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Using the elementary method and some properties of the least solution of Pell’s equation, we prove that the equation 𝑥𝑦 + 𝑦𝑥 = 𝑧𝑧
has no positive integer solutions (𝑥, 𝑦, 𝑧) with 𝑥 and 𝑦 being odd primes.

1. Introduction

Let Z, N be the sets of all integers and positive integers,
respectively. In recent years, there are many authors who
investigated the various properties of exponential diophan-
tine equation with circulating form (see [1–4]). Recently,
Zhang et al. [5] are interested in the equation

𝑥
𝑦
+ 𝑦
𝑥
= 𝑧
𝑧
, 𝑥, 𝑦, 𝑧 ∈ N, min {𝑥, 𝑦, 𝑧} > 1. (1)

Using the 𝑝-adic lower bound of the log-linear model
method, they proved all solutions (𝑥, 𝑦, 𝑧) of (1) satisfying
𝑧 < 2.8 × 10

9. Meanwhile, they proposed a conjecture as
follows.

Conjecture 1. Equation (1) has no positive integer solution (𝑥,
𝑦, 𝑧).

Using the method in [5], it seems to be a very difficult
problem to improve the upper bound estimate for 𝑧. In this
paper, we use the elementary method and some properties
of the least solution of Pell’s equation to solve the conjecture
partly. That is, we will prove the following.

Theorem2. Equation (1) has no positive integer solution (𝑥, 𝑦,
𝑧) with 𝑥 and 𝑦 being odd primes.

2. Several Lemmas

Let 𝐷 be a nonsquare positive integer, and let ℎ(4𝐷) denote
the class number of binary quadratic primitive forms with
discriminant 4𝐷. Then we have the following.

Lemma 3. For the equation

𝑢
2
− 𝐷V2 = 1, 𝑢, V ∈ Z, (2)

there is a solution (𝑢, V)with 𝑢V ̸= 0, and there is a unique posi-
tive integer solution (𝑢1, V1) satisfying 0 < 𝑢1 + V1√𝐷 ≤ 𝑢 +
V√𝐷, where (𝑢, V) pass through all positive integer solutions of
(2). We call (𝑢1, V1) as the least solution of (2). Every solution
(𝑢, V) of (2) can be expressed as

𝑢 + V√𝐷 = ±(𝑢1 + V1√𝐷)
𝑠

, 𝑠 ∈ Z. (3)

Proof. See Section 10.9 of [6].

Lemma 4. Let 𝐷 be an odd prime satisfying 𝐷 ≡ 1(mod 4)
and 𝐷 < 1011, and then every least solution (𝑢1, V1) of (2)
satisfies V1 ̸≡ 0(mod 𝐷).

Proof. See [7].

Lemma 5. Consider ℎ(4𝐷) < 𝐷.
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Proof. According to Table II in Chapter 16 of [6], we know
that Lemma 5 holds for 𝐷 ≤ 25, and when 𝐷 > 25, by
Theorems 12.10.1 and 12.13.3 of [6], we have

ℎ (4𝐷) <
2√𝐷 (1 + log 2 + (1/2) log𝐷)

log (𝑢1 + V1√𝐷)
, (4)

where (𝑢1, V1) is the least solution of (2). If ℎ(4𝐷) ≥ 𝐷, and
V1 ≥ 1, 𝑢1 = √𝐷V21 + 1 ≥ √𝐷 + 1, then by (4), we have

5 < √𝐷 <
4 + 4 log 2 + 2 log𝐷
2 log 2 + log𝐷

= 2 +
4

2 log 2 + log𝐷
< 3,

(5)

a contradiction. This proves Lemma 5.

Lemma 6. Let 𝑝 be an odd prime with 𝑝 ∤ 𝐷. If the equation

𝑋
2
− 𝐷𝑌
2
= 𝑝
𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z, gcd (𝑋, 𝑌) = 1, 𝑍 > 0,

(6)

has the solution (𝑋, 𝑌, 𝑍), then every solution (𝑋, 𝑌, 𝑍) can be
expressed as

𝑍 = 𝑍1𝑡, 𝑡 ∈ N,

𝑋 + 𝑌√𝐷 = (𝑋1 + 𝜆𝑌1
√𝐷)
𝑡

(𝑢 + V√𝐷) , 𝜆 ∈ {±1} ,
(7)

where𝑋1, 𝑌1, 𝑍1 are positive integers satisfying

𝑋
2

1
− 𝐷𝑌
2

1
= 𝑝
𝑍
1 , gcd (𝑋1, 𝑌1) = 1, 𝑍1 | ℎ (4𝐷) , (8)

and (𝑢, V) is a solution of (2).

Proof. See Lemma 4 of [8].

3. Proof of Theorem 2

Let (𝑥, 𝑦, 𝑧) be one of the solutions of (1). Without loss of
generality we may assume that 𝑥 ≥ 𝑦, since 𝑥 and 𝑦 are
symmetrical in (1). By [5], we know that 𝑥, 𝑦, 𝑧 are coprime,
and 𝑥 > 𝑧 > 𝑦 > 1. When 𝑥 and 𝑦 are odd primes, 𝑧must be
even. Note that 𝑦 ≥ 3; by (1) we have 𝑧𝑧 > 𝑦𝑥; then 𝑧 log 𝑧 >
𝑥 log𝑦 ≥ 𝑥 log 3 > 𝑥, so by the result 𝑧 < 2.8 × 109 in [5], we
get

3 ≤ 𝑦 < 𝑧 < 𝑥 < 𝑧 log 𝑧 < 6.2 × 1010. (9)

By (9), we know that 𝑧 > 2; then from (1) we get 0 ≡ 𝑧𝑧 ≡
𝑥
𝑦
+ 𝑦
𝑥
≡ 𝑥 + 𝑦(mod 4). Therefore,

𝑥 ≡ 𝜀 (mod 4) , 𝑦 ≡ −𝜀 (mod 4) , 𝜀 ∈ {±1} . (10)

If 𝜀 = 1, by (10), 𝑥 is an odd prime with 𝑥 ≡ 1(mod 4).
We see from (1) that the equation

𝑋
2
− 𝑥𝑌
2
= 𝑦
𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z, gcd (𝑋, 𝑌) = 1, 𝑍 > 0,

(11)

has the solution

(𝑋, 𝑌, 𝑍) = (𝑧
𝑧/2
, 𝑥
(𝑦−1)/2

, 𝑥) . (12)

Since 𝑦 is an odd prime with 𝑦 ∤ 𝑥, applying Lemma 6 to (11)
and (12), we have

𝑥 = 𝑍1𝑡, 𝑡 ∈ N, (13)

𝑧
𝑧/2
+ 𝑥
(𝑦−1)/2

√𝑥 = (𝑋1 + 𝜆𝑌1√𝑥)
𝑡
(𝑢 + V√𝑥) , 𝜆 ∈ {±1} ,

(14)

where𝑋1, 𝑌1, 𝑍1 are positive integers satisfying

𝑋
2

1
− 𝑥𝑌
2

1
= 𝑦
𝑍
1 , gcd (𝑋1, 𝑌1) = 1, (15)

𝑍1 | ℎ (4𝑥) , (16)

(𝑢, V) is a solution of the equation

𝑢
2
− 𝑥V2 = 1, 𝑢, V ∈ Z, (17)

and ℎ(4𝑥) denotes the class number of binary quadratic
primitive forms with discriminant 4𝑥.

Since 𝑥 is an odd prime, we know from (13) that 𝑡 = 1 or
𝑥. If 𝑡 = 1, 𝑍1 = 𝑥 by (13), so from (16) we have 𝑥 | ℎ(4𝑥) and
𝑥 ≤ ℎ(4𝑥). But, by Lemma 5, this is impossible; thus 𝑡 = 𝑥.

Since 𝑡 = 𝑥, by (13) we know that 𝑍1 = 1, so that (14) and
(15) read

𝑧
𝑧/2
+ 𝑥
(𝑦−1)/2

√𝑥 = (𝑋1 + 𝜆𝑌1√𝑥)
𝑥

× (𝑢 + V√𝑥) , 𝜆 ∈ {−1, 1} ,
(18)

𝑋
2

1
− 𝑥𝑌
2

1
= 𝑦, gcd (𝑋1, 𝑌1) = 1. (19)

Further, 𝑧𝑧/2 + 𝑥(𝑦−1)/2√𝑥 > 0, and from (19) we know
𝑋1 + 𝜆𝑌1√𝑥 > 0, since 𝑢 + V√𝑥 > 0 by Lemma 3. Thus,
according to Lemma 3 there is 𝑠 ∈ 𝑍 such that

𝑢 + V√𝑥 = (𝑢1 + V1√𝑥)
𝑠
, 𝑠 ∈ Z, (20)

where (𝑢1, V1) is the least solution of (17). For the integer 𝑠,
there exist integers 𝑞 and 𝑟 satisfying

𝑠 = 𝑥𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑥. (21)

Let

𝑋2 + 𝑌2√𝑥 = (𝑋1 + 𝜆𝑌1√𝑥) (𝑢1 + V1√𝑥)
𝑞
. (22)

From (17), (19), and (22), we know that𝑋2 and𝑌2 are integers
satisfying

𝑋
2

2
− 𝑥𝑌
2

2
= 𝑦, gcd (𝑋2, 𝑌2) = 1. (23)

And from (18), (20), (21), and (22), we have

𝑧
𝑧/2
+ 𝑥
(𝑦−1)/2

√𝑥 = (𝑋2 + 𝑌2√𝑥)
𝑥
(𝑢1 + V1√𝑥)

𝑟
. (24)

If 𝑟 = 0 in (21), then, from (24), we have

𝑥
(𝑦−1)/2

= 𝑌2

(𝑥−1)/2

∑

𝑖=0

(
𝑥

2𝑖 + 1
)𝑋
𝑥−2𝑖−1

2
(𝑥𝑌
2

2
)
𝑖

. (25)
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However, since 𝑥 > 𝑦 from (9), and by (23), we have 𝑋2
2
>

𝑥. According to (25), we get 𝑥(𝑦−1)/2 > 𝑥𝑋𝑥−1
2
> 𝑥
(𝑥+1)/2

>

𝑥
(𝑦+1)/2, which is impossible.Thus, from (21), we have 0 < 𝑟 <
𝑥 and

𝑥 ∤ 𝑟. (26)

Let

𝑋
󸀠
+ 𝑌
󸀠
√𝑥 = (𝑋2 + 𝑌2√𝑥)

𝑥
,

𝑢
󸀠
+ V󸀠√𝑥 = (𝑢1 + V1√𝑥)

𝑟
.

(27)

Then 𝑋󸀠, 𝑌󸀠, 𝑢󸀠, V󸀠 are integers with gcd(𝑋󸀠, 𝑌󸀠) = gcd(𝑢󸀠, V󸀠)
= 1, and

𝑌
󸀠
= 𝑌2

(𝑥−1)/2

∑

𝑖=0

(
𝑥

2𝑖 + 1
)𝑋
𝑥−2𝑖−1

2
(𝑥𝑌
2

2
)
𝑖

, (28)

V󸀠 = V1
[(𝑟−1)/2]

∑

𝑗=0

(
𝑟

2𝑗 + 1
) 𝑢
𝑟−2𝑗−1

1
(𝑥V2
1
)
𝑗

, (29)

where [(𝑟 − 1)/2] is the integral part of (𝑟 − 1)/2. From (29),
we have

𝑌
󸀠
≡ 0 (mod 𝑥) , V󸀠 ≡ 𝑟𝑢𝑟−1

1
V1 (mod 𝑥) . (30)

Applying (27) to (24), we get

𝑥
(𝑦−1)/2

= 𝑋
󸀠V󸀠 + 𝑌󸀠𝑢󸀠. (31)

From (17) and (26), gcd(𝑟𝑢𝑟−1
1
, 𝑥) = 1, by (30), V1 ≡ 0(mod

𝑥). However, we get from (9) that 𝑥 is an odd prime satisfying
𝑥 ≡ 1(mod 4) and 𝑥 < 6.2 × 1010; then from Lemma 4, we
know it is impossible. Thus, the theorem holds for 𝜀 = 1.

Similarly, if 𝜀 = −1, by (10) 𝑦 is an odd prime with 𝑦 ≡
1(mod 4). We see from (1) that the equation

𝑋
2
− 𝑦𝑌
2
= 𝑥
𝑍
, 𝑋, 𝑌, 𝑍 ∈ Z, gcd (𝑋, 𝑌) = 1, 𝑍 > 0,

(32)

has the solution

(𝑋, 𝑌, 𝑍) = (𝑧
𝑧/2
, 𝑦
(𝑥−1)/2

, 𝑦) . (33)

Applying Lemmas 5 and 6 to (11) and (12), we have

𝑧
𝑧/2
+ 𝑦
(𝑥−1)/2

√𝑦 = (𝑋1 + 𝜆𝑌1√𝑦)
𝑦
(𝑢 + V√𝑦) , 𝜆 ∈ {±1} ,

(34)

where𝑋1, 𝑌1, 𝑍1 are positive integers satisfying

𝑋
2

1
− 𝑦𝑌
2

1
= 𝑥, gcd (𝑋1, 𝑌1) = 1, (35)

and (𝑢, V) is a solution of the equation

𝑢
2
− 𝑦V2 = 1, 𝑢, V ∈ Z. (36)

Applying Lemma 3 to (34) and (35), we have

𝑢 + V√𝑦 = (𝑢1 + V1√𝑦)
𝑠
, 𝑠 ∈ Z, (37)

where (𝑢1, V1) is the least solution of (36). In addition, the
integer 𝑠 can be expressed as

𝑠 = 𝑦𝑞 + 𝑟, 𝑞, 𝑟 ∈ Z, 0 ≤ 𝑟 < 𝑦. (38)

Let

𝑋2 + 𝑌2√𝑦 = (𝑋1 + 𝜆𝑌1√𝑦) (𝑢1 + V1√𝑦)
𝑞
. (39)

From (35) and (36), we know that 𝑋2 and 𝑌2 are integers
satisfying

𝑋
2

2
− 𝑦𝑌
2

2
= 𝑥, gcd (𝑋2, 𝑌2) = 1. (40)

And from (34), (37), (38), and (39), we get

𝑧
𝑧/2
+ 𝑦
(𝑥−1)/2

√𝑦 = (𝑋2 + 𝑌2√𝑦)
𝑦
(𝑢1 + V1√𝑦)

𝑟
. (41)

If 𝑟 = 0 in (38), then, from (41), we have

𝑦
(𝑥−1)/2

= 𝑌2

(𝑦−1)/2

∑

𝑖=0

(
𝑦

2𝑖 + 1
)𝑋
𝑦−2𝑖−1

2
(𝑦𝑌
2

2
)
𝑖

. (42)

Since 𝑦 is an odd prime, 𝑥 > 𝑦 ≥ 5, by (42), we know

0 ≡ 𝑦
(𝑥−1)/2

≡ 𝑦𝑋
𝑦−1

2
𝑌2 (mod 𝑦2) . (43)

From (40), we know gcd(𝑋2, 𝑦) = 1; then from (43) we get
𝑦 | 𝑌2. Let 𝑦

𝛼
‖ 𝑌2, and 𝑦 ≥ 5, so

𝑦
𝛼+1
‖ 𝑌2 (

𝑦

1
)𝑋
𝑦−1

2
, (44)

𝑌2 (
𝑦

2𝑖 + 1
)𝑋
𝑦−2𝑖−1

2
(𝑦𝑌
2

2
)
𝑖

≡ 𝑦𝑌2 (
𝑦 − 1

2𝑖
)
𝑋
𝑦−2𝑖−1

2
(𝑦𝑌
2

2
)
𝑖

2𝑖 + 1

≡ 0 (mod 𝑦𝛼+2) , 𝑖 ≥ 1.
(45)

By (45),

𝑦
𝛼+1
‖ 𝑌2

(𝑦−1)/2

∑

𝑖=0

(
𝑦

2𝑖 + 1
)𝑋
𝑦−2𝑖−1

2
(𝑦𝑌
2

2
)
𝑖

. (46)

Combining (42) and (46) we may immediately get

𝛼 + 1 =
𝑥 − 1

2
. (47)

However, from (42) and (47), we get |𝑦𝑌2| ≥ 𝑦
𝛼+1
= 𝑦
(𝑥−1)/2

>

|𝑦𝑋
𝑦−1

2
𝑌2| > |𝑦𝑌2|, but it is impossible. Therefore, we have

0 < 𝑟 < 𝑦 and

𝑦 ∤ 𝑟. (48)

Now, using the similarly proof with 𝜀 = 1, from (41) and
(48) can obtain contradiction.

This completes the proof of our theorem.
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