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We consider the perturbed dual risk model with constant interest and a threshold dividend strategy. Firstly, we investigate the
moment-generation function of the present value of total dividends until ruin. Integrodifferential equations with certain boundary
conditions are derived for the present value of total dividends. Furthermore, using techniques of sinc numerical methods, we obtain
the approximation results to the expected present value of total dividends. Finally, numerical examples are presented to show the
impact of interest on the expected present value of total dividends and the absolute ruin probability.

1. Introduction

In insurance mathematics, the classical risk model has been
the center of focus for decades. The surplus in the classical
model at time 𝑡 can be expressed as

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 − 𝑆 (𝑡) , 𝑡 ≥ 0, (1)

where 𝑢 ≥ 0 is the initial surplus, 𝑐 > 0 is the premium rate,
and 𝑆(𝑡) is the aggregate claims by time 𝑡, usually modeled
by a compound Poisson process. In recent years, quite a few
interesting papers have beenwritten on amodel which is dual
to the classical insurance riskmodel. See, for example, Avanzi
et al. [1], Avanzi andGerber [2].The surplus of a dual classical
risk model at time 𝑡 is

𝑈 (𝑡) = 𝑢 − 𝑐𝑡 + 𝑆 (𝑡) , 𝑡 ≥ 0. (2)

In this model, the premium rate should be viewed as
an expense rate and claims should be viewed as profits or
gains. While not very popular in insurance mathematics,
this model has appeared in various literature (see Cramér
[3, Section 5.13] and Seal [4, pages 116–119] and Takács [5,
pages 152–154]). There were many possible interpretations
for this model. For example, we can treat the surplus as the
amount of the capital of a business engaged in research and
development. The company paid expenses for research, and
occasional profit of random amounts (such as the award of

a patent or a sudden increase in sales) arises according to
a Poisson process. A similar model was used by Bayraktar
and Egami [6] to model the capital of a venture capital
investment. Another model was an annuity business. The
company issues payments continuously to annuitants, while
the gross reserve of an annuitant was released as emerging
profit when he died. Yang and Zhu [7] generalized the dual
model into a regime-switching setting and calculated bounds
for ruin probabilities. One of the current topics of interest
in insurance mathematics is the problem of maximizing
the expected total discounted dividends until ruin, which
goes back to de Finetti [8], and it had also been studied by
Bühlmann [9, Section 6.4], Gerber [10, Sections 7 and 8],
and Gerber [11, Section 10.1]. In Avanzi et al. [1], the authors
studied the expected total discounted dividends until ruin
for the dual model under the barrier strategy by means of
integrodifferential equations. They derived explicit formulas
when profits or gains followed an exponential or a mixture
of exponential distributions and showed that the optimal
value of the dividend barrier under the dual model was
independent of the initial surplus. Avanzi and Gerber [2]
studied a dual model perturbed by diffusion and discussed
how the optimal value of the dividend barrier can be
determined. Albrecher et al. [12] studied a dual model that
also paid taxes when the surplus was at a running maximum
and calculated the expected total discounted dividends before
ruin for exponentially distributed profits.
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Considering the perturbed dual risk model, the surplus
of an insurer has the following form

𝑈 (𝑡) = 𝑢 − 𝑐𝑡 +

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖
+ 𝜎𝐵 (𝑡) , 𝑡 ≥ 0, (3)

where 𝑢 ≥ 0 is the initial surplus and 𝑐 > 0 is the constant
rate. {𝑋

𝑖
, 𝑖 = 1, 2, . . .} is a sequence of independent income

size random variables with a common distribution function
𝐹(𝑥)with 𝐹(0) = 0 and density function𝑓(𝑥). {𝑁(𝑡), 𝑡 ≥ 0} is
the Poisson income-number process with an intensity 𝜆 > 0

and is defined as 𝑁(𝑡) = sup{𝑘 : 𝑇
1
+ ⋅ ⋅ ⋅ + 𝑇

𝑘
≤ 𝑡}, where the

i.i.d. interincome times {𝑇
𝑖
}
∞

𝑖=1
have a common exponential

distribution with a parameter 𝜆. {𝐵(𝑡), 𝑡 ≥ 0} is a standard
Brownian motion with 𝐵(0) = 0 and 𝜎 > 0 is a constant,
representing the diffusion volatility parameter. In addition,
{𝑋
𝑖
, 𝑖 = 1, 2, . . .}, {𝑁(𝑡), 𝑡 ≥ 0} and {𝐵(𝑡), 𝑡 ≥ 0}, are mutually

independent.
Dividend strategy for insurance risk models was first

proposed by de Finetti [8] to reflect more realistically the
surplus cash flowed in an insurance portfolio. Various thresh-
old strategies have been studied by many authors, including
Gerber and Landry [13], Ng [14], and Lin and Pavlova [15].
Among them, Ng [14] showed that the threshold strategy
was optimal when the dividend rate was bounded and the
individual claim distribution was exponential. Recently, the
threshold dividend strategy has been considered in the class
of compound Poisson process perturbed by diffusion and its
generalizations; readers may refer to Avanzi and Gerber [2],
Gao and Liu [16], Wan [17], and the references therein.

Then, we consider themodification of the surplus process
by a threshold strategy with a threshold level 𝑏. When 𝑈(𝑡)

is below 𝑏, no dividends are paid and the surplus decreases
at the original rate 𝑐

1
. But when 𝑈(𝑡) is above 𝑏, the surplus

would decrease at a different rate 𝑐
2

> 𝑐
1
and dividends are

paid at rate 𝑐
2
− 𝑐

1
. Incorporating the threshold strategy into

(3) yields the surplus process {𝑈
𝑏
(𝑡), 𝑡 ≥ 0} which can be

expressed by

𝑑𝑈
𝑏 (𝑡) = {

−𝑐
1
𝑑𝑡 + 𝑑𝑆 (𝑡) + 𝜎𝑑𝐵 (𝑡) , 𝑈

𝑏 (𝑡) < 𝑏,

−𝑐
2
𝑑𝑡 + 𝑑𝑆 (𝑡) + 𝜎𝑑𝐵 (𝑡) , 𝑈

𝑏 (𝑡) ≥ 𝑏,
(4)

where 𝑈
𝑏
(0) = 𝑢, 0 < 𝑏 < ∞, and 𝑆(𝑡) = ∑

𝑁(𝑡)

𝑖=1
𝑋
𝑖
.

In this paper, we consider that the insurance company
earns credit interest with a constant force 𝑟 > 0. In the mean
time, the insurer will receive interest. Incorporating interest
into (4) yields the surplus process {𝑈

𝑏
(𝑡), 𝑡 ≥ 0} which can be

expressed by

𝑑𝑈
𝑏 (𝑡)={

−𝑐
1
𝑑𝑡 + 𝑟𝑈

𝑏 (𝑡) 𝑑𝑡 + 𝑑𝑆 (𝑡) + 𝜎𝑑𝐵 (𝑡) , 𝑈
𝑏 (𝑡) < 𝑏,

−𝑐
2
𝑑𝑡 + 𝑟𝑈

𝑏 (𝑡) 𝑑𝑡 + 𝑑𝑆 (𝑡) + 𝜎𝑑𝐵 (𝑡) , 𝑈
𝑏 (𝑡) ≥ 𝑏.

(5)

Let𝐷(𝑡) denote the cumulative amount of dividends paid
out up to time 𝑡 and 𝛿 > 0 the force of interest; then

𝐷
𝑢,𝑏

= ∫

𝑇𝑏

0

𝑒
−𝛿𝑡

𝑑𝐷 (𝑡) (6)

is the present value of all dividends until𝑇
𝑏
, where𝑇

𝑏
denoted

by 𝑇
𝑏

= inf{𝑡 ≥ 0 : 𝑈
𝑏
(𝑡) ≤ 0} is the time of ruin. An

alternative expression for 𝐷
𝑢,𝑏

is

𝐷
𝑢,𝑏

= (𝑐
2
− 𝑐

1
) ∫

𝑇𝑏

0

𝑒
−𝛿𝑡

𝐼 (𝑈
𝑏 (𝑡) > 𝑏) 𝑑𝑡, (7)

with 𝐼(⋅) denoting the indicator function. It is obvious that
0 < 𝐷

𝑢,𝑏
≤ (𝑐

2
− 𝑐

1
)/𝛿.

In the sequel, we will be interested in the following
moment generating function:

𝑀(𝑢, 𝑦; 𝑏) = 𝐸 [𝑒
𝑦𝐷𝑢,𝑏

] (8)

(for those values of 𝑦 where it exist) and the expected total
discounted dividends until ruin is

𝑉 (𝑢; 𝑏) = 𝐸 [𝐷
𝑢,𝑏

| 𝑈
𝑏 (0) = 𝑢] . (9)

Throughout this paper, we assume that𝑀(𝑢, 𝑦; 𝑏) and𝑉(𝑢; 𝑏)

are sufficiently smooth functions in 𝑢 and 𝑦, respectively.

2. Integrodifferential Equations

2.1. Integrodifferential Equations for 𝑀(𝑢, 𝑦; 𝑏). In this sec-
tion, we will give the integrodifferential equations satisfied by
the moment generating function𝑀(𝑢, 𝑦; 𝑏), respectively. It is
easy to see that 𝑀(𝑢, 𝑦; 𝑏) behaves differently with different
initial surplus. Hence, for notation convenience, we set

𝑀(𝑢, 𝑦; 𝑏) = {
𝑀
1
(𝑢, 𝑦; 𝑏) , if 0 < 𝑢 < 𝑏,

𝑀
2
(𝑢, 𝑦; 𝑏) , if 𝑏 ≤ 𝑢 < ∞.

(10)

In the case of 𝜎 = 0, we write 𝑀(𝑢, 𝑦; 𝑏) as 𝑀
0
(𝑢, 𝑦; 𝑏), and

the other one is similar.
In the following, we firstly derive the integrodifferential

equations satisfied by 𝑀
0
(𝑢, 𝑦; 𝑏).

Theorem 1. When 0 < 𝑢 < 𝑏,

(𝑟𝑢 − 𝑐
1
)
𝜕𝑀

0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

= 𝑦𝛿
𝜕𝑀

0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑦
+ 𝜆𝑀

0

1
(𝑢, 𝑦; 𝑏)

− 𝜆∫

𝑏−𝑢

0

𝑀
0

1
(𝑢 + 𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥

− 𝜆∫

∞

𝑏−𝑢

𝑀
0

2
(𝑢 + 𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥,

(11)

and for 𝑏 ≤ 𝑢 < ∞,

(𝑟𝑢 − 𝑐
2
)
𝜕𝑀

0

2
(𝑢, 𝑦; 𝑏)

𝜕𝑢

= 𝑦𝛿
𝜕𝑀

0

2
(𝑢, 𝑦; 𝑏)

𝜕𝑦
+ 𝜆𝑀

0

2
(𝑢, 𝑦; 𝑏)

− 𝜆∫

∞

0

𝑀
0

1
(𝑢 + 𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥,

(12)
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with the following boundary conditions:

𝑀
0

1
(𝑏−, 𝑦; 𝑏) = 𝑀

0

2
(𝑏, 𝑦; 𝑏) , (13)

lim
𝑢→∞

𝑀
0

2
(𝑢, 𝑦; 𝑏) = 𝑒

((𝑐2−𝑐1)/𝑦)𝛿
, (14)

(𝑟𝑏 − 𝑐
1
)

𝜕𝑀
0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏−

= (𝑟𝑏 − 𝑐
2
)

𝜕𝑀
0

2
(𝑢, 𝑦; 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏

.

(15)

Proof. When 0 < 𝑢 < 𝑏, consider 𝑡 > 0 such that the surplus
cannot reach level 𝑏 by time; that is, ℎ

𝛿
(𝑢, 𝜏) = 𝑒

𝑟𝜏
(𝑢−(𝑐

1
/𝑟))+

(𝑐
1
/𝑟) > 0. By conditioning on the time and amount of first

claim, if it occurs by 𝑡, and whether the claim causes ruin, one
gets

𝑀
0

1
(𝑢, 𝑦; 𝑏) = (1 − 𝜆𝜏)𝑀

0

1
(ℎ
𝛿 (𝑢, 𝜏) , 𝑦𝑒

−𝛿𝜏
; 𝑏)

+ 𝜆𝜏𝐸 [𝑀
0

1
(ℎ
𝛿 (𝑢, 𝜏) + 𝑥, 𝑦𝑒

−𝛿𝜏
; 𝑏)] .

(16)

By Taylor’s expansion,

𝑀
0

1
(ℎ
𝛿 (𝑢, 𝜏) , 𝑦𝑒

−𝛿𝜏
; 𝑏)

= 𝑀
0

1
(𝑢, 𝑦; 𝑏) + (𝑟𝑢 − 𝑐

1
) 𝜏

𝜕𝑀
0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

− 𝑦𝛿𝜏
𝜕𝑀

0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑦
+ 𝑜 (𝜏) .

(17)

Also, due to

𝐸 [𝑀
0

1
(ℎ
𝛿 (𝑢, 𝜏) , 𝑦𝑒

−𝛿𝜏
; 𝑏)]

= ∫

∞

0

𝑀
0

1
(ℎ
𝛿 (𝑢, 𝜏) + 𝑥, 𝑦𝑒

−𝛿𝜏
; 𝑏) 𝑓 (𝑥) 𝑑𝑥.

(18)

Substituting the above expansion into (16), dividing both
sides of (16) by 𝑡, and letting 𝑡 → 0, we can get (11). Using
the same way as (11), we can easily prove (12) when 𝑢 → ∞,
𝑇
𝑏
= ∞ so the condition (12) is correct, by the method used

in Gao and Liu [16], and it is easy to check that the boundary
conditions hold. This ends the proof of Theorem 1.

Now we consider the case of 𝜎 ̸= 0. For 𝑡 ≥ 0, define
𝑊(𝑡) = 𝜎 ∫

𝑡

0
𝑒
−𝑟𝑠

𝑑𝐵(𝑠). Thus, 𝑊(𝑡) is an Itô stochastic
integral. Denote by {⟨𝑊⟩(𝑡), 𝑡 ≥ 0} the variance process of
{𝑊(𝑡), 𝑡 ≥ 0}. We have ⟨𝑊⟩(𝑡) = 𝜎

2
∫
𝑡

0
𝑒
−2𝑟𝑠

𝑑𝑠 = (2𝑟)
−1

𝜎
2
(1−

𝑒
−2𝑟𝑠

) for 𝑡 ≥ 0. Let V(𝑠) = inf{𝑡 : ⟨𝑊⟩(𝑡) > 𝑠}; then

V (𝑠) =
1

2
ln 𝜎

2

𝜎
2
− 2𝑟𝑠

, 0 < 𝑠 <
𝜎
2

2𝑟
. (19)

Set𝑊(𝑡) = 𝐵(V(𝑡)) for 𝑡 ≥ 0, 𝑖 = 1, 2. By the time change of
Brownianmotion, we have that𝑊

𝑖
is local standard Brownian

motion with𝑊
𝑖
(0) = 0 running for an amount of time 𝜎

2
/2𝑟.

Let 𝜙(𝑢, 𝑠) = 𝑒
𝑟𝑠
(𝑢 + 𝑐

1
∫
𝑠

0
𝑒
−𝑟𝑡

𝑑𝑡) and 𝜙
1
(𝑢, 𝑠) = 𝑒

𝑟𝑠
(𝑢 +

𝑐
2
∫
∞

0
𝑒
−𝑟𝑡

𝑑𝑡). Then, we have the following results.

Theorem 2. When 0 < 𝑢 < 𝑏,

1

2
𝜎
2
𝜕
2
𝑀
1
(𝑢, 𝑦; 𝑏)

𝜕𝑢
2

+ (𝑟𝑢 − 𝑐
1
)
𝜕𝑀

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

= 𝑦𝛿
𝜕𝑀

1
(𝑢, 𝑦; 𝑏)

𝜕𝑦
+ 𝜆𝑀

1
(𝑢, 𝑦; 𝑏)

− 𝜆∫

0

𝑏 − 𝑢𝑀
1
(𝑢 + 𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥

+ 𝜆∫

∞

𝑏−𝑢

𝑀
2
(𝑢 + 𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥,

(20)

and when 𝑏 ≤ 𝑢 < ∞,

1

2
𝜎
2
𝜕
2
𝑀
2
(𝑢, 𝑦; 𝑏)

𝜕𝑢
2

+ (𝑟𝑢 − 𝑐
2
)
𝜕𝑀

2
(𝑢, 𝑦; 𝑏)

𝜕𝑢

= 𝑦𝛿
𝜕𝑀

2
(𝑢, 𝑦; 𝑏)

𝜕𝑦
+ (𝜆 − (𝑐

2
− 𝑐

1
))𝑀

2
(𝑢, 𝑦; 𝑏)

+ 𝜆∫

∞

0

𝑀
2
(𝑢 + 𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥,

(21)

with the following boundary conditions:

𝑀
1
(0, 𝑦; 𝑏) = 1, (22)

𝑀
1
(𝑏−, 𝑦; 𝑏) = 𝑀

2
(𝑏, 𝑦; 𝑏) , (23)

lim
𝑢→∞

𝑀
2
(𝑢, 𝑦; 𝑏) = 𝑒

((𝑐2−𝑐1)/𝑦)𝛿
, (24)

(𝑟𝑏 − 𝑐
1
)
𝜕𝑀

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢
|
𝑢=𝑏−

= (𝑟𝑏 − 𝑐
2
)
𝜕𝑀

2
(𝑢, 𝑦; 𝑏)

𝜕𝑢
|
𝑢=𝑏

.

(25)

Proof. For 0 < 𝑢 < 𝑏, assume that 𝜖, 𝑡 > 0 such that 𝜖 < 𝑢 < 𝑏.
Define 𝑇

0
= 𝑇

𝜖

𝑡
∧ 𝑇

1
and 𝑇

𝜖

𝑡
= inf{𝑠 > 0 : 𝜙(𝑢 + 𝑊(𝑠), 𝑠) ∉

(𝜖, 𝑏)} ∧ 𝑡. We have 𝑃(𝑇
0
< ∞) = 1 for all 𝑠 ∈ (0, 𝑇

0
). Then, by

the strong Markov property, we get

𝑀
1
(𝑢, 𝑦; 𝑏) = 𝐸

𝑢
[𝑒
𝑦𝐷𝑈,𝑏

]

= 𝐸
𝑢
[𝑀

1
(𝑈
𝑏
(𝑇
0
) , 𝑦𝑒

−𝛿𝑇0
; 𝑏)]

= 𝐸 [𝐼 (𝑇
1
> 𝑡)𝑀

1
(𝑈

𝑏
(𝑇

E
𝑡
) , 𝑦𝑒

−𝛿𝑇
E
𝑡 ; 𝑏)]

+ 𝐸 [𝐼 (𝑇
1
≤ 𝑡)𝑀

1
(𝑈

𝑏
(𝑇

E
𝑇1
) , 𝑦𝑒

−𝛿𝑇
E
𝑇1 ; 𝑏)]

= I (𝑡) + II (𝑡) .
(26)
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By the assumption of independence, one gets

I (𝑡) = 𝑒
−𝜆𝑡

𝐸 [𝑀
1
(𝑈

𝑏
(𝑇

E
𝑡
) , 𝑦𝑒

−𝛿𝑇
E
𝑡 ; 𝑏)] ,

II (𝑡) = ∫

𝑡

0

𝜆𝑒
−𝜆𝑠

𝐸 [𝐼 (𝑇
E
𝑡

= 𝑠)𝑀
1
(𝑈

𝑏 (𝑠) , 𝑦𝑒
−𝛿𝑇

E
𝑡 ; 𝑏)] 𝑑𝑠

+ ∫

𝑡

0

𝜆𝑒
−𝜆𝑠

𝐸 [𝐼 (𝑇
E
𝑡

< 𝑠)𝑀
1
(𝑈

𝑏 (𝑠) , 𝑦𝑒
−𝛿𝑇

E
𝑡 ; 𝑏)] 𝑑𝑠

= ∫

𝑡

0

𝜆𝑒
−𝜆𝑠

𝐸 [𝐼 (𝑇
E
𝑡

= 𝑠) 𝑔
𝑠
(𝜙 (𝑢 + 𝑊 (𝑠) , 𝑠))] 𝑑𝑠

+ ∫

𝑡

0

𝜆𝑒
−𝜆𝑠

𝐸 [𝐼 (𝑇
E
𝑡

< 𝑠)𝑀
1
(𝑈

𝑏 (𝑠) , 𝑦𝑒
−𝛿𝑇

E
𝑡 ; 𝑏)] 𝑑𝑠,

(27)

where

𝑔
𝑠
(𝜙 (𝑢 + 𝑊 (𝑠) , 𝑠))

= ∫

𝑏−𝜙(𝑢+𝑊(𝑠),𝑠)

0

𝑀
1
(𝜙 (𝑢 + 𝑊 (𝑠) , 𝑠) + 𝑥, 𝑦𝑒

−𝛿𝑠
; 𝑏) 𝑑𝑠

+ ∫

∞

𝑏−𝜙(𝑢+𝑊(𝑠),𝑠)

𝑀
2
(𝜙 (𝑢 + 𝑊 (𝑠) , 𝑠) + 𝑥, 𝑦𝑒

−𝛿𝑠
; 𝑏) 𝑑𝑠.

(28)

Noting that lim
𝑡→0

(𝑇
𝜖

𝑡
= 𝑡) = 1, lim

𝑡→0
(𝑇
𝜖

𝑡
< 𝑡) = 0 a.s. and

using Itô’s formula, we have

lim
𝑡→0

I (𝑡) − 𝑀
1
(𝑢, 𝑦; 𝑏)

𝑡

=
1

2
𝜎
2
𝜕
2
𝑀
0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢
2

+(𝑟𝑢 − 𝑐
1
)
𝜕𝑀

0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑢

− 𝑦𝛿
𝜕𝑀

0

1
(𝑢, 𝑦; 𝑏)

𝜕𝑦
− 𝜆𝑀

0

1
(𝑢, 𝑦; 𝑏) ,

lim
𝑡→0

II (𝑡)
𝑡

=𝜆∫

𝑏−𝑢

0

𝑀
0

1
(𝑢+𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥

+𝜆∫

∞

𝑏−𝑢

𝑀
0

2
(𝑢+𝑥, 𝑦; 𝑏) 𝑓 (𝑥) 𝑑𝑥.

(29)

From (26) and (29), we can get (20) for all 𝑢 ∈ (𝜖, ). Hence,
(20) holds in (0, 𝑏).

Similarly, using the abovemethod,we get (21). Conditions
(22) and (23) are obvious. By (14) and (15) and by the weak
convergence method used in [17], it is easy to check that the
boundary conditions (24) and (25) hold. This ends the proof
of Theorem 2.

2.2. Integrodifferential Equations for 𝑉(𝑢, 𝑏)

Theorem 3. When 0 < 𝑢 < 𝑏,

1

2
𝜎
2
𝑉
󸀠󸀠

1
(𝑢) + (𝑟𝑢 − 𝑐

1
) 𝑉

󸀠

1
(𝑢) − (𝜆 + 𝛿)𝑉1 (𝑢)

+ 𝜆∫

𝑏−𝑢

0

𝑉
1 (𝑢 + 𝑥; 𝑏) 𝑓 (𝑥) 𝑑𝑥

+ 𝜆∫

∞

𝑏−𝑢

𝑉
2 (𝑢 + 𝑥; 𝑏) 𝑓 (𝑥) 𝑑𝑥 = 0,

(30)

and when 𝑏 ≤ 𝑢 < ∞,

1

2
𝜎
2
𝑉
󸀠󸀠

2
(𝑢) + (𝑟𝑢 − 𝑐

2
) 𝑉

󸀠

2
(𝑢)

− (𝜆 + 𝛿)𝑉2 (𝑢) + 𝜆∫

∞

0

𝑉
2 (𝑢 + 𝑥; 𝑏) 𝑓 (𝑥) 𝑑𝑥

+ 𝑐
2
− 𝑐

1
= 0,

(31)

with the following boundary conditions:

𝑉
1 (0; 𝑏) = 0,

𝑉
1 (𝑏−; 𝑏) = 𝑉

2 (𝑏; 𝑏) ,

lim
𝑢→∞

𝑉
2 (𝑢; 𝑏) =

(𝑐
2
− 𝑐

1
)

𝛿
,

(𝑟𝑏 − 𝑐
1
)

𝜕𝑉
1 (𝑢; 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏−

= (𝑟𝑏 − 𝑐
2
)

𝜕𝑉
2 (𝑢; 𝑏)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢=𝑏

.

(32)

3. Numerical Analysis

Thesecond order systemof integrodifferential equations such
as in Theorem 3 does not have an explicit solution except
in some special cases. In this section, we propose the approx-
imate solution of this equation via the use of a collocation
based on sinc methods. The sinc method is highly efficient
numerical method developed by Frank Stenger. It is widely
used in various fields of numerical analysis such as interpola-
tion, quadrature, approximation of transforms, and solution
of integral, ordinary differential, and partial differential
equations. An introduction to the sinc approximation theory
can be found in the Appendix.

3.1. Numerical Solution of the Expected Present Value of Total
Dividends 𝑉(𝑢; 𝑏). To construct an approximation on the
interval (0,∞), we consider the following conformal map:

𝜙 (𝑧) = log 𝑧. (33)

The function𝜙 also provides a one-to-one transformation
of (0,∞) onto the real line R. The sinc grid points 𝑧

𝑘
are

defined for ℎ > 0 and 𝑘 = 0, ±1, ±2, . . . by

𝑧
𝑘
= 𝜙

−1
(𝑘ℎ) = 𝑒

𝑘ℎ
. (34)
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In order to adopt the sinc method procedure, we arrange
the systems in Theorem 3 into the following integrodifferen-
tial equation:

1

2
𝜎
2
𝑉
󸀠󸀠
(𝑢) + [(𝑟𝑢 − 𝑐

2
) 𝐼 (𝑢 ≥ 𝑏) + (𝑟𝑢 − 𝑐

1
) 𝐼 (0 < 𝑢 < 𝑏)]

× 𝑉
󸀠
(𝑢) − (𝜆 + 𝛿)𝑉 (𝑢) + 𝜆∫

∞

0

𝑉 (𝑢 + 𝑥; 𝑏)

× 𝑓 (𝑥) 𝑑𝑥 + (𝑐
2
− 𝑐

1
) 𝐼 (𝑢 > 𝑏) = 0.

(35)

Using the properties of convolution, the above equation
can be further written as

1

2
𝜎
2
𝑉
󸀠󸀠
(𝑢) + [(𝑟𝑢 − 𝑐

2
) 𝐼 (𝑢 ≥ 𝑏)

+ (𝑟𝑢 − 𝑐
1
) 𝐼 (0 < 𝑢 < 𝑏)]𝑉

󸀠
(𝑢)

− (𝜆 + 𝛿)𝑉 (𝑢) + 𝜆∫

∞

𝑢

𝑉 (𝑥; 𝑏) 𝑓 (𝑥 − 𝑢) 𝑑𝑥

+ (𝑐
2
− 𝑐

1
) 𝐼 (𝑢 > 𝑏) = 0,

(36)

with the following boundary conditions:

𝑉 (0; 𝑏) = 0, lim
𝑢→∞

𝑉 (𝑢; 𝑏) =
𝑐
2
− 𝑐

1

𝛿
. (37)

Set𝑊(𝑢) = 𝑉(𝑢; 𝑏)−𝐿𝑉(𝑢; 𝑏) = 𝑉(𝑢; 𝑏)−(𝑢/(1+𝑢))((𝑐
2
−

𝑐
1
)/𝛿); then 𝑊(𝑢) ∈ 𝐿

𝛼̃,𝛽,𝑑
(𝜙) and satisfies

𝑊
󸀠󸀠
(𝑢) + 𝜇 (𝑢)𝑊

󸀠
(𝑢) −

2

𝜎
2
(𝜆 + 𝛿)𝑊 (𝑢)

+
2

𝜎
2
𝜆∫

∞

𝑢

𝑊(𝑥)𝑓 (𝑢 − 𝑥) 𝑑𝑥

+ 𝑅 (𝑢) = 0,

(38)

with the following boundary conditions:

𝑊(0) = 0, lim
𝑢→∞

𝑊(𝑢) = 0, (39)

where

𝜇 (𝑢) =
2

𝜎
2
[(𝑟𝑢 − 𝑐

2
) 𝐼 (𝑢 ≥ 𝑏)

+ (𝑟𝑢 − 𝑐
1
) 𝐼 (0 < 𝑢 < 𝑏)] ,

𝑅 (𝑢) =
2

𝜎
2
(𝑐
2
− 𝑐

1
) 𝐼 (𝑢 ≥ 𝑏)

−
2

(1 + 𝑢)
3

𝑐
2
− 𝑐

1

𝛿

+ 𝜇 (𝑢)
1

(1 + 𝑢)
2

𝑐
2
− 𝑐

1

𝛿

−
2

𝜎
2
(𝜆 + 𝛿)

𝑢

1 + 𝑢

𝑐
2
− 𝑐

1

𝛿

+ 𝜆
2

𝜎
2

𝑐
2
− 𝑐

1

𝛿
∫

∞

𝑢

𝑥

1 + 𝑥
𝑓 (𝑥 − 𝑢) 𝑑𝑥.

(40)

Let 𝜙 be defined by (33). The sinc grid points are defined
for ℎ > 0 by

𝑢
𝑘
= 𝑒

𝑘ℎ
, 𝑘 = 0, ±1, ±2, . . . . (41)

Then, by using Theorems A.3 and A.6 in the Appendix,
we have

∫

∞

𝑢

𝑓 (𝑥 − 𝑢)𝑊 (𝑥) 𝑑𝑥 ≈

𝑁

∑

𝑙=−𝑀

𝑁

∑

𝑖=−𝑀

𝑤
∗

𝑖
𝐴
𝑖𝑙
𝑊
𝑙
, (42)

𝑊(𝑥) ≈ 𝑊̃ (𝑥) =

𝑁

∑

𝑙=−𝑀

𝑤
𝑙
𝑊
𝑙
, (43)

where 𝐴 = 𝑌𝐹(𝑆)𝑌
−1, 𝐴

𝑖𝑙
is the (𝑖, 𝑙)th element of matrix 𝐴.

𝑊
𝑙
denotes an approximate value of𝑊(𝑢

𝑙
), and 𝜙(𝑥) = log𝑥,

𝜙(0) = −∞, 𝜙(+∞) = +∞, and 𝜙
󸀠
(𝑥) = 1/𝑥. 𝑤

𝑗
and 𝑤

∗

𝑗
for

𝑗 = −𝑀, . . . , 𝑁 are defined asDefinition A.2 in theAppendix.
Since𝑊(𝑥) ∈ 𝐿

𝛼̃,𝛽,𝑑
(𝜙), byTheorem A.3 in the Appendix,

then it is convenient to take 𝑤
𝑗

= 𝛾
𝑗

= 𝑆(𝑗, ℎ) ∘ 𝜙, 𝑗 =

−𝑀, . . . , 𝑁. Moreover, by some simple calculations, we have
𝑤
∗

𝑗
(𝑢
𝑘
) = 𝑆(𝑗, ℎ) ∘ 𝜙(𝑢

𝑘
), 𝑗, 𝑘 = −𝑀, . . . , 𝑁 with 𝜙 and 𝑢

𝑘

being defined in (33) and (41), respectively.
Having replaced the integral term on the left-hand side

of system (38) with the right-hand side of (42) and having
substituted 𝑢 = 𝑢

𝑘
for 𝑘 = −𝑀, . . . , 𝑁, where 𝑢

𝑘
are sinc

grid points and also by replacing𝑊(𝑢) by 𝑊̃(𝑢) as in (43), we
obtain the following collocation result:

𝑊̃
󸀠󸀠
(𝑢
𝑘
) + 𝜇 (𝑢

𝑘
) 𝑊̃

󸀠
(𝑢
𝑘
) −

2

𝜎
2
(𝜆 + 𝛿) 𝑊̃ (𝑢

𝑘
)

+
2

𝜎
2
𝜆

𝑁

∑

𝑙=−𝑀

𝑁

∑

𝑖=−𝑀

𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑢
𝑘
) 𝐴

𝑖𝑙
𝑊
𝑙
+ 𝑅 (𝑢

𝑘
) = 0,

(44)

where 𝑊̃(𝑢
𝑘
) = ∑

𝑁

𝑙=−𝑀
𝑊
𝑙
𝑆(𝑙, ℎ) ∘ 𝜙(𝑢

𝑘
).

Then, byTheorem A.7, we have

𝑊̃ (𝑢
𝑘
) =

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
𝛿
(0)

𝑙𝑘
,

𝑊̃
󸀠
(𝑢
𝑘
) =

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
𝜙
󸀠
(𝑢
𝑘
) ℎ
−1

𝛿
(1)

𝑙𝑘
,

𝑊̃
󸀠󸀠
(𝑢
𝑘
) =

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
[𝜙
󸀠󸀠
(𝑢
𝑘
) ℎ
−1

𝛿
(1)

𝑙𝑘

+ (𝜙
󸀠
(𝑢
𝑘
))
2

ℎ
−2

𝛿
(2)

𝑙𝑘
] .

(45)
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Replacing (45) in (44), we rewrite (44) as

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
{𝜙

󸀠󸀠
(𝑢
𝑘
) ℎ
−1

𝛿
(1)

𝑙𝑘

+ (𝜙
󸀠
(𝑢
𝑘
))
2

ℎ
−2

𝛿
(2)

𝑙𝑘
+ 𝜇 (𝑢

𝑘
) 𝜙
󸀠
(𝑢
𝑘
) ℎ
−1

𝛿
(1)

𝑙𝑘

−
2

𝜎
2
(𝜆 + 𝛿) 𝛿

(0)

𝑙𝑘
+

2

𝜎
2
𝜆

×

𝑁

∑

𝑖=−𝑀

𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑢
𝑘
) 𝐴

𝑖𝑙
} = −𝑅 (𝑢

𝑘
) .

(46)

Having multiplied the resulting equations by ℎ
2
/

(𝜙
󸀠
(𝑢
𝑘
))
2, we have

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
{𝛿

(2)

𝑙𝑘
+ ℎ[

𝜙
󸀠󸀠
(𝑢
𝑘
)

(𝜙
󸀠
(𝑢
𝑘
))
2
+

𝜇 (𝑢
𝑘
)

𝜙
󸀠
(𝑢
𝑘
)
] 𝛿

(1)

𝑙𝑘

−
2ℎ
2
(𝜆 + 𝛿)

𝜎
2
(𝜙
󸀠
(𝑢
𝑘
))
2
𝛿
(0)

𝑙𝑘

+
2𝜆ℎ

2

𝜎
2
(𝜙
󸀠
(𝑢
𝑘
))
2

𝑁

∑

𝑖=−𝑀

𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑢
𝑘
) 𝐴

𝑖𝑙
}

= −
ℎ
2
𝑅 (𝑢

𝑘
)

(𝜙
󸀠
(𝑢
𝑘
))
2
.

(47)

Now, since 𝛿
(0)

𝑘𝑙
= 𝛿

(0)

𝑙𝑘
, 𝛿(1)
𝑘𝑙

= −𝛿
(1)

𝑙𝑘
, 𝛿(2)
𝑘𝑙

= 𝛿
(2)

𝑙𝑘
, and

𝜙
󸀠󸀠
(𝑢
𝑘
)/(𝜙

󸀠
(𝑢
𝑘
))
2

= −(1/𝜙
󸀠
(𝑢
𝑘
))
󸀠, we obtain the collocation

result as

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
{𝛿

(2)

𝑘𝑙
+ ℎ[(

1

𝜙
󸀠
(𝑢
𝑘
)
)

󸀠

−
𝜇 (𝑢

𝑘
)

𝜙
󸀠
(𝑢
𝑘
)
] 𝛿

(1)

𝑘𝑙

−
2ℎ
2
(𝜆 + 𝛿)

𝜎
2

(𝜙
󸀠
(𝑢
𝑘
))
2

𝛿
(0)

𝑘𝑙
+

2𝜆ℎ
2

𝜎
2
(𝜙
󸀠
(𝑢
𝑘
))
2

×

𝑁

∑

𝑖=−𝑀

𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑢
𝑘
) 𝐴

𝑖𝑙
}

= −
ℎ
2
𝑅 (𝑢

𝑘
)

(𝜙
󸀠
(𝑢
𝑘
))
2
, 𝑘=−𝑀, . . . , 𝑁.

(48)

We set 𝐼
(𝑚)

= [𝛿
(𝑚)

𝑘𝑙
] and 𝑚 = −1, 0, 1, 2, where 𝛿

(𝑚)

𝑘𝑙

denotes the (𝑘, 𝑙)th element of thematrix 𝐼
(𝑚). Also,we denote

Δ = [𝑆(𝑖, ℎ) ∘ 𝜙(𝑢
𝑘
)] and 𝐼

(𝑚), 𝑚 = −1, 0, 1, 2 are square
matrices of order (𝑁 + 𝑀 + 1) × (𝑁 + 𝑀 + 1). So, the system
(48) can be given in matrix form as

𝐵𝑊 = 𝐹, (49)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

u

r = 0.05

V
(u

, 2
)

Figure 1: The expected present value of total dividends 𝑉(𝑢; 2).

where𝑊 = [𝑊
−𝑀

, . . . ,𝑊
𝑁
]
𝑇, 𝐹 = [−(ℎ

2
𝐻(𝑢

−𝑀
)/

(𝜙
󸀠
(𝑢
−𝑀

))
2
), . . . , −(ℎ

2
𝐻(𝑢

𝑁
)/(𝜙

󸀠
(𝑢
𝑁
))
2
)]
𝑇, and

𝐵 = 𝐼
(2)

+ ℎ𝐷
𝑚

[(
1

𝜙
󸀠
)

󸀠

−
𝜇

𝜙
󸀠
] 𝐼

(1)

−
2ℎ
2

𝜎
2

(𝜆 + 𝛿)𝐷𝑚

1

(𝜙
󸀠
)
2
𝐼
(0)

+
2ℎ
2
𝜆

𝜎
2

𝐷
𝑚

1

(𝜙
󸀠
)
2
Δ𝐴.

(50)

The above linear system contains (𝑁 + 𝑀 + 1) equations
with (𝑁 + 𝑀 + 1) unknown coefficient 𝑊

𝑘
, 𝑘 = −𝑀, . . . , 𝑁.

Solving this linear system, we obtain the approximate solu-
tion of the system as follows:

𝑊(𝑢) ≈ 𝑊̃ (𝑢) =

𝑁

∑

𝑙=−𝑀

𝑊
𝑙
𝑆 (𝑙, ℎ) ∘ 𝜙 (𝑢) ,

𝑉 (𝑢; 𝑏) = 𝑊 (𝑢) +
𝑢

1 + 𝑢

𝑐
2
− 𝑐

1

𝛿
.

(51)

4. Numerical Example

In this section, we consider some numerical samples to
illustrate the performance of sinc method and investigate
how much the values of 𝑉(𝑢; 𝑏) are affected by interest 𝑟. An
example is solved under the assumption that the claim size
density is given by 𝑓(𝑦) = 𝜂𝑒

−𝜂𝑦
𝐼 (𝑦 > 0).

Example 1. Let 𝑐
1
= 0.1, 𝑐

2
= 0.2, 𝜇 = 5, 𝛼 = 𝛽 = 𝜋/4, 𝜆 = 3,

𝑏 = 2, 𝜎 = 0.05, 𝛿 = 0.006, 𝛼̃ = 1/2, 𝛽 = 1/4, 𝑑 = 1/4000, and
𝑟 = 0.05, the result is shown in Figure 1.

From Figure 1, we see that 𝑉(𝑢; 2) is an increasing
function with respect to 𝑢.



Abstract and Applied Analysis 7

Appendix

The sinc method is a highly efficient numerical method
developed by Stenger, the pioneer of this field, people in
his school, and others [18–22]. It is widely used in various
fields of numerical analysis such as interpolation, quadrature,
approximation of transforms, and solution of integral, ordi-
nary differential, and partial differential equations.

sinc methods are based on the use of the cardinal
function, 𝐶(𝑓, ℎ), which is sinc expansion of function 𝑓,
defined by

𝐶 (𝑓, ℎ) (𝑥) = ∑

𝑘∈N

𝑓 (𝑘ℎ) sinc {𝑥

ℎ
− 𝑘} , −∞ < 𝑥 < ∞,

(A.1)

where the step size ℎ > 0, and the function sinc is defined on
the whole real line, −∞ < 𝑥 < ∞, by

sinc (𝑧) =

{

{

{

sin (𝜋𝑧)

𝜋𝑧
, if 𝑧 ̸= 0,

1, if 𝑧 = 0.

(A.2)

For any ℎ > 0, the translated sinc functions with evenly
spaced nodes are given as

𝑆 (𝑗, ℎ) (𝑧) = sinc {𝑧

ℎ
− 𝑗} , 𝑗 = 0, ±1, ±2, . . . . (A.3)

The sinc functions are cardinal for the interpolating
points 𝑘ℎ in the sense that

𝑆 (𝑗, ℎ) (𝑘ℎ) = 𝛿
(0)

𝑗𝑘
= {

0, if 𝑘 ̸= 𝑗,

1, if 𝑘 = 𝑗.
(A.4)

Definition A.1 (see [19, P73, De. 1.5.2]). Let 𝜙 denote a smooth
one-to-one transformation of an arc Γ with end-point 𝑡

1
and

𝑡
2
onto R, such that 𝜙(𝑡

1
) = −∞ and 𝜙(𝑡

2
) = ∞. Let 𝜓 = 𝜙

−1

denote the inverse map, so that

Γ = {𝑧 ∈ C : 𝑧 = 𝜓 (𝑢) , 𝑢 ∈ R} . (A.5)

Given𝜙,𝜓, and a positive number ℎ, define the sinc points
𝑧
𝑘
by

𝑧
𝑘
= 𝑧

𝑘 (ℎ) = 𝜓 (𝑘ℎ) , 𝑘 = 0, ±1, ±2, . . . , (A.6)

and a function 𝜌 by

𝜌 (𝑧) = 𝑒
𝜙(𝑧)

. (A.7)

Observe that 𝜌(𝑧) increases from 0 to ∞ as 𝑧 traverses Γ

from 𝑡
1
to 𝑡

2
.

Corresponding to positive numbers 𝛼̃, 𝛽, and 𝑑, let
𝐿
𝛼̃,𝛽,𝑑

(𝜙) denote the family of all functions 𝑓 defined on Γ for
which

𝑓 (𝑧) = {

O (𝜌 (𝑧)
𝛼̃
) , if 𝑧 󳨀→ 𝑡

1
,

O (𝜌(𝑧)
−𝛽

) , if 𝑧 󳨀→ 𝑡
2
,

(A.8)

such that the Fourier transform {𝑓 ∘ 𝜙
−1

}
∼ satisfies the

following relation:

{𝑓 ∘ 𝜙
−1

}
∼

(𝜁) = O (𝑒
−𝑑|𝜁|

) , (A.9)

for all 𝜁 ∈ R.
Another important family of functions is 𝑀

𝛼̃,𝛽,𝑑
(𝜙), with

0 < 𝛼̃, 𝛽 ≤ 1, and 0 < 𝑑 < 𝜋. It consists of all those functions
𝑓 defined on Γ such that 𝑔 = 𝑓 − 𝐿𝑓 ∈ 𝐿

𝛼̃,𝛽,𝑑
(𝜙) and where

𝐿𝑓 is defined by 𝐿𝑓 = (𝑓(𝑡
1
) + 𝜌(𝑥)𝑓(𝑡

2
))/(1 + 𝜌(𝑥)).

Let 𝑁 and 𝑀 denote two positive integers, such that
𝑀 = [𝛽𝑁/𝛼̃], or 𝑁 = [𝛼̃𝑀/𝛽] where [⋅] denotes the greatest
integer function. Moreover, we denote 𝑚 = 𝑀 + 𝑁 + 1.

Definition A.2. Given three positive integers 𝑁, 𝑀, and 𝑚

as above, let 𝐷
𝑚
and 𝑉

𝑚
denote linear operators acting on

functions 𝑓 defined on Γ given by

𝐷
𝑚
𝑓 = diag [𝑓 (𝑧

−𝑀
) , . . . , 𝑓 (𝑧

𝑁
)] ,

𝑉
𝑚
𝑓 = (𝑓 (𝑧

−𝑀
) , . . . , 𝑓 (𝑧

𝑁
))
𝑇
,

(A.10)

where 𝑧
𝑗
= 𝜓(𝑗ℎ) denote the sinc points. Set

ℎ = (
𝜋𝑑

𝛽𝑁

)

1/2

,

𝛾
𝑗
= 𝑆 (𝑗, ℎ) ∘ 𝜙, 𝑗 = −𝑀, . . . , 𝑁,

𝑤
𝑗
= 𝑤

∗

𝑗
= 𝛾

𝑗
, 𝑗 = −𝑀 + 1, . . . , 𝑁 − 1,

𝑤
−𝑀

=
1

1 + 𝜌
−

𝑁

∑

𝑗=−𝑀+1

𝛾
𝑗

1 + 𝑒
𝑗ℎ

,

𝑤
𝑁

=
𝜌

1 + 𝜌
−

𝑁−1

∑

𝑗=−𝑀

𝑒
𝑗ℎ
𝛾
𝑗

1 + 𝑒
𝑗ℎ

,

𝑤
∗

−𝑀
= (1 + 𝑒

−𝑀ℎ
)𝑤

−𝑀
,

𝑤
∗

𝑁
= (1 + 𝑒

−𝑁ℎ
)𝑤

𝑁
,

E
𝑁

= 𝑁
1/2

𝑒
−(𝜋𝑑𝛽𝑁)

1/2

,

Δ
𝑚

= (𝑤
−𝑀

, . . . , 𝑤
𝑁
) ,

Δ
∗

𝑚
= (𝑤

∗

−𝑀
, . . . , 𝑤

∗

𝑁
) ,

𝛿
(−1)

𝑖𝑗
=

1

2
+ ∫

𝑖−𝑗

0

sinc (𝑡) 𝑑𝑡,

(A.11)

and we then define an 𝑚 × 𝑚 matrix 𝐼
(−1) by 𝐼

(−1)
= [𝛿

(−1)

𝑖𝑗
],

with 𝛿
(−1)

𝑖𝑗
denoting the (𝑖, 𝑗)th element of 𝐼(−1). Finally, let ‖ ⋅ ‖

denote the uniform norm on Γ that is,

󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩
= sup
𝑥∈Γ

󵄨󵄨󵄨󵄨
𝑓 (𝑥)

󵄨󵄨󵄨󵄨
. (A.12)
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Theorem A.3 (see [19, P85, Th. 1.5.13]). Let 𝑓 ∈ 𝑀
𝛼̃,𝛽,𝑑

(𝜙);
then, as 𝑁 → ∞,

󵄩󵄩󵄩󵄩
𝑓 − Δ

𝑚
𝑉
𝑚
𝑓
󵄩󵄩󵄩󵄩
= O (E

𝑁
) . (A.13)

If𝑓 ∈ 𝐿
𝛼̃,𝛽,𝑑

(𝜙), then it is convenient to take𝑤
𝑗
= 𝛾

𝑗
= 𝑆(𝑗, ℎ)∘

𝜙, 𝑗 = −𝑀, . . . , 𝑁.

Theorem A.4 (see [19, P87, Th. 1.5.14]). Let 𝑓 ∈ 𝑀
𝛼̃,𝛽,𝑑

(𝜙);
then,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
ℎ

𝜙
󸀠
)

𝑘

[𝑓
(𝑘)

− Δ
(𝑘)

𝑚
𝑉
𝑚
𝑓]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= O (E
𝑁
) , 𝑁 > 1. (A.14)

Theorem A.5 (see [19, P93, Th. 1.5.19]). Let 𝑓/𝜙
󸀠
∈ 𝐿

𝛼̃,𝛽,𝑑
(𝜙);

then, for all 𝑁 > 1,
󵄩󵄩󵄩󵄩
J
+
𝑓 − J

+

𝑚
𝑓
󵄩󵄩󵄩󵄩
= O (E

𝑁
) ,

󵄩󵄩󵄩󵄩
J
−
𝑓 − J

−

𝑚
𝑓
󵄩󵄩󵄩󵄩
= O (E

𝑁
) ,

(A.15)

where

(J
+
𝑓) (𝑥) = ∫

𝑥

𝑡1

𝑓 (𝑡) 𝑑𝑡, (J
−
𝑓) (𝑥) = ∫

𝑡2

𝑥

𝑓 (𝑡) 𝑑𝑡,

(J
+

𝑚
𝑓) (𝑥) = Δ

𝑚 (𝑥) 𝐴
+
𝑉
𝑚
𝑓, 𝐴

+
= ℎ𝐼

(−1)
𝐷
𝑚

(
1

𝜙
󸀠
) ,

(J
−

𝑚
𝑓) (𝑥) = Δ

𝑚 (𝑥) 𝐴
−
𝑉
𝑚
𝑓, 𝐴

−
= ℎ(𝐼

(−1)
)
𝑇

𝐷
𝑚

(
1

𝜙
󸀠
) ,

(A.16)

with (𝐼
(−1)

)
𝑇 denoting the transpose of 𝐼(−1).

Theorem A.6 (see [19, P95-96, Th. 1.5.20]). Let 𝑔/𝜙
󸀠

∈

𝐿
𝛼̃,𝛽,𝑑

(𝜙); suppose that 𝐴
± can be diagonalized with 𝐴

+
=

𝑋𝑆𝑋
−1 and with 𝐴

−
= 𝑌𝑆𝑌

−1 and that 𝑆 is a diagonal matrix.
If for some positive 𝑐

󸀠 independent of 𝑁, one has 𝐹󸀠(𝑠) ≤ 𝑐
󸀠 for

all R𝑠 ≥ 0, then there exists a constant 𝐶 independent of 𝑁
such that

󵄩󵄩󵄩󵄩
𝑝 − 𝐹 (J

+

𝑚
) 𝑔

󵄩󵄩󵄩󵄩
≤ 𝐶E

𝑁
,

󵄩󵄩󵄩󵄩
𝑞 − 𝐹 (J

−

𝑚
) 𝑔

󵄩󵄩󵄩󵄩
≤ 𝐶E

𝑁
,

(A.17)

where

𝐹 (𝑠) = ∫

𝑐
󸀠󸀠

0

𝑒
−𝑡/𝑠

𝑓 (𝑡) 𝑑𝑡,

𝑝 (𝑥) = ∫

𝑥

𝑡1

𝑓 (𝑥 − 𝑡) 𝑔 (𝑡) 𝑑𝑡,

𝑞 (𝑥) = ∫

𝑡2

𝑥

𝑓 (𝑡 − 𝑥) 𝑔 (𝑡) 𝑑𝑡,

(𝐹 (J
+

𝑚
) 𝑔) (𝑥) = Δ

∗

𝑚
(𝑥)𝑋𝐹 (𝑆)𝑋

−1
𝑉
𝑚
𝑔,

(A.18)

(𝐹 (J
−

𝑚
) 𝑔) (𝑥) = Δ

∗

𝑚
(𝑥) 𝑌𝐹 (𝑆) 𝑌

−1
𝑉
𝑚
𝑔, (A.19)

with 𝑐
󸀠󸀠

≥ 𝑡
2
− 𝑡

1
.

Theorem A.7 (see [18, P106, Th. 4.1]). Let 𝜙 be a conformal
one-to-one transformation of an arc Γ. Then,

𝛿
(0)

𝑗𝑘
≡ [𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑧)]

󵄨󵄨󵄨󵄨𝑧=𝑧𝑘
= {

0, 𝑖𝑓 𝑘 ̸= 𝑗,

1, 𝑖𝑓 𝑘 = 𝑗,

𝛿
(1)

𝑗𝑘
≡ ℎ

𝑑

𝑑𝜙
[𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑧)]

󵄨󵄨󵄨󵄨𝑧=𝑧𝑘

=

{{

{{

{

(−1)
𝑘−𝑗

𝑘 − 𝑗
, 𝑖𝑓 𝑘 ̸= 𝑗,

0, 𝑖𝑓 𝑘 = 𝑗,

𝛿
(2)

𝑗𝑘
≡ ℎ

2 𝑑
2

𝑑𝜙
2
[𝑆 (𝑗, ℎ) ∘ 𝜙 (𝑧)] |𝑧=𝑧𝑘

=

{{{{

{{{{

{

−2(−1)
𝑘−𝑗

(𝑘 − 𝑗)
2

, 𝑖𝑓 𝑘 ̸= 𝑗,

−
𝜋
2

3
, 𝑖𝑓 𝑘 = 𝑗.

(A.20)
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