < JD’ | @ 69

provided the right hand side integral is finite.



Let g be an analytic function in D satisfying the condition
(8). Let

K, z)
VKGO’

. A2
By the reproducing formula in A{, we get

ki (z) = (,zeD. (36)

Hgk; (2) = (9 (2) - g () k; (2), {zeD. (37)
Lemma 10. Let 0 < p < co. Then
kb, = 7(2)* 2. (38)

Proof. Consider

Jelt, = | o k. ()|"e"* ) dA (w).
pe |z—w|<8y7(2) |z—w|>8,7(2)

(39)
First,
J Ik, (w)|Pe"* dA (w)
|z—w|<8,7(2) (40)
- |z—w|<8,7(2) T( )P
Now,
J w)|PeP§0(w)dA (LU)
|z—w|>8,7(2)
. pM
SJ 1 (mln[‘r(z),‘r(w)]> A (w).
lz-wl>8,7(z) T(W)P |z —wl|
(41)
We take a large constant M > 1 so that pM > 2. Then
J 1 <min[1(z),r(w)]>pMdA(w)
lz—w|>8y7(z) T(W)F |z — w|
_ 1
<1 | — L _dAw)
Sot(2)<lz-wl<2 |z — w|? (42)
pM-p 2 1
S T(2)™ —— dr
@ JBOT(Z) rpM-1
7(z)*?
Thus we get the result. O

Theorem 11. Let 1 < p < co. Let g € A, Then Hy extends to
. p . .
a bounded linear operator on Ay, if and only if

sup 7 (2) |g' (z)| < 00. (43)
zeD
Proof. Assume first that

su[gr(z) |g' (z)| < 00. (44)
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By Theorem 9, there is a solution u of the equation du = fdg
such that

lulpy < Clefog], - (45)

Since Hy f is the minimal L2 -norm solution of the d-equa-

tion, we have Hy f = (I-P)u.In[5], Arroussi and Pau proved
. . . P

that the orthogonal projection P projects L{, boundedly onto

AP for 1 < p < co. Thus we have

|51, = 1T = PYullyg <l (46)
By (45) and (46), we have
1511, < s, , < s lg' @1l

which shows that Hj can be extended to a bounded linear
operator on A,
Conversely, assume that H; is bounded on A{;. Then we

ha\/e
< z )
" K "p,(p P

Using Proposition 8 and Lemma 3, there exists » > 0 such
that

<M forzeD. (48)

K, z)| @
\/K Gy @

|k; (2)] = nzeD ({). (49

Hence we have

> ||k "P ” g ("

~1(2)" J|g(z g QI |k, @[ e P*PdA (2)

> 7(z)P Jmo 19(2) - g QI |k; ()| e P dA (2)

1
7(2)*

J 9(2) -9 @' dA(2).
(50)

Since g is an analytic function in D, by the Cauchy estimates
applied to g;(2) := g(2) - g(0), we can now conclude

Q)|

Q) Jmo l9(@) -

OIFdA (z) < MP, (51)

 eD.

Thus we get the result. O

Lemma 12. Let 0 < p < co. Then
kZ

Tz lz]| — 1.
%Il

— 0 uniformly on compact subsets,

(52)
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Proof. Let K be a compact subset of D. We choose a large
constant M so that M—(2/p)—1 > 0. Then we have forw € K

|k, (w)| < 1(z)@P! e’ min [7 (2), 7 (w)]™
||kz||p,(p - 7 (w) |z — wl|
< 1M 1 p @

su
dist (K, 2) pex

M-(2/p)-2
<(1-1z]) (2/p) )

————sup W
dist (K, Z) wekK

— 0,

|Z| - 17)

(53)
where dist(K, z) = min{|z — w| : w € K}. O

Theorem13. Let1 < p < o00.Letg € A‘;. Then Hy extends to
. P . .
a compact linear operator on Ay, if and only if

lim 7(2)|g' (2)| = 0. (54)

|lz| > 17
Proof. Suppose now that Hy is compact on A‘;. Then by
Riesz-Tamarkin compactness theorem, we have
. 1
im ——
- p
r=1" |k
Ikl

P —po(2) -
J o ke @ a0

uniformly in { € D. Now, by Lemma 12,
1

Ikl

p
< sup< IkC (Z)| > (56)
|zl<r "kC"p,q,

% J |9() - g Qe P*PdA(z) — o,
|z|<r

J(|Z|<r 'Hyk( (Z)|Pe_p¢(2)dA (Z)

as |{| — 1. Thus we have

()
I\ kl,,

_ ;"Hykznw 0, | — 1

I&cl.,,

We choose p > 0 so that

|K «, z)| - R

e (57)

k@)= GEmm 2y e D@ )
Then
1 P —po(2)
ma |, Itk e aa z)
tlpge
_ p (59)
2 o), lr@ 9@l aae
2 70)|g' Q.

This implies that

lim 7(2)|g' (2)| = 0. (60)

lz| =17

For || > r + p, the inclusion D?({) ¢ {r < |z| < 1} holds,
and

Lt
Ikl
1

= W ,L|z|<1 g (2) - 9(()|P|k( (Z)'Pe—prp(z)dA @)
2

B p
s, le@- 9@ da@

J |Hk, () 9 dA (2)
r<|z|<1

7(2)

> (@7 @)

(61)
This implies that
li "(@)|=o0.
Jim 7(2)|g" 2) (62)
Assume now that
lim 7(2) |g' (z)| =0. (63)

|zl =17

It is enough to show that for any sequence {f,} that is
bounded in norm and converges uniformly to zero on com-
pact subsets, we have ||H§fnllp(p — 0asn — 00. Asin rela-

tion (46), we have

Y P T P
Now
J |g'|PTP|fn|pequ)dA =I +J |g"PTP|fn|pe’P"’dA.
D |z|<r r<|z|<1
(65)

Since { f,,} converges uniformly to zero on compact subsets,
NP_p| £ PP
J |g'["?| £ [P e 7oA
|z|<r

< suplf, |’ J'|Z|< |g’|prpequ’dA 0, (66)

|z|<r

n — 00.
Now
[ |oPelnpemas
r<|z|<1
< sup |g"PTPJ |f,|Pe ??dA — o, (67)
r<|z|<1 D
r—1.

Hence Hy is compact. O
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