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A new analytical method for the computation of reproducing kernel is proposed and tested on some examples. The expression
of reproducing kernel on infinite interval is obtained concisely in polynomial form for the first time. Furthermore, as a particular
effective application of this method, we give an explicit representation formula for calculation of reproducing kernel in reproducing
kernel space with boundary value conditions.

1. Introduction

It is well known that reproducing kernel theory has been used
in many research fields such as complex analysis, dilation of
linear operators, stochastic processes [1–5], and solution of
various differential and integral equations [6–10]. Recently,
there are a rather small number ofmethods for calculating the
reproducing kernel expression. One is using Green’s function
for a differential operator to construct a reproducing kernel
[11, 12]. Another very standard method involves boundary
value conditions depending on the property of 𝛿 function [13,
14]. The disadvantages of the above two approaches are clear.
In the first method, the expression of reproducing kernel
including integral form is complicated as a result of Green’s
function. Because 𝛿 function is highly abstractive in the sec-
ond approach, it is quite difficult to calculate the kernel in the
procedure.

The purpose of this paper is to avoid the complex opera-
tion of Green’s function and 𝛿 function and simply give rep-
resentation of reproducing kernel in polynomial form. The
principal step of the procedure consists of classifying and
discussing the infinite interval to satisfy the reproducing
property. Therefore, our approach has the advantages that no
additional condition is required in order to solve the kernel
and a much simpler formalism which is in contrast to the
previous two methods. In effect, the universal formula can
be obtained in the case of finite interval.

Numerically solving an initial and boundary value prob-
lem for a differential equation by the reproducing kernel
method can be described as follows: construct reproducing
kernel spaceswhich can absorb initial or boundary value con-
ditions, and then, transfer the initial and boundary value
problem into an operator equation in the reproducing kernel
space where the exact solution to the initial and boundary
value problem is expressed by the reproducing kernel, and at
last solve the operator equation by approximation. It is
obvious that constructing reproducing kernel space which
satisfies the initial or boundary conditions and effectively
solving for the reproducing kernel become the key to apply
reproducing kernel method for initial and boundary value
problems.

In this work, in order to apply the new approach to
solving differential equations withmultiform boundary value
problems, the explicit formula for calculation of reproducing
kernel in the appropriate reproducing kernel space is pro-
vided successfully by using the orthogonal decomposition
property.

The rest of the paper is organized as follows. In Section 2,
a new reproducing kernel space on infinite interval is pre-
sented. Section 3 shows for representation of class one how
reproducing kernel can be expressed in polynomial form
and gives some examples. Then, these basic ideas are shown
to extend to cases involving reproducing kernel space with
boundary value condition in Section 4. Finally, in Section 5,
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we give a brief conclusion and discuss extensions and gener-
alizations of the present work.

2. A New Reproducing Kernel Space on
Infinite Interval

Definition 1 (see [15]). Let𝐻 be a Hilbert function space on a
set𝐷.𝐻 is called a reproducing kernel space if and only if for
any 𝑥 ∈ 𝐷, there exists a unique function 𝑅

𝑥
(𝑦) ∈ 𝐻, such

that ⟨𝑓, 𝑅
𝑥
⟩ = 𝑓(𝑥) for any 𝑓 ∈ 𝐻. Meanwhile, 𝑅(𝑥, 𝑦) ≜

𝑅
𝑥
(𝑦) is called a reproducing kernel function.

Definition 2. 𝐻
𝑚
(−∞, +∞) = {𝑓(𝑥) | 𝑓

(𝑚−1)

(𝑥) is an
absolutely continuous real value function in (−∞, +∞),

𝑓
(𝑚)

(𝑥) ∈ 𝐿
2

(−∞, +∞)}. The inner product and norm are
given, respectively, by

⟨𝑓 (𝑥) , 𝑔 (𝑥)⟩
𝐻

=

𝑚−1

∑

𝑖=0

𝑓
(𝑖)

(0) 𝑔
(𝑖)

(0)

+ ∫

+∞

−∞

𝑓
(𝑚)

(𝑥) 𝑔
(𝑚)

(𝑥) 𝑑𝑥,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻 = √⟨𝑓 (𝑥) , 𝑓 (𝑥)⟩

𝐻
.

(1)

Theorem 3. 𝐻
𝑚
(−∞, +∞) is a Hilbert reproducing kernel

space; namely, it is complete, and for any fixed 𝑥 ∈ (−∞, +∞)

and 𝑓(𝑥) ∈ 𝐻
𝑚
(−∞, +∞), there exists a 𝑐

𝑥
> 0, such that

|𝑓(𝑥)| ≤ 𝑐
𝑥
‖𝑓‖
𝐻
.

Proof. Suppose that 𝑓
𝑛
(𝑥) is a Cauchy sequence in 𝐻

𝑚
(−∞,

+∞). Then it holds that

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑛+𝑝

− 𝑓
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐻

=

𝑚−1

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑖)

𝑛+𝑝
(0) − 𝑓

(𝑖)

𝑛
(0)

󵄨󵄨󵄨󵄨󵄨

2

+ ∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚)

𝑛+𝑝
(𝑥) − 𝑓

(𝑚)

𝑛
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ 0.

(2)

Therefore, we have

𝑓
(𝑖)

𝑛+𝑝
(0) − 𝑓

(𝑖)

𝑛
(0) 󳨀→ 0, 𝑖 = 0, 1, . . . , 𝑚 − 1,

∫

+∞

−∞

[𝑓
(𝑚)

𝑛+𝑝
(𝑥) − 𝑓

(𝑚)

𝑛
(𝑥)]
2

𝑑𝑥 󳨀→ 0,

(3)

which indicate that the sequences 𝑓
(𝑖)

𝑛
(0) (0 ≤ 𝑖 ≤ 𝑚 − 1)

and 𝑓
(𝑚)

𝑛
(𝑥) are Cauchy sequences, respectively, in 𝑅 and

𝐿
2

(−∞, +∞). So, there exist unique real number 𝜆
𝑖
(𝑖 =

0, 1, . . . , 𝑚 − 1) and function ℎ(𝑥) ∈ 𝐿
2

(−∞, +∞), such that

lim
𝑛→∞

𝑓
(𝑖)

𝑛
(0) = 𝜆

𝑖
, (𝑖 = 0, 1, . . . , 𝑚 − 1) ,

lim
𝑛→∞

[𝑓
(𝑚)

𝑛
(𝑥) − ℎ (𝑥)]

2 𝐿
2

= 0.

(4)

Let

𝑔 (𝑥) =

𝑚−1

∑

𝑖=0

𝜆
𝑖

𝑖!
𝑥
𝑖

+
1

(𝑚 − 1)!
∫

𝑥

0

(𝑥 − 𝑡)
𝑚−1

ℎ (𝑡) 𝑑𝑡. (5)

One easily sees that

𝑔
(𝑖)

(0) = 𝜆
𝑖
, (𝑖 = 0, 1, . . . , 𝑚 − 1) ,

𝑔
(𝑚−1)

(𝑥) = 𝜆
𝑚

− 1 + ∫

𝑥

0

ℎ (𝑡) 𝑑𝑡.

(6)

Because ℎ(𝑡) ∈ 𝐿
2

(−∞, +∞), we get 𝑔(𝑥) ∈ 𝐻
𝑚
(−∞,

+∞). Moreover, it holds

󵄩󵄩󵄩󵄩𝑓𝑛 − 𝑔
󵄩󵄩󵄩󵄩
2

𝐻
=

𝑚−1

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑖)

𝑛
(0) − 𝑔

(𝑖)

(0)
󵄨󵄨󵄨󵄨󵄨

2

+ ∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚)

𝑛
(𝑥) − 𝑔

(𝑚)

(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

=

𝑚−1

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑖)

𝑛
(0) − 𝜆

𝑖

󵄨󵄨󵄨󵄨󵄨

2

+ ∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚)

𝑛
(𝑥) − ℎ (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ 0,

(7)

which means that𝐻
𝑚
(−∞, +∞) is a Hilbert space.

Meanwhile, we can introduce that

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚−1)

(𝑥)
󵄨󵄨󵄨󵄨󵄨
= 𝑓
(𝑚−1)

(0) + ∫

𝑥

0

𝑓
(𝑚)

(𝑡) 𝑑𝑡

≤
󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚−1)

(0)
󵄨󵄨󵄨󵄨󵄨
+ ∫

𝑥

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚)

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻 + √𝑥∫

𝑥

0

󵄨󵄨󵄨󵄨𝑓
(𝑚) (𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝑡

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻

+ √𝑥(

𝑚−1

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑖)

(0)
󵄨󵄨󵄨󵄨󵄨

2

+ ∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚)

(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

≤ (1 + √𝑥)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻 = 𝑎
𝑥

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻,

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚−2)

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚−2)

(0)
󵄨󵄨󵄨󵄨󵄨
+ ∫

𝑥

0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑚−1)

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻 + ∫

𝑥

0

𝑎
𝑡

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑑𝑡 ≤ 𝑏

𝑥

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻,

(8)

where 𝑎
𝑥
and 𝑏
𝑥
are positive numbers.

Then, we also introduce that 𝑓(𝑥) ≤ 𝑐
𝑥
‖𝑓‖
𝐻
. This com-

pletes the proof of Theorem 3.

3. Calculation of Reproducing Kernel on
Infinite Interval

In this section, we will give a novel method to calculate the
reproducing kernel of 𝐻

𝑚
(−∞, +∞). Suppose 𝑅(𝑥, 𝑦) is the
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reproducing kernel function. According to the definition of
inner, for any fixed 𝑓(𝑦) ∈ 𝐻

𝑚
(−∞, +∞), we have

⟨𝑓 (𝑦) , 𝑅 (𝑥, 𝑦)⟩
𝐻

=

𝑚−1

∑

𝑖=0

𝑓
(𝑖)

(0) 𝜕
𝑖

𝑦
𝑅 (𝑥, 0)

+ ∫

+∞

−∞

𝑓
(𝑚)

(𝑦) 𝜕
𝑚

𝑦
𝑅 (𝑥, 𝑦) 𝑑𝑦

= 𝑓 (0) 𝑅 (𝑥, 0) + 𝑓
󸀠

(0) 𝜕
𝑦
𝑅 (𝑥, 0)

+ ⋅ ⋅ ⋅ + 𝑓
(𝑚−1)

(0) 𝜕
(𝑚−1)

𝑦
𝑅 (𝑥, 0)

+

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

(∫

0

−∞

+∫

𝑥

0

+∫

+∞

𝑥

)𝑓
(𝑚)

× (𝑦) 𝜕
𝑚

𝑦
𝑅 (𝑥, 𝑦) 𝑑𝑦,

𝑥 ≥ 0,

(∫

𝑥

−∞

+∫

0

𝑥

+∫

+∞

0

)𝑓
(𝑚)

× (𝑦) 𝜕
𝑚

𝑦
𝑅 (𝑥, 𝑦) 𝑑𝑦,

𝑥 < 0.

(9)

According to the formula

𝑓 (𝑥) = 𝑓 (0) + 𝑓
󸀠

(0) 𝑥 +
𝑓
󸀠󸀠

(0)

2
𝑥
2

+ ⋅ ⋅ ⋅ +
1

𝑚!
∫

𝑥

0

𝑓
(𝑚+1)

(𝑡) (𝑥 − 𝑡)
𝑚

𝑑𝑡,

(10)

it follows that if
𝑅 (𝑥, 0) = 1,

𝜕
𝑦
𝑅 (𝑥, 0) = 𝑥,

𝜕
2

𝑦
𝑅 (𝑥, 0) =

1

2
𝑥
2

,

...
𝜕
𝑚

𝑦
𝑅 (𝑥, 𝑦)

=

{{

{{

{

1

(𝑚 − 1)!
Sign (𝑥) (𝑥 − 𝑦)

𝑚−1

, 𝑦 ∈ [0, 𝑥] or [𝑥, 0] ,

0, otherwise,
(11)

then ⟨𝑓(𝑦), 𝑅(𝑥, 𝑦)⟩
𝐻

= 𝑓(𝑥) which indicates that 𝑅(𝑥, 𝑦) is
the reproducing kernel function.

It is now clear how to compute 𝑅(𝑥, 𝑦) by solving (11).
Moreover, the resulting function is represented locally by
polynomials.

Example 4. 𝐻
1
(−∞, +∞) = {𝑓(𝑥) | 𝑓(𝑥) is an absolutely

continuous real value function in (−∞, +∞), 𝑓
󸀠

(𝑥) ∈

𝐿
2

(−∞, +∞)} endowed inner product

⟨𝑓 (𝑥) , 𝑔 (𝑥)⟩
𝐻
1

= 𝑓 (0) 𝑔 (0) + ∫

+∞

−∞

𝑓
󸀠

(𝑥) 𝑔
󸀠

(𝑥) 𝑑𝑥.

(12)

By applying the procedure of the previous statement, we
can construct the equations:

𝑅 (𝑥, 0) = 1,

𝜕
𝑦
𝑅 (𝑥, 𝑦) = {

Sign (𝑥) , 𝑦 ∈ [0, 𝑥] or [𝑥, 0] ,

0, otherwise.

(13)

Then, the reproducing kernel of𝐻
1
(−∞, +∞) is given by

the following.
(1) When 𝑥 < 0

𝑅 (𝑥, 𝑦) =

{{

{{

{

1, 0 ≤ 𝑦,

−𝑦 + 1, 𝑥 < 𝑦 ≤ 0,

−𝑥 + 1, 𝑦 ≤ 𝑥.

(14)

(2) When 𝑥 = 0, 𝑅(𝑥, 𝑦) = 1.
(3) When 𝑥 > 0

𝑅 (𝑥, 𝑦) =

{{

{{

{

1, 𝑦 ≤ 0,

𝑦 + 1, 0 < 𝑦 ≤ 𝑥,

𝑥 + 1, 𝑥 ≤ 𝑦.

(15)

It can be obviously obtained that for any 𝑥 ∈ 𝑅, we have

𝑅 (𝑥, 𝑦) =
1

2
(
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 + |𝑥| −
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨) + 1. (16)

The graph of the 𝑅(𝑥, 𝑦) of 𝐻
1
(−∞, +∞) up to 𝑦 = 1, −1

is presented in Figures 1 and 2, and it shows the curvilinear
figure of 𝑅(𝑥, 𝑦).

Example 5. 𝐻
3
[0, +∞) = {𝑓(𝑥) | 𝑓

󸀠󸀠

(𝑥) is an absolutely
continuous real value function in [0, +∞), 𝑓

󸀠󸀠󸀠

(𝑥) ∈ 𝐿
2

[0,

+∞)} endowed inner product

⟨𝑓 (𝑥) , 𝑔 (𝑥)⟩
𝐻
3

= 𝑓 (0) 𝑔 (0) + 𝑓
󸀠

(0) 𝑔
󸀠

(0)

+ 𝑓
󸀠󸀠

(0) 𝑔
󸀠󸀠

(0) + ∫

+∞

0

𝑓
󸀠󸀠󸀠

(𝑥) 𝑔
󸀠󸀠󸀠

(𝑥) 𝑑𝑥.

(17)
Similarly, the 𝑅(𝑥, 𝑦) of 𝐻

3
[0, +∞) satisfying the follow-

ing:
𝑅 (𝑥, 0) = 1,

𝜕
𝑦
𝑅 (𝑥, 0) = 𝑥,

𝜕
2

𝑦
𝑅 (𝑥, 0) =

1

2
𝑥
2

,

𝜕
3

𝑦
𝑅 (𝑥, 𝑦) =

{

{

{

1

2
(𝑥 − 𝑦)

2

, 𝑦 ≤ 𝑥,

0, 𝑦 > 𝑥

(18)

can be obtained; namely,

𝑅 (𝑥, 𝑦) =

{{{{{{

{{{{{{

{

1 + 𝑥𝑦 +
1

4
𝑥
2

𝑦
2

+
1

12
𝑥
2

𝑦
3

−
1

24
𝑥𝑦
4

+
1

120
𝑦
5

,

𝑦 ≤ 𝑥,

1 + 𝑥𝑦 +
1

4
𝑥
2

𝑦
2

+
1

12
𝑥
3

𝑦
2

−
1

24
𝑥
4

𝑦 +
1

120
𝑥
5

,

𝑦 > 𝑥.

(19)
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Figure 1: The curves are, respectively, 𝑅(𝑥, 1) and 𝑅(𝑥, −1) for Example 4, where 𝑥 ∈ [−2, 2].

4. A Concrete Application to
Boundary Value Problems

4.1. Application to Initial Value Problems. Actually, when we
apply reproducing kernel theory to solve problems with
boundary value conditions [16, 17], it is important to find
the representation of reproducing kernel in the appropriate
reproducing kernel space. In this section, we show how to
express reproducing kernel function in terms of reproducing
kernel space with boundary value condition on infinite
interval.

Set 𝐷 = (−∞, +∞). Let 𝐻(𝐷) be a reproducing kernel
Hilbert space and 𝑅(𝑥, 𝑦) its reproducing kernel function. As
is well known,

𝐻
0
(𝐷) = {𝑓 (𝑥) | 𝑓 (𝑥

0
) = 0, 𝑥

0
∈ 𝐷, 𝑓 ∈ 𝐻 (𝐷)} (20)

is the closed subspace of𝐻(𝐷).

Lemma 6. If 𝐻
0
(𝐷) is the proper subspace of 𝐻(𝐷), then for

any 𝑦 ∈ 𝐷, 𝑅(𝑥, 𝑦) ∉ 𝐻
0
(𝐷); namely, 𝑅(𝑥

0
, 𝑦) ̸= 0.

Proof. The proof is by contradiction. Suppose that 𝑅(𝑥, 𝑦) ∈

𝐻
0
(𝐷). Then for a fixed 𝑥

0
it holds 𝑅(𝑥

0
, 𝑦) = 0. Choosing

𝑓(𝑥) ∈ 𝐻(𝐷), we have

𝑓 (𝑥
0
) = ⟨𝑓 (𝑦) , 𝑅 (𝑥

0
, 𝑦)⟩
𝐻

= ⟨𝑓 (𝑦) , 0⟩
𝐻

= 0, (21)

which infers 𝑓(𝑥) ∈ 𝐻
0
(𝐷). It is conflict about proper sub-

space.

Lemma 7. The orthogonal complement space of 𝐻
0
(𝐷) about

𝐻(𝐷) is

𝐻
⊥

0
(𝐷) = {𝑔 (𝑥) | 𝑔 (𝑥) = 𝜆𝑅 (𝑥, 𝑥

0
) , 𝜆 ∈ 𝐶} . (22)

Proof. Due to the only restriction of𝐻
0
(𝐷), it means that𝐻⊥

0

is one dimensional space. Moreover, for any 𝑓(𝑥) ∈ 𝐻
0
(𝐷)

we get

⟨𝑓 (𝑥) , 𝑅 (𝑥, 𝑥
0
)⟩
𝐻
0

= 𝑓 (𝑥
0
) = 0; (23)

Then, it indicates 𝑅(𝑥, 𝑥
0
) ⊥ 𝐻

0
(𝐷). Therefore, we have 𝑅(𝑥,

𝑥
0
) ∈ 𝐻

⊥

0
(𝐷), and𝐻

⊥

0
(𝐷) satisfies (22).
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Figure 2: Image of 𝑅(𝑥, 𝑦) for Example 4.

By virtue of the orthogonal decomposition property of
reproducing kernel, the reproducing kernel function𝐾(𝑥, 𝑦)

of𝐻
0
(𝐷) can be represented as

𝑅 (𝑥, 𝑦) = 𝐾 (𝑥, 𝑦) + 𝜆𝑅 (𝑥, 𝑥
0
) . (24)

So under the assumption that 𝐾(𝑥
0
, 𝑦) = 0, we can

introduce

𝜆 =
𝑅 (𝑥
0
, 𝑦)

𝑅 (𝑥
0
, 𝑥
0
)
. (25)

Here, according to Lemma 6, we know that 𝑅(𝑥
0
, 𝑥
0
) ̸= 0.

Now, the formula of reproducing kernel function of
𝐻
0
(𝐷) can be obtained by

𝐾(𝑥, 𝑦) = 𝑅 (𝑥, 𝑦) −
𝑅 (𝑥
0
, 𝑦) 𝑅 (𝑥, 𝑥

0
)

𝑅 (𝑥
0
, 𝑥
0
)

. (26)

Example 8. This problem corresponds to the closed subspace
of𝐻
3
[0, +∞) in Example 5.

𝐻
0

3
[0, +∞) = {𝑓(𝑥) | 𝑓

󸀠󸀠

(𝑥) is an absolutely continuous
real value function in [0, +∞), 𝑓

󸀠󸀠󸀠

(𝑥) ∈ 𝐿
2

[0, +∞) and
𝑓(10) = 0}.
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Here, we simply use formula (26) to find the reproducing
kernel function𝐾(𝑥, 𝑦) of𝐻0

3
[0, +∞)

𝐾 (𝑥, 𝑦) =
𝑅 (10, 10) 𝑅 (𝑥, 𝑦) − 𝑅 (10, 𝑦) 𝑅 (𝑥, 10)

𝑅 (10, 10)
, (27)

where 𝑅(𝑥, 𝑦) is determined by (19).

4.2. Application to Multipoint Boundary Value Problem.
To see that the previous results can be generalized, let 𝐻(𝐷)

be a reproducing kernel space with kernel 𝑅(𝑥, 𝑦). For any
finite point set {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
} ⊂ 𝐷, we get

𝐻
0
(𝐷) = {𝑓 (𝑥) | 𝑓 (𝑥

𝑖
) = 0, 𝑖 = 1, 2, . . . , 𝑚, 𝑓 ∈ 𝐻 (𝐷)} ,

(28)

which is the closed subspace of 𝐻(𝐷). Because, for any 𝑓 ∈

𝐻
0
(𝐷),

⟨𝑓 (⋅) , 𝑅 (𝑥
𝑖
, ⋅)⟩
𝐻
0

= 𝑓 (𝑥
𝑖
) = 0 𝑖 = 1, 2, . . . 𝑚, (29)

we know that 𝑅(𝑥
𝑖
, 𝑥) ∈ 𝐻

⊥

0
(𝐷), where 𝐻

⊥

0
(𝐷) is 𝑚 dimen-

sional orthogonal complement space of𝐻(𝐷).

Lemma 9. If, for any 𝑛 ∈ 𝑁 and differential points 𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑛
, the valuation functional 𝑥∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
of reproducing

kernel space𝐻(𝐷) are linearly independent, then the reproduc-
ing kernel function 𝑅(𝑥, 𝑦) is positive definite.

Proof. Suppose that 𝑅(𝑥, 𝑦) is not positive definite. Then
there exist differential points 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
and nonzero

vector 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ 𝐶
𝑛 such that

∑

𝑖,𝑗

𝑢
𝑖
𝑢
𝑗
𝑅 (𝑥
𝑖
, 𝑥
𝑗
)

= ⟨∑

𝑖

𝑢
𝑖
𝑅 (𝑥
𝑖
, ⋅) , ∑

𝑗

𝑢
𝑗
𝑅 (𝑥
𝑗
, ⋅) ⟩

𝐻

= 0.

(30)

It follows ∑
𝑖
𝑢
𝑖
𝑅(𝑥
𝑖
, ⋅) ≡ 0. Therefore, for any 𝑓 ∈ 𝐻(𝐷),

we have

(∑

𝑖

𝑢
𝑖
𝑥
∗

𝑗
)(𝑓) = ∑

𝑖

𝑢
𝑖
𝑓 (𝑥
𝑖
)

= ∑

𝑖

𝑢
𝑖
⟨𝑓, 𝑅 (𝑥

𝑖
, ⋅)⟩
𝐻

= ⟨𝑓,∑

𝑖

𝑢
𝑖
𝑅 (𝑥
𝑖
, ⋅)⟩

𝐻

= 0.

(31)

It indicates that 𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
are linearly dependent,

which can be a contradiction.

Theorem 10. The reproducing kernel function 𝐾(𝑥, 𝑦) of
𝐻
0
(𝐷) has the form

𝐾(𝑥, 𝑦) = 𝑅 (𝑥, 𝑦) +

𝑚

∑

𝑖=1

𝜆
𝑖
𝑅 (𝑥, 𝑥

𝑖
) . (32)

Proof. It needs to be proven that 𝑅(𝑥, 𝑥
𝑖
) (𝑖 = 1, 2, . . . , 𝑚) is

the basis of𝐻⊥
0
(𝐷); namely,𝑅(𝑥, 𝑥

𝑖
) are linearly independent.

Let ∑𝑚
𝑖=1

𝑢
𝑖
𝑅(𝑥, 𝑥

𝑖
) = 0. Then ∑

𝑚

𝑖=1
𝑢
𝑖
𝑅(𝑥
𝑖
, 𝑥
𝑗
) = 0 (𝑗 =

1, 2, . . . , 𝑚). Applying Lemma 9, we get that matrix (𝑅(𝑥
𝑖
,

𝑥
𝑗
))
𝑚×𝑚

is positive definite. So, 𝑢
𝑖

= 0 (𝑖 = 1, 2, . . . , 𝑚),
and formula (32) holds. Meanwhile, according to 𝐾(𝑥, 𝑦) ∈

𝐻
0
(𝐷), we can obtain the uniquely defined 𝜆

𝑖
.

Example 11. Here we apply the proposed method to solve the
following simplified model of propagation of nonadiabatic
flames inside long tubes [18–22]:

− 𝑥
󸀠󸀠

(𝑡) + 𝑐𝑥
󸀠

(𝑡) + 𝜆𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠

(𝑡)) ,

𝑡 ∈ (0,∞) ,

𝑥 (0) − 𝛼𝑥 (𝜂) = 𝑎
0
, lim

𝑡→+∞

𝑥
󸀠

(𝑡)

𝑒𝑟𝑡
= 𝑏
0
.

(33)

Firstly, due to the complex boundary conditions of (33),
the following reproducing kernel space is constructed.

𝐻 = {𝑥(𝑡) | 𝑥
󸀠󸀠

(𝑡) is absolutely continuous in [0, +∞)

and lim
𝑡→∞

(𝑥
󸀠

(𝑡)/𝑒
𝑟𝑡

) = 0, ∫
+∞

0

𝑒
−𝑟𝑡

[𝑥
(3)

(𝑡)]
2

𝑑𝑡 < +∞}.
The inner product is defined, respectively, by

⟨𝑥 (𝑡) , 𝑦 (𝑡)⟩
𝐻

=

2

∑

𝑖=0

𝑥
(𝑖)

(0) 𝑦
(𝑖)

(0)

+ ∫

+∞

0

𝑒
−𝑟𝑡

𝑥
(3)

(𝑡) 𝑦
(3)

(𝑡) 𝑑𝑡.

(34)

Suppose that 𝑅(𝑡, 𝑠) is the reproducing kernel of 𝐻.
According to the previous method for computation of repro-
ducing kernel, we can get

𝑅 (𝑡, 𝑠) =

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑟
1
(𝑡, 𝑠) = 𝑒

𝑟𝑡

3

∑

𝑖=1

𝑎
1𝑖
(𝑠) 𝑡
𝑖−1

+

6

∑

𝑖=4

𝑎
1𝑖
(𝑠) 𝑡
𝑖−4

,

𝑡 ≤ 𝑠,

𝑟
2
(𝑡, 𝑠) = 𝑒

𝑟𝑡

3

∑

𝑖=1

𝑎
2𝑖
(𝑠) 𝑡
𝑖−1

+

6

∑

𝑖=4

𝑎
2𝑖
(𝑠) 𝑡
𝑖−4

𝑠 ≤ 𝑡.

(35)

For 𝑟 = 1, the concrete expression of 𝑅(𝑡, 𝑠) is given as
follows:

𝑅 (𝑡, 𝑠) =
1

2
[𝑒
𝑠

(12 + 6𝑡 + 𝑡
2

− 2 (3 + 𝑡) 𝑠)

+ 𝑒
𝑡

(12 − 6𝑡 + 𝑡
2

− 2 (𝑡 − 3) 𝑠 + 𝑠
2

)

− 10 − 6𝑡 − 𝑡
2

− 6𝑠

− 2𝑡𝑠 − 𝑡
2

𝑠 − 𝑠
2

− 𝑡𝑠
2

+𝑒
(1/2)(𝑡+𝑠+|𝑡−𝑠|)

(6 (𝑡 − 𝑠) − 12 − (𝑡 − 𝑠)
2

)] .

(36)
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Secondly, we need to establish the subspace of𝐻:

𝐻
0
= {𝑥 (𝑡) | 𝑥 (𝑡) ∈ 𝐻, 𝑥 (0) − 𝛼𝑥 (𝜂) = 0} . (37)

Now, we use the formula (32) to get the reproducing ker-
nel of𝐻

0
:

𝐾 (𝑡, 𝑠) = 𝑅 (𝑡, 𝑠) −
𝑓 (𝑡) 𝑓 (𝑠)

𝑓 (0) − 𝛼𝑓 (𝜂)
, (38)

where 𝑓(𝑡) = 𝑅(𝑡, 0) − 𝛼𝑅(𝑡, 𝜂) and 𝑅(𝑡, 𝑠) is the reproducing
kernel function of𝐻.

Thirdly, we will prove that𝐾(𝑡, 𝑠) in (38) is the reproduc-
ing kernel of𝐻

0
. For any 𝑥(𝑡) ∈ 𝐻

0
, there holds that

⟨𝑥 (𝑡) , 𝐾 (𝑡, 𝑠)⟩
𝐻
0

= ⟨𝑥 (𝑡) , 𝑅 (𝑡, 𝑠) −
𝑓 (𝑡) 𝑓 (𝑠)

𝑓 (0) − 𝛼𝑓 (𝜂)
⟩

𝐻
0

= 𝑥 (𝑠) −
𝑓 (𝑠)

𝑓 (0) − 𝛼𝑓 (𝜂)
⟨𝑥 (𝑡) , 𝑅 (𝑡, 0) − 𝛼𝑅 (𝑡, 𝜂)⟩

𝐻
0

= 𝑥 (𝑠) −
𝑓 (𝑠)

𝑓 (0) − 𝛼𝑓 (𝜂)
[𝑥 (0) − 𝛼𝑥 (𝜂)] = 𝑥 (𝑠) .

(39)

For 𝑟 = 1, 𝛼 = 2, and 𝜂 = 1, the concrete expression of
𝐾(𝑡, 𝑠) is given as follows

𝐾 (𝑡, 𝑠) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑘
1
(𝑡, 𝑠) 𝑠 ≤ 𝑡 ≤ 𝜂,

𝑘
2
(𝑡, 𝑠) 𝑠 ≤ 𝜂 ≤ 𝑡,

𝑘
3
(𝑡, 𝑠) 𝜂 ≤ 𝑠 ≤ 𝑡,

𝑘
4
(𝑡, 𝑠) 𝜂 ≤ 𝑡 ≤ 𝑠,

𝑘
5
(𝑡, 𝑠) 𝑡 ≤ 𝜂 ≤ 𝑠,

𝑘
6
(𝑡, 𝑠) 𝑡 ≤ 𝑠 ≤ 𝜂;

𝑘
1
(𝑡, 𝑠) =

1

10
(−52 + 5𝑠

2

(−1 + 𝑡) − 5𝑒
𝑠

(12 − 6𝑠 + 𝑠
2

− 𝑡)

× (−1 + 𝑡) + 61𝑡 + 60𝑒𝑠𝑡 − 5𝑡
2

−5𝑒
𝑡

𝑠 (19 − 8𝑡 + 𝑡
2

) + 𝑠 (61 − 68𝑡 + 5𝑡
2

)) ;

𝑘
2
(𝑡, 𝑠) =

1

10
(−52 + 5𝑠

2

(−1 + 𝑡) − 5𝑒
𝑠

(12 − 6𝑠 + 𝑠
2

− 𝑡)

× (−1 + 𝑡) + 61𝑡 − 5𝑡
2

− 5𝑒𝑠 (7 − 8𝑡 + 𝑡
2

)

+𝑠 (61 − 68𝑡 + 5𝑡
2

)) ;

𝑘
3
(𝑡, 𝑠) =

1

10
(−52 + 5𝑠

2

(−1 + 𝑡)

+ 61𝑡 − 5𝑡
2

+ 𝑠 (61 − 68𝑡 + 5𝑡
2

)

+ 5𝑒
𝑠

(12 + 𝑠
2

+ 6𝑡 + 𝑡
2

− 2𝑠 (3 + 𝑡))

− 5𝑒 (7𝑡 + 𝑠
2

𝑡 + 𝑠 (7 − 4𝑡 + 𝑡
2

))) ;

𝑘
4
(𝑡, 𝑠) = 𝑘

3
(𝑠, 𝑡) ; 𝑘

5
(𝑡, 𝑠) = 𝑘

2
(𝑠, 𝑡) ;

𝑘
6
(𝑡, 𝑠) = 𝑘

1
(𝑠, 𝑡) .

(40)

Compared with the procedure for computation of the
reproducing kernel in [22], we can see that ourmethod is eas-
ier to implement, and it avoids the complexity of 𝛿 function.

5. Conclusions and Future Work

To summarize, in this paper, a newmethod for the calculation
of reproducing kernel on infinite interval was introduced, and
the representation in polynomial form was obtained for the
first time. The scheme was then used to generate the formula
for the reproducing kernel in reproducing kernel space with
boundary value conditions. We end this paper by mention-
ing the following applications. On one hand, the approach
detailed here can be readily adapted to the case of repro-
ducing kernel on the finite interval. According to the former
method in [15], which cannot represent reproducing kernel
on the infinite interval in polynomial form, the advantages
of the present approach are that we use theory of elementary
to avoid the complex operation and numerical algorithm will
be much more timesaving. On the other hand, the formula
in Section 4 can be used to solve multipoint boundary value
problems on the positive half-line, such as in [23–25].
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