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Some new fixed point theorems are established in the setting of complex valued 𝐺-metric spaces. These new results improve and
generalize Kang et al.’s results, the Banach contraction principle, and some well-known results in the literature.

1. Introduction and Preliminaries

It is well known that Banach contraction principle [1] plays
an important role in various fields of applied mathematical
analysis and scientific applications and has been generalized
and improved inmany various different directions; see [2–16]
and references therein. In 2011, Azam et al. [2] introduced so-
called complex valuedmetric spaces and proved the existence
of fixed points under some contraction conditions. In 2006,
Mustafa and Sims [3] introduced the concept of 𝐺-metric
spaces to extend and generalize the notion of metric spaces.
In 2013, Kang et al. [8] introduced the concept of complex
valued 𝐺-metric spaces to generalize and improve the notion
of 𝐺-metric spaces. In [8], the authors gave a complex valued
𝐺-metric version of Banach contraction principle.

In what follows we will give some definitions and known
results which will be needed in the sequel. Throughout the
present paper, the symbolsN,R, andC are used to denote the
sets of positive integers, real numbers, and complex numbers,
respectively.

In 2006, Mustafa and Sims [3] introduced a new class of
metric spaces called generalized metric spaces or 𝐺-metric
spaces as follows.

Definition 1 (see [3]). Let 𝑋 be a nonempty set and let 𝐺 :

𝑋 × 𝑋 × 𝑋 → [0, ∞) be a function satisfying the following:

(G1) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧,
(G2) 0 < 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦,

(G3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑦 ̸= 𝑧,

(G4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symmetry
in all three variables),

(G5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎)+𝐺(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋

(rectangle inequality).

Then the function 𝐺 is called a generalized metric or a 𝐺-
metric on 𝑋 and the pair (𝑋, 𝐺) is called a 𝐺-metric space.

Example 2 (see [3]). Let (𝑋, 𝑑) be a usual metric space. Then
(𝑋, 𝐺
1
) and (𝑋, 𝐺

2
) are all 𝐺-metric spaces, where

𝐺
1

(𝑥, 𝑦, 𝑧) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑥) ,

𝐺
2

(𝑥, 𝑦, 𝑧) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑦, 𝑧) , 𝑑 (𝑧, 𝑥)}

(1)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.
For any 𝑧

1
, 𝑧
2

∈ C, we can define a partial order ≲ on C

as follows:

𝑧
1

≲ 𝑧
2

⇐⇒ Re (𝑧
1
) ≦ Re (𝑧

2
) , Im (𝑧

1
) ≦ Im (𝑧

2
) .

(2)

So, it is easy to see that 𝑧
1

≲ 𝑧
2
holds if one of the following

conditions is satisfied:

(C1) Re(𝑧
1
) = Re(𝑧

2
) and Im(𝑧

1
) = Im(𝑧

2
),

(C2) Re(𝑧
1
) < Re(𝑧

2
) and Im(𝑧

1
) = Im(𝑧

2
),
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(C3) Re(𝑧
1
) = Re(𝑧

2
) and Im(𝑧

1
) < Im(𝑧

2
),

(C4) Re(𝑧
1
) < Re(𝑧

2
) and Im(𝑧

1
) < Im(𝑧

2
).

In particular, wewill write 𝑧
1
⋨𝑧
2
if 𝑧
1

̸= 𝑧
2
andone of (C2),

(C3), and (C4) is satisfied and we will write 𝑧
1

≺ 𝑧
2
if only

(C4) is satisfied.

Remark 3. It is obvious that the following statements hold.

(1) If 0 ⪯ 𝑧
1
⋨𝑧
2
, then |𝑧

1
| < |𝑧
2
|.

(2) If 𝑧
1

⪯ 𝑧
2
and 𝑧
2

≺ 𝑧
3
, then 𝑧

1
≺ 𝑧
3
.

The idea of complex metric space was initialed by Azam
et al. [2].

Definition 4. Let 𝑋 be a nonempty set. Suppose that the
mapping 𝑑 : 𝑋 × 𝑋 → C satisfies

(C1) 0 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and only
if 𝑥 = 𝑦,

(C2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋,
(C3) 𝑑(𝑥, 𝑦) ⪯ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑 is called a complex valued metric on 𝑋 and the pair
(𝑋, 𝑑) is called a complex valued metric space.

Example 5 (see [6, Example 2]). Let 𝑋 = 𝑋
1

⋃ 𝑋
2
where

𝑋
1

= {𝑧 ∈ C : Re (𝑧) ≥ 0, Im (𝑧) = 0} ,

𝑋
2

= {𝑧 ∈ C : Re (𝑧) = 0, Im (𝑧) ≥ 0} .

(3)

Define 𝑑 : 𝑋 × 𝑋 → C as follows:

𝑑 (𝑧
1
, 𝑧
2
) =

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

2

3

𝑥1 − 𝑥
2

 +
𝑖

2

𝑥1 − 𝑥
2

 ,

if 𝑧
1
, 𝑧
2

∈ 𝑋
1
,

1

2

𝑦1 − 𝑦
2

 +
𝑖

3

𝑦1 − 𝑦
2

 ,

if 𝑧
1
, 𝑧
2

∈ 𝑋
2
,

(
2

3
𝑥
1

+
1

2
𝑦
2
) + 𝑖 (

1

2
𝑥
1

+
1

3
𝑦
2
) ,

if 𝑧
1

∈ 𝑋
1
, 𝑧
2

∈ 𝑋
2
,

(
1

2
𝑦
1

+
2

3
𝑥
2
) + 𝑖 (

1

3
𝑦
1

+
1

2
𝑥
2
) ,

if 𝑧
1

∈ 𝑋
2
, 𝑧
2

∈ 𝑋
1
,

(4)

where 𝑧
1

= 𝑥
1

+ 𝑖𝑦
1
, 𝑧
2

= 𝑥
2

+ 𝑖𝑦
2

∈ 𝑋. Then (𝑋, 𝑑) is a
complete complex valued metric space.

The notion of complex valued 𝐺-metric space was intro-
duced by Kang et al. [8] to generalize the notion of complex
valued metric space and 𝐺-metric space as follows.

Definition 6 (see [8]). Let 𝑋 be a nonempty set and let 𝐺
𝑐

:

𝑋 × 𝑋 × 𝑋 → C be a function satisfying the following:

(CG1) 𝐺
𝑐
(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧,

(CG2) 0 ⋨ 𝐺
𝑐
(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦,

(CG3) 𝐺
𝑐
(𝑥, 𝑥, 𝑦) ⪯ 𝐺

𝑐
(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑦 ̸= 𝑧,

(CG4) 𝐺
𝑐
(𝑥, 𝑦, 𝑧) = 𝐺

𝑐
(𝑥, 𝑧, 𝑦) = 𝐺

𝑐
(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symme-

try in all three variables),
(CG5) 𝐺

𝑐
(𝑥, 𝑦, 𝑧) ⪯ 𝐺

𝑐
(𝑥, 𝑎, 𝑎)+𝐺

𝑐
(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈

𝑋 (rectangle inequality).

Then the function 𝐺
𝑐
is called a complex valued generalized

metric or a complex valued 𝐺-metric on 𝑋. We call the pair
(𝑋, 𝐺
𝑐
) a complex valued 𝐺-metric space.

Remark 7. In fact, condition (CG2) defined in [8] was stated
as follows:

(CG2) 0 ≺ 𝐺
𝑐
(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦.

In this paper, we use the weak version of (CG2) as in
Definition 6.

Example 8. Let 𝑋 = C and 𝐺
𝑐

: 𝑋 × 𝑋 × 𝑋 → C be defined
by

𝐺
𝑐
(𝑧
1
, 𝑧
2
, 𝑧
3
) = (

𝑥1 − 𝑥
2

 +
𝑥2 − 𝑥

3

 +
𝑥3 − 𝑥

1

)

+ 𝑖 (
𝑦1 − 𝑦

2

 +
𝑦2 − 𝑦

3

 +
𝑦3 − 𝑦

1

) ,

(5)

where 𝑧
𝑖

= 𝑥
𝑖
+ 𝑖𝑦
𝑖

∈ C for any 𝑖 ∈ {1, 2, 3}. Then (𝑋, 𝐺
𝑐
) is a

complex valued 𝐺-metric space.

Definition 9. Let (𝑋, 𝐺
𝑐
) be a complex valued𝐺-metric space.

A point V in 𝑋 is a fixed point of a mapping 𝑇 : 𝑋 → 𝑋 if
V = 𝑇V. The set of fixed points of 𝑇 is denoted byF(𝑇).

Definition 10 (see [8]). Let (𝑋, 𝐺
𝑐
) be a complex valued 𝐺-

metric space and let {𝑥
𝑛
} be a sequence in 𝑋. We say that {𝑥

𝑛
}

is 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 V𝑎𝑙𝑢𝑒 𝐺-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to 𝑥 ∈ 𝑋 if, for every 𝑐 ∈ C

with 0 ≺ 𝑐, there exists 𝑘 ∈ N such that 𝐺
𝑐
(𝑥, 𝑥
𝑛
, 𝑥
𝑚

) ≺ 𝑐 for
all 𝑛, 𝑚 ≥ 𝑘. We refer to 𝑥 as the limit of the sequence {𝑥

𝑛
}

and we write 𝑥
𝑛

→ 𝑥 as 𝑛 → ∞.

Definition 11 (see [8]). Let (𝑋, 𝐺
𝑐
) be a complex valued 𝐺-

metric space.

(i) A sequence {𝑥
𝑛
} in𝑋 is said to be 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 V𝑎𝑙𝑢𝑒𝑑 𝐺-

𝐶𝑎𝑢𝑐ℎ𝑦 if, for every 𝑐 ∈ C with 0 ≺ 𝑐, there exists
𝑘 ∈ N such that 𝐺

𝑐
(𝑥
𝑛
, 𝑥
𝑚

, 𝑥
𝑙
) ≺ 𝑐 for all 𝑛, 𝑚, 𝑙 ≥ 𝑘.

(ii) (𝑋, 𝐺
𝑐
) is said to be 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 if every complex

valued𝐺-Cauchy sequence in𝑋 is complex valued𝐺-
convergent in 𝑋.

Some crucial facts in complex valued𝐺
𝑐
-metric spaces are

listed as follows. First, the following proposition follows easily
due to (CG5).

Proposition 12 (see [8]). Let (𝑋, 𝐺
𝑐
) be a complex valued 𝐺-

metric space. Then, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following hold:

(1) 𝐺
𝑐
(𝑥, 𝑦, 𝑧) ⪯ 𝐺

𝑐
(𝑥, 𝑥, 𝑦) + 𝐺

𝑐
(𝑥, 𝑥, 𝑧),

(2) 𝐺
𝑐
(𝑥, 𝑦, 𝑦) ⪯ 2𝐺

𝑐
(𝑦, 𝑥, 𝑦).
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Proposition 13 (see [8]). Let (𝑋, 𝐺) be a complex valued 𝐺-
metric space. Then, for a sequence {𝑥

𝑛
} in 𝑋 and point 𝑥 ∈ 𝑋,

the following are equivalent.

(1) {𝑥
𝑛
} is complex valued 𝐺-convergent to 𝑥.

(2) |𝐺
𝑐
(𝑥
𝑛
, 𝑥
𝑛
, 𝑥)| → 0 as 𝑛 → ∞.

(3) |𝐺
𝑐
(𝑥
𝑛
, 𝑥, 𝑥)| → 0 as 𝑛 → ∞.

(4) |𝐺
𝑐
(𝑥
𝑚

, 𝑥
𝑛
, 𝑥)| → 0 as 𝑚, 𝑛 → ∞.

Proposition 14 (see [8]). Let (𝑋, 𝐺) be a complex valued 𝐺-
metric space and let {𝑥

𝑛
} be a sequence in 𝑋. Then {𝑥

𝑛
} is com-

plex valued𝐺-Cauchy sequence if and only if |𝐺(𝑥
𝑛
, 𝑥
𝑚

, 𝑥
𝑙
)| →

0 as 𝑛, 𝑚, 𝑙 → ∞.

Proposition 15 (see [8]). Let (𝑋, 𝐺) be a complex valued 𝐺-
metric space. Then the function 𝐺(𝑥, 𝑦, 𝑧) is jointly continuous
in all three of its variables.

The main aim of this paper is to establish some new
fixed point theorems which extend and generalize Kang et
al.’s results in [8], the Banach contraction principle, and some
well-known results in the literature.

2. Main Results

Recall that a function 𝜑 : [0, ∞) → [0, 1) is said to be an
MT-function (orR-function) [11–16] if

lim sup
𝑠→ 𝑡
+

𝜑 (𝑠) < 1 ∀ 𝑡 ∈ [0, ∞) . (6)

It is obvious that if𝜑 : [0, ∞) → [0, 1) is a nondecreasing
function or a nonincreasing function, then 𝜑 is an MT-
function. So the set ofMT-functions is a rich class.

Recently, Du [13] first proved the following characteriza-
tions ofMT-functions.

Theorem 16 (see [13]). Let 𝜑 : [0, ∞) → [0, 1) be a function.
Then the following statements are equivalent.

(a) 𝜑 is anMT-function.

(b) For each 𝑡 ∈ [0, ∞), there exist 𝑟
(1)

𝑡
∈ [0, 1) and 𝜀

(1)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟
(1)

𝑡
for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀

(1)

𝑡
).

(c) For each 𝑡 ∈ [0, ∞), there exist 𝑟
(2)

𝑡
∈ [0, 1) and 𝜀

(2)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟
(2)

𝑡
for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀

(2)

𝑡
].

(d) For each 𝑡 ∈ [0, ∞), there exist 𝑟
(3)

𝑡
∈ [0, 1) and 𝜀

(3)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟
(3)

𝑡
for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀

(3)

𝑡
].

(e) For each 𝑡 ∈ [0, ∞), there exist 𝑟
(4)

𝑡
∈ [0, 1) and 𝜀

(4)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟
(4)

𝑡
for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀

(4)

𝑡
).

(f) For any nonincreasing sequence {𝑥
𝑛
}
𝑛∈N in [0, ∞), we

have 0 ≤ sup
𝑛∈N𝜑(𝑥

𝑛
) < 1.

(g) 𝜑 is a function of contractive factor; for any strictly
decreasing sequence {𝑥

𝑛
}
𝑛∈N in [0, ∞), we have 0 ≤

sup
𝑛∈N𝜑(𝑥

𝑛
) < 1.

The following new fixed point theorem is one of the main
results of this paper. It can be considered as a complex valued
𝐺-metric version of Banach contraction principle and will
generalize and improve [8, Theorem 2.5] and some well-
known results in the literature.

Theorem 17. Let (𝑋, 𝐺
𝑐
) be a complete complex valued 𝐺-

metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping on 𝑋. Suppose
that there exists aMT-function𝜑 : [0, ∞) → [0, 1) such that

𝐺
𝑐
(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≾ 𝜑 (

𝐺𝑐 (𝑥, 𝑦, 𝑧)
) 𝐺
𝑐
(𝑥, 𝑦, 𝑧)

∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(7)

Then 𝑇 has a unique fixed point on 𝑋.

Proof . Let 𝑥
0

∈ 𝑋 be given. Define the sequence {𝑥
𝑛
} by

𝑥
𝑛

= 𝑇
𝑛
𝑥
0

= 𝑇𝑥
𝑛−1

for each 𝑛 ∈ N. (8)

For each 𝑛 ∈ N, by (7), we have

𝐺
𝑐
(𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+1

) ≾ 𝜑 (
𝐺𝑐 (𝑥𝑛−1, 𝑥

𝑛
, 𝑥
𝑛
)
) 𝐺
𝑐
(𝑥
𝑛−1

, 𝑥
𝑛
, 𝑥
𝑛
)

(9)

which implies

𝐺𝑐 (𝑥𝑛, 𝑥
𝑛+1

, 𝑥
𝑛+1

)


≤ 𝜑 (
𝐺𝑐 (𝑥𝑛−1, 𝑥

𝑛
, 𝑥
𝑛
)
)

𝐺𝑐 (𝑥𝑛−1, 𝑥
𝑛
, 𝑥
𝑛
)
 .

(10)

Let 𝛼
𝑛

= |𝐺
𝑐
(𝑥
𝑛−1

, 𝑥
𝑛
, 𝑥
𝑛
)| for 𝑛 ∈ N. Then, by (10), we have

𝛼
𝑛+1

≤ 𝜑 (𝛼
𝑛
) 𝛼
𝑛

< 𝛼
𝑛

∀𝑛 ∈ N. (11)

So we know that {𝛼
𝑛
} is a strictly decreasing sequence in

[0, ∞). Applying (g) of Theorem 16, we obtain

0 ≤ sup
𝑛∈N

𝜑 (𝛼
𝑛
) < 1. (12)

That is,

0 ≤ sup
𝑛∈N

𝜑 (
𝐺𝑐 (𝑥𝑛−1, 𝑥

𝑛
, 𝑥
𝑛
)
) < 1. (13)

Let

𝜆 = sup
𝑛∈N

𝜑 (
𝐺𝑐 (𝑥𝑛−1, 𝑥

𝑛
, 𝑥
𝑛
)
) . (14)

Then 𝜆 ∈ [0, 1). For each 𝑛 ∈ N, by (10) again, we have

𝐺𝑐 (𝑥𝑛, 𝑥
𝑛+1

, 𝑥
𝑛+1

)


≤ 𝜑 (
𝐺𝑐 (𝑥𝑛−1, 𝑥

𝑛
, 𝑥
𝑛
)
)

𝐺𝑐 (𝑥𝑛−1, 𝑥
𝑛
, 𝑥
𝑛
)


≤ 𝜆
𝐺𝑐 (𝑥𝑛−1, 𝑥

𝑛
, 𝑥
𝑛
)
 ≤ 𝜆
2 𝐺𝑐 (𝑥𝑛−2, 𝑥

𝑛−1
, 𝑥
𝑛−1

)


≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑛 𝐺𝑐 (𝑥0, 𝑥

1
, 𝑥
1
)
 .

(15)
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For any 𝑛, 𝑚 ∈ N with 𝑚 > 𝑛, by the last inequality and
repeated use of (CG5), we get

𝐺𝑐 (𝑥𝑛, 𝑥
𝑚

, 𝑥
𝑚

)


≤
𝐺𝑐 (𝑥𝑛, 𝑥

𝑛+1
, 𝑥
𝑛+1

)
 +

𝐺𝑐 (𝑥𝑛+1, 𝑥
𝑛+2

, 𝑥
𝑛+2

)


+ ⋅ ⋅ ⋅ +
𝐺𝑐 (𝑥𝑚−1, 𝑥

𝑚
, 𝑥
𝑚

)


≤ (𝜆
𝑛

+ 𝜆
𝑛+1

+ ⋅ ⋅ ⋅ + 𝜆
𝑚−1

)
𝐺𝑐 (𝑥0, 𝑥

1
, 𝑥
1
)


<
𝜆
𝑛

1 − 𝜆

𝐺𝑐 (𝑥0, 𝑥
1
, 𝑥
1
)
 .

(16)

Since 𝜆 ∈ [0, 1), lim
𝑛→∞

(𝜆
𝑛
/(1 − 𝜆))|𝐺

𝑐
(𝑥
0
, 𝑥
1
, 𝑥
1
)| = 0.

Hence, by the last inequality, we obtain

𝐺𝑐 (𝑥𝑛, 𝑥
𝑚

, 𝑥
𝑚

)
 → 0 as 𝑚, 𝑛 → ∞. (17)

For any 𝑛, 𝑚, 𝑙 ∈ N, by Proposition 12, we obtain

𝐺
𝑐
(𝑥
𝑛
, 𝑥
𝑚

, 𝑥
𝑙
) ⪯ 𝐺
𝑐
(𝑥
𝑛
, 𝑥
𝑚

, 𝑥
𝑚

) + 𝐺
𝑐
(𝑥
𝑙
, 𝑥
𝑚

, 𝑥
𝑚

) , (18)

which implies

𝐺𝑐 (𝑥𝑛, 𝑥
𝑚

, 𝑥
𝑙
)
 ≤

𝐺𝑐 (𝑥𝑛, 𝑥
𝑚

, 𝑥
𝑚

)
 +

𝐺𝑐 (𝑥𝑙, 𝑥
𝑚

, 𝑥
𝑚

)
 .

(19)

From (17) and (19), we get |𝐺
𝑐
(𝑥
𝑛
, 𝑥
𝑚

, 𝑥
𝑙
)| → 0 as 𝑛, 𝑚, 𝑙 →

∞. Applying Proposition 14, {𝑥
𝑛
} is a complex valued 𝐺-

Cauchy sequence in (𝑋, 𝐺
𝑐
). By the completeness of (𝑋, 𝐺

𝑐
),

there exists V ∈ 𝑋 such that {𝑥
𝑛
} is complex valued 𝐺-

convergent to V.
Next, we prove that 𝑇V = V. Assume that 𝑇V ̸= V. For each

𝑛 ∈ N, by (7), we have

𝐺
𝑐
(𝑥
𝑛+1

, 𝑇V, 𝑇V) ⪯ 𝜑 (
𝐺𝑐 (𝑥𝑛, V, V)

) 𝐺
𝑐
(𝑥
𝑛
, V, V) (20)

which deduces
𝐺𝑐 (𝑥𝑛+1, 𝑇V, 𝑇V) ≤ 𝜑 (

𝐺𝑐 (𝑥𝑛, V, V)
)

𝐺𝑐 (𝑥𝑛, V, V)


<
𝐺𝑐 (𝑥𝑛, V, V)

 .

(21)

Since 𝑥
𝑛

→ V as 𝑛 → ∞ and 𝐺 is continuous in all three
of its variables, from Proposition 15 and by taking limit from
both sides of (21), we get

𝐺𝑐 (V, 𝑇V, 𝑇V) ≤
𝐺𝑐 (V, V, V)

 = 0. (22)

Since 0 ⋨ 𝐺
𝑐
(V, 𝑇V, 𝑇V), by Remark 3, we know

0 <
𝐺𝑐 (V, 𝑇V, 𝑇V) . (23)

Hence, taking into account (22) and (23), we have

0 <
𝐺𝑐 (V, 𝑇V, 𝑇V) ≤ 0 (24)

which is a contradiction. Therefore 𝑇V = V or V ∈ F(𝑇).
Finally, we want to show the uniqueness of fixed point of

𝑇 (i.e.,F(𝑇) is a singleton set). We have shown V ∈ F(𝑇), so

it suffices to show that F(𝑇) = {V}. Let 𝑤 ∈ F(𝑇). Suppose
𝑤 ̸= V. By (7), we obtain

𝐺
𝑐
(V, V, 𝑤) = 𝐺

𝑐
(𝑇V, 𝑇V, 𝑇𝑤) ⪯ 𝜑 (

𝐺𝑐 (V, V, 𝑤)
) 𝐺
𝑐
(V, V, 𝑤)

(25)

which implies
𝐺𝑐 (V, V, 𝑤)

 ≤ 𝜑 (
𝐺𝑐 (V, V, 𝑤)

)
𝐺𝑐 (V, V, 𝑤)

 . (26)

By (26), we have

(1 − 𝜑 (
𝐺𝑐 (V, V, 𝑤)

))
𝐺𝑐 (V, V, 𝑤)

 ≤ 0. (27)

Since 𝜑(|𝐺
𝑐
(V, V, 𝑤)|) ∈ [0, 1), we have

𝐺𝑐 (V, V, 𝑤)
 ≤ 0 (28)

which deduces
𝐺𝑐 (V, V, 𝑤)

 = 0 (29)

and hence 𝐺
𝑐
(V, V, 𝑤) = 0. This contradicts (CG2). Therefore,

it must be 𝑤 = V and soF(𝑇) = {V}. The proof is completed.

Here, we give a simple example illustratingTheorem 17.

Example 18. Let 𝑋 = C and 𝐺
𝑐

: 𝑋 × 𝑋 × 𝑋 → C be defined
by

𝐺
𝑐
(𝑧
1
, 𝑧
2
, 𝑧
3
) = (

𝑥1 − 𝑥
2

 +
𝑥2 − 𝑥

3

 +
𝑥3 − 𝑥

1

)

+ 𝑖 (
𝑦1 − 𝑦

2

 +
𝑦2 − 𝑦

3

 +
𝑦3 − 𝑦

1

) ,

(30)

where 𝑧
𝑖

= 𝑥
𝑖
+ 𝑖𝑦
𝑖

∈ C for any 𝑖 ∈ {1, 2, 3}. Then (𝑋, 𝐺
𝑐
) is

a complex valued 𝐺-metric space. Define 𝑇 : 𝑋 → 𝑋 and
𝜑 : [0, ∞) → [0, 1) by

𝑇𝑧 =
1

10
𝑧 for 𝑧 ∈ 𝑋,

𝜑 (𝑡) :=

{{{

{{{

{

4

5
, if 𝑡 = 0,

1

3
, if 𝑡 > 0.

(31)

Then 𝜑 is aMT-function. For any 𝑧
1
, 𝑧
2
, 𝑧
3

∈ C, where 𝑧
𝑖

=

𝑥
𝑖
+ 𝑖𝑦
𝑖
, we have

𝑇𝑧
𝑖
=

1

10
𝑧
𝑖
=

𝑥
𝑖

10
+ 𝑖

𝑦
𝑖

10
for any 𝑖 ∈ {1, 2, 3} . (32)

By a routine calculation, one can verify that

𝐺
𝑐
(𝑇𝑧
1
, 𝑇𝑧
2
, 𝑇𝑧
3
) ≾ 𝜙 (

𝐺𝑐 (𝑧1, 𝑧
2
, 𝑧
3
)
) 𝐺
𝑐
(𝑧
1
, 𝑧
2
, 𝑧
3
) .

(33)

So all the hypotheses ofTheorem 17 are fulfilled. It is therefore
possible to apply Theorem 17 to get the fact that 𝑇 has a
unique fixed point on 𝑋 (precisely speaking, 0 is the unique
fixed point of 𝑇).
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The following fixed point theorem established in 𝐺-
metric space is immediate fromTheorem 17.

Theorem 19. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let
𝑇: 𝑋 → 𝑋 be a mapping on 𝑋. Suppose that there exists a
MT-function 𝜑 : [0, ∞) → [0, 1) such that

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝜑 (𝐺 (𝑥, 𝑦, 𝑧)) 𝐺 (𝑥, 𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(34)

Then 𝑇 has a unique fixed point on 𝑋.

Since any nondecreasing function or any nonincreasing
function 𝜑 : [0, ∞) → [0, 1) is an MT-function, by
applyingTheorem 17, we have the following results.

Corollary 20. Let (𝑋, 𝐺
𝑐
) be a complete complex valued 𝐺-

metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping on 𝑋. Suppose
that there exists a nondecreasing function 𝜑 : [0, ∞) → [0, 1)

such that

𝐺
𝑐
(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≾ 𝜑 (

𝐺𝑐 (𝑥, 𝑦, 𝑧)
) 𝐺
𝑐
(𝑥, 𝑦, 𝑧)

∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(35)

Then 𝑇 has a unique fixed point on 𝑋.

Corollary 21. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let
𝑇 : 𝑋 → 𝑋 be a mapping on 𝑋. Suppose that there exists a
nondecreasing function 𝜑 : [0, ∞) → [0, 1) such that

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝜑 (𝐺 (𝑥, 𝑦, 𝑧)) 𝐺 (𝑥, 𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(36)

Then 𝑇 has a unique fixed point on 𝑋.

Corollary 22. Let (𝑋, 𝐺
𝑐
) be a complete complex valued 𝐺-

metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping on 𝑋. Suppose
that there exists a nonincreasing function 𝜑 : [0, ∞) → [0, 1)

such that

𝐺
𝑐
(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≾ 𝜑 (

𝐺𝑐 (𝑥, 𝑦, 𝑧)
) 𝐺
𝑐
(𝑥, 𝑦, 𝑧)

∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(37)

Then 𝑇 has a unique fixed point on 𝑋.

Corollary 23. Let (𝑋, 𝐺) be a complete 𝐺-metric space and let
𝑇 : 𝑋 → 𝑋 be a mapping on 𝑋. Suppose that there exists a
nonincreasing function 𝜑 : [0, ∞) → [0, 1) such that

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝜑 (𝐺 (𝑥, 𝑦, 𝑧)) 𝐺 (𝑥, 𝑦, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(38)

Then 𝑇 has a unique fixed point on 𝑋.

Corollary 24 (see [8,Theorem2.5]). Let (𝑋, 𝐺
𝑐
) be a complete

complex valued 𝐺-metric space and let 𝑇 : 𝑋 → 𝑋 be a
contraction mapping on 𝑋; that is,

𝐺
𝑐
(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≾ 𝑘𝐺

𝑐
(𝑥, 𝑦, 𝑧) (39)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, where 𝑘 ∈ [0, 1). Then 𝑇 has a unique fixed
point.
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