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The mathematic description of the trajectory of robot manipulators with the optimal trajectory tracking problem is formulated
as an optimal control problem, and a parametric approach is proposed for the optimal trajectory tracking control problem. The
optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control
parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop
control along the optimal trajectory, a practical method is presented to calculate an approximate optimal feedback gain matrix,
without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with
the original system dynamics. Simulation results of 2-link robotmanipulator are presented to show the effectiveness of the proposed
method.

1. Introduction

Trajectory tracking problem is the most significant and fun-
damental task in control of robotic manipulator. Motivated
by requirements such as a high degree of automation and fast
speed operation from industry, various control methods are
used such as PID control, adaptive control, variable structure
control, neural networks control, and fuzzy control [1–5].

In the past two decades, the optimal control schemes
for manipulator arms have been actively researched because
the optimal motions that minimize energy consumption,
error trajectories, ormotion time yield high productivity, effi-
ciency, smooth motion, durability of machine parts, and so
forth [6–11]. Various types of methods have been developed
to solve the robotic manipulator optimal control schemes.

By the application of the optimal control theory, Pon-
tryagin’s maximum principle leads to a two-point boundary
value problem. Although this theory and its solutions are
rigorous, it has been used to solve equations for the motions
of 2-link or at most 3-link planar manipulators due to the
complexity and the nonlinearity of themanipulator dynamics
[6]. Approximation methods have been studied to obtain
the solutions for three or more DOF spatial manipulators.
However, the solutions obtained have not been proved to be

optimal. These approximation methods are roughly divided
into two groups depending on whether or not they utilize
gradients [11]. Recently, the applications of intelligent control
techniques (such as fuzzy control or neural network control)
with optimal algorithm to the motion control of robot
manipulators have received considerable attention [12–17].
But sometimes these methods take quite a long time to find
a coefficient that satisfies the requirement of the controlling
task. In addition, lack of theoretical analysis and stability
security makes industrialists wary of using the results in real
industrial environments.

This paper is concerned with the nonlinear optimal
feedback control of robot manipulator trajectory tracking.
The energy consumption and error trajectories are mini-
mized as performance index in the optimal control problem.
An optimal open loop control is first obtained by using a
time scaling transform [18] and the control parameterization
technique [19].Then, we derive the formof the optimal closed
loop control law, which involves a feedback gain matrix,
for the optimal control problem. The optimal feedback gain
matrix is required to satisfy a Riccati-like matrix differential
equation. Then, the third order 𝐵-spline function, which
has been proved to be very efficient for solving optimal
approximation and optimal control problems, is employed



2 Journal of Applied Mathematics

y

x

a1

m1

a2

m2

𝜃1

𝜃2

g

0

Figure 1: Two-link (RR) robot manipulator.

to construct the components of the feedback gain matrix.
By virtue of the relationship between the optimal open loop
control and the optimal closed loop control along the optimal
trajectory, a practical computational method is presented
for finding an approximate optimal feedback gain matrix,
without having to solve an optimal control problem involving
the complex Riccati-like matrix differential equation coupled
with the original system dynamics [20].

2. Robot Manipulators Dynamics

2.1. Models of Robot Dynamics. Consider the dynamic equa-
tion of a robot manipulator

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞) = 𝑢 (𝑡) , (1)

where 𝑞, ̇𝑞, ̈𝑞 ∈ R𝑛 are the vectors of the generalized joint
coordinates, velocity, and acceleration;𝑀(𝑞) ∈ R𝑛×𝑛 denotes
a symmetric positive definite inertia matrix; 𝐶(𝑞, ̇𝑞) ∈ R𝑛×𝑛

stands for the Coriolis and centrifugal torques; 𝑔(𝑞) ∈ R𝑛

models the gravity forces; and 𝑢(𝑡) ∈ R𝑛 is the torque input.
Some useful properties of robot dynamic are as follows.

Property 1. Matrix𝑀(𝑞) is symmetric and positive definite.

Property 2. Matrix 𝑀̇(𝑞) − 2𝐶(𝑞, ̇𝑞) is skew symmetric and
satisfies that

̇𝑞
𝑇

[𝑀̇ (𝑞) − 2𝐶 (𝑞, ̇𝑞)] ̇𝑞 = 0. (2)

Property 3. The robot dynamics are passive in open loop,
from torque input to velocity output, with the Hamiltonian
as its storage function. If viscous friction was considered, the
energy dissipates and the system is strictly passive.

The two-link revolute (RR) robotmanipulator is shown in
Figure 1. The masses of both links and actuators are denoted
by𝑚
1
and𝑚

2
with 𝐼

1
and 𝐼
2
asmassmoment of inertia. 𝑎

1
and

𝑎
2
denote the length; 𝑢

1
and 𝑢

2
are joints torques. The joints

positions of the two links are defined by 𝜃
1
and 𝜃
2
.

The dynamic equations of 2-link RR robot are written in
state space form as

𝑥̇ = 𝑓 (𝑥) + 𝐵 (𝑥) 𝑢 (𝑡) , (3)

where 𝑥 = [𝑞𝑇, ̇𝑞𝑇]𝑇 is the system state, 𝑞 = [𝜃
1
, 𝜃
2
]
𝑇, and

𝑓 (𝑥) = [
̇𝑞

−𝑀
−1

(𝑞) (𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞))
] ,

𝐵 (𝑥) = [
0

𝑀
−1

(𝑞)
] ,

(4)

where

𝑀(𝑞) = [
𝑐
11
𝑐
12

𝑐
21
𝑐
22

] ,

𝑐
11
= (𝑚
1
+ 𝑚
2
) 𝑎
2

1
+ 𝑚
2
𝑎
2

2
+ 2𝑚
2
𝑎
1
𝑎
2
cos 𝜃
2
,

𝑐
12
= 𝑐
21
= 𝑚
2
𝑎
2

2
+ 𝑚
2
𝑎
1
𝑎
2
cos 𝜃
2
,

𝑐
22
= 𝑚
2
𝑎
2

2
,

𝐶 (𝑞, ̇𝑞) ̇𝑞 = [
−𝑚
2
𝑎
1
𝑎
2
(2 ̇𝜃
1

̇𝜃
2
+ ̇𝜃
2

2
) sin 𝜃

2

𝑚
2
𝑎
1
𝑎
2

̇𝜃
2

1
sin 𝜃
2

] ,

𝑔 (𝑞) = [
(𝑚
1
+ 𝑚
2
) 𝑔𝑎
1
cos 𝜃
1
+ 𝑚
2
𝑔𝑎
2
cos (𝜃

1
+ 𝜃
2
)

𝑚
2
𝑔𝑎
2
cos (𝜃

1
+ 𝜃
2
)

] .

(5)

Define

𝑁(𝑞, ̇𝑞) = 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞) = [
𝑁
1
(𝑞, ̇𝑞)

𝑁
2
(𝑞, ̇𝑞)

] ,

𝑀
−1

(𝑞) = [
𝑀
11
𝑀
12

𝑀
21
𝑀
22

] ;

(6)

then,

𝑓 (𝑥) =

[
[
[
[

[

𝜃
2

̇𝜃
2

Θ ̇𝜃
1

Ξ𝜃
1

]
]
]
]

]

, 𝐵 (𝑥) =

[
[
[
[

[

0 0

0 0

𝑀
11
𝑀
12

𝑀
21
𝑀
22

]
]
]
]

]

; (7)

here

Θ =
𝑀
22
(−𝑁
2
(𝑞, ̇𝑞)) + 𝑀

12
(−𝑁
1
(𝑞, ̇𝑞))

𝑥
1
(𝑡)

,

Ξ =
𝑀
22
(−𝑁
2
(𝑞, ̇𝑞)) + 𝑀

11
(−𝑁
1
(𝑞, ̇𝑞))

𝑥
2
(𝑡)

.

(8)

2.2. Problem Statement. The purpose of control is to deter-
mine an optimal closed loop control signal so that the
robot manipulator tracks the desired trajectory withminimal
energy consumption, The optimal control problem can be
formulated as follows.

Given system (3), find a closed loop control 𝑢(𝑡) ∈ R𝑛

such that the cost function

𝐽 = 𝛼
1
Φ
0
(𝑥 (𝑇)) + 𝛼

2
∫

𝑇

0

𝑢
𝑇

𝑅𝑢𝑑𝑡 (9)

isminimized, whereΦ
0
(𝑥(𝑇)) = (𝑥(𝑇) − 𝑥

𝑑
)
𝑇

𝑄(𝑥(𝑇)−𝑥
𝑑
),𝑇

is the free terminal time,𝑥
𝑑
is the desired trajectory,𝛼

1
and𝛼
2
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are the weighting parameters, and 𝑄 ∈ R2𝑛×2𝑛 and 𝑅 ∈ R𝑛×𝑛

are symmetric positive semidefinite and symmetric positive
definite weighting matrices, respectively.

We refer to the above problem as problem (𝑃). This
optimal close loop control problem is very difficult to be
solved directly. In this paper, we derive the form of the
optimal closed loop control law after obtaining an optimal
open loop control by using a time scaling transform and the
control parameterization technique.Then the difficulty of the
problem is transformed to find a feedback gain matrix which
is involved in the optimal closed loop control law. A practical
computational method is presented in [20] for finding an
approximate optimal feedback gain matrix, without having
to solve an optimal control problem involving the complex
Riccati-like matrix differential equation coupled with the
original system dynamics.

3. Parametric Approach to
the Optimal Controller Design

By using a time scaling transform and the control param-
eterization technique, the above problem is solved as an
optimal open loop control problem firstly. An optimal open
loop control and the corresponding optimal trajectory will be
provided.

Let the time horizon [0, 𝑇] be partitioned into 𝑝 subinter-
vals as follows:

0 = 𝑡
0
≤ 𝑡
1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑝
= 𝑇. (10)

The switching times 𝑡
𝑖
, 1 ≤ 𝑖 ≤ 𝑝, are regarded as decision

variables. Employing the time scaling transform introduced
in [19] to map these switching times into a set of fixed time
points 𝜃

𝑖
= 𝑖/𝑝, 𝑖 = 1, . . . , 𝑝, on a new time horizon [0, 1].

Then the following differential equation is achieved:

𝑑𝑡 (𝑠)

𝑑𝑠
= V𝑝 (𝑠) , 𝑠 ∈ [0, 1] , (11)

where

V𝑝 (𝑠) =
𝑝

∑

𝑖=1

𝜉
𝑖
𝜒
[𝜃𝑖−1 ,𝜃𝑖]

(𝑠) , (12)

where 𝜒
𝐼
(𝑠) denotes the indicator function of 𝐼 defined by

𝜒
𝐼
(𝑠) = {

1, 𝑠 ∈ 𝐼,

0, elsewhere,
(13)

and 𝜉
𝑖
≥ 0,∑

𝑝

𝑖=1
𝜉
𝑖
= 𝑇.

For 𝑠 ∈ [𝜃
𝑙−1
, 𝜃
𝑙
], we have

𝑡 (𝑠) =

𝑙−1

∑

𝑖=1

𝜉
𝑖
+ 𝜉
𝑙
(𝑠 − 𝜃

𝑙−1
) 𝑝, (14)

where 𝑙 = 1, . . . , 𝑝. Clearly,

𝑡 (1) =

𝑝

∑

𝑖=1

𝜉
𝑖
= 𝑇. (15)

Then after the time scaling transform, system (3) can be
converted into the following form:

𝑥 (𝑠) = V𝑝 (𝑠) [𝑓 (𝑥 (𝑠)) + 𝐵 (𝑥 (𝑠) , 𝑠) 𝑢̃ (𝑠)] , (16)

where 𝑥(𝑠) = [𝑥(𝑠)𝑇, 𝑡(𝑠)]
𝑇

, 𝑥(𝑠) = 𝑥(𝑡(𝑠)), and 𝑢̃(𝑠) = 𝑢(𝑡(𝑠)).
Now we apply the control parameterization technique to

approximate the control 𝑢̃(𝑠) as follows:

𝑢̃
𝑝

𝑖
(𝑠) =

𝑝+1

∑

𝑘=−1

𝜎
𝑖

𝑘
Ω((

1

𝑝
) 𝑠 − 𝑘) , 𝑖 = 1, . . . , 𝑛, (17)

where

Ω (𝜅) =

{{{{

{{{{

{

0, |𝜅| > 2,

−
1

6
|𝜅|
3

+ 𝜅
2

− 2 |𝜅| +
4

3
, 1 ≤ |𝜅| ≤ 2,

1

2
|𝜅|
3

− 𝜅
2

+
2

3
, |𝜅| < 2,

(18)

is the cubic spline basis function.
Define 𝜎𝑖 = [𝜎

𝑖

−1
, . . . , 𝜎

𝑖

𝑝+1
]
𝑇, 𝑖 = 1, . . . , 𝑛, and 𝜎 =

[(𝜎
1

)
𝑇

, . . . , (𝜎
𝑛

)
𝑇

]

𝑇

; letΠ denote the set containing all𝜎.Then
𝑢̃
𝑝

(𝑠) = [𝑢̃
𝑝

1
(𝑠), . . . , 𝑢̃

𝑝

𝑛
(𝑠)]
𝑇 is determined uniquely by the

switching vector 𝜎 ∈ Π. Thus, it can be written as 𝑢̃𝑝(⋅ | 𝜎).
Now the optimal parameterization selection problem, which
is an approximation of problem (𝑃), can be stated as follows.

Problem (𝑄). Given system (16), find a combined vector
(𝜎, 𝜉), such that the cost function

𝐽 (𝜎) = 𝛼
1
Φ̂
0
(𝑥 (1 | 𝜎))

+ 𝛼
2
∫

1

0

V𝑝 (𝑠 | 𝜉) 𝑢̃𝑝(𝑠 | 𝜎)𝑇𝑅𝑢̃𝑝 (𝑠 | 𝜎) 𝑑𝑠
(19)

is minimized, where Φ̂
0
(𝑥(1 | 𝜎)) = (𝑥(1 | 𝜎) − 𝑥

𝑑
)
𝑇

𝑆(𝑥(1 |

𝜎) − 𝑥
𝑑
) and 𝑥

𝑑
is the desired trajectory.

Now problem (𝑃) is approximated by a sequence of
optimal parameter selection problems, each of which can
be viewed as a mathematical programming problem and
hence can be solved by existing gradient-based optimization
methods. Here, our controls are approximated in terms of
cubic spline basis functions, and thus they are smooth.
problem (𝑄) can be solved easily by the use of the optimal
control software package MISER 3.3 [21].

Suppose that (𝑢̃𝑝∗, 𝑥∗) is the optimal solution of problem
(𝑄).Then it follows that the optimal solution to problem (𝑃) is
(𝑢
∗

, 𝑥
∗

, 𝑇
∗

), where 𝑢∗ is the optimal open loop control, 𝑥∗ is
the corresponding optimal state vector, and 𝑇∗ is the optimal
terminal time. For the computation of the optimal closed loop
control problem, we have the following theorem.

Theorem1. Theoptimal closed loop control 𝑢∗ for problem (𝑃)
is given by

𝑢
∗

(𝑡) =
1

2𝛼
2

𝑅
−1

𝐵
𝑇

𝐾 (𝑡) 𝑓 (𝑥
∗

(𝑡) , 𝑡) , (20)
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Figure 2: Position tracking of the end joint.

where 𝑥∗ is the optimal state and 𝐾(𝑡) is the solution of the
following Riccati-like differential equation

(𝐾̇ + 𝐾𝐹 + 𝐹
𝑇

𝐾 +
1

2
𝐾𝐹𝐵𝑅

−1

𝐵
𝑇

𝐾)𝑓 + 𝐾𝐷 = 0, (21)

where

𝐹 =
𝜕𝑓

𝜕𝑥
, 𝐷 =

𝜕𝑓

𝜕𝑡
,

𝐾 (𝑇) 𝑓 (𝑥 (𝑇) , 𝑇) = 𝛼
1

𝜕Φ
0
(𝑥 (𝑇))

𝜕𝑥 (𝑇)
= 2𝛼
1
(𝑥 (𝑇) − 𝑥

𝑑
) 𝑆.

(22)

The proof is similar to that given forTheorem 3.1 in [22].
Details can refer to this literature.

Problem (𝑅). Subject to the dynamical system (1), with 𝑢
given by Theorem 1, find a 𝐾(𝑡) such that the cost function
(17) also with 𝑢 is minimized.

By Theorem 1, although the form of the optimal closed
loop control law is given, the matrix function 𝐾(𝑡) is still
required to be obtained. The solving process involves solving
a new optimal control problem denoted as follow. Using the
method proposed in [20], problem (𝑅) could be solved well.

In [15], an alternative approach was proposed to con-
struct an approximate optimalmatrix function𝐾∗(𝑡)without
having to solve this complicated optimal control problem
(𝑅). The basic idea is explained as follows. Suppose that 𝑢∗
is an optimal open loop control of problem (𝑃) and that
𝑥
∗ is the corresponding optimal state. We now consider

problem (𝑃) with 𝑥 = 𝑥
∗, that is, along the optimal open

loop path, and our task is to find a 𝐾∗(𝑡) such that 𝑢̆∗ =
(1/2𝛼

2
)𝑅
−1

𝐵
𝑇

𝐾
∗

(𝑡)𝑓(𝑥
∗

(𝑡), 𝑡) best approximates the control
𝑢
∗ in the mean square sense. Then 𝑢̆∗ can be regarded as a

good approximate optimal feedback control for problem (𝑃).
The calculation steps of solving𝐾∗(𝑡) are as follows.

Step 1. The time horizon [0, 𝑇∗] is partitioned into 𝑝 equal
subintervals:

0 = 𝑡
0
≤ 𝑡
1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑝
≤ 𝑡
𝑝+1

= 𝑇
∗

. (23)

Step 2. Let

[𝐾(𝑡)
𝑖,𝑗
] ≈

𝑝+1

∑

𝑘=−1

(𝑐
𝑖,𝑗,𝑘
)Ω((

𝑇
∗

𝑝
) 𝑡 − 𝑘) , (24)

where 𝑐
𝑖,𝑗,𝑘
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = −1, 0, . . . , 𝑝 + 1, are

real constant coefficients that are to be determined. 𝑝 is the
number of equality subintervals on [0, 𝑇∗], and 𝑝 + 3 is
the total number of cubic spline basis functions used in the
approximation of each [𝐾(𝑡)

𝑖,𝑗
].

Step 3. Let

Υ (𝐾) = ∫

𝑇
∗

0

󵄩󵄩󵄩󵄩𝑢
∗

(𝑡) − 𝑢̆ (𝑡)
󵄩󵄩󵄩󵄩 𝑑𝑡,

(25)

where

𝑢̆ (𝑡) =
1

2𝛼
2

𝑅
−1

𝐵
𝑇

𝐾 (𝑡) 𝑓 (𝑥
∗

(𝑡) , 𝑡) . (26)

Step 4. Find coefficients 𝑐
𝑖,𝑗,𝑘

such that the cost function (25)
is minimized. These optimal coefficients can be obtained by
solving the following optimality conditions:

Λ =
𝜕Υ (𝐾)

𝜕𝑐
𝑖,𝑗,𝑘

= 0. (27)

We can see that these are linear equations and hence are easy
to solve.

4. Simulation

In this section, the simulations of the nonlinear optimal
control for the 2-link RR-robot manipulator are performed
to show the efficiency of the proposed method.

Assuming that the friction is negligible, two-link robot
manipulators is simulated with following parameters:

𝑚
1
= 1Kg,

𝑚
2
= 1Kg,

𝑎
1
= 1m,

𝑎
2
= 1m,

𝑔 = 9.8m/s2,

𝑥
0
= [1, 1]

𝑇

,

𝑥̇
0
= [1, 1]

𝑇

.

(28)
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Figure 3: Velocity tracking of the end joint.
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The control objective is to track the desired trajectory
given by

𝑞
1𝑑
= 1 + 0.2 cos (𝜋𝑡) ,

𝑞
2𝑑
= 1 + 0.2 sin (𝜋𝑡) .

(29)

The evolution of tracking errors are as follows

𝑒 = [𝑒
1
𝑒
2
]
𝑇

= [𝑞
1
− 𝑞
1𝑑

𝑞
2
− 𝑞
2𝑑
]
𝑇

. (30)

In the simulation, the time horizon [0, 𝑇] is partitioned
into 20 subintervals. 𝛼

1
= 3, 𝛼

2
= 1, and 𝑆 and 𝑅 are

unit matrices of proper dimension. We first use the time
scaling transform and the control parameterization method
to construct the corresponding approximated problem (𝑄).
Then, MISER 3.3 is utilized to solve it, giving rise to an
optimal open loop control and the corresponding optimal
trajectory. Then the feedback gain matrix 𝐾∗(𝑡) is obtained
by the above calculation steps.

Simulation results are shown in Figures 2 to 4. The
position tracking and the velocity tracking of the end joint
are shown in Figures 2 and 3, and the control input of the end
joint is shown in Figure 4.

5. Conclusions

A parametric approach to trajectory tracking control of robot
manipulators is studied in this paper, in which an optimal
open loop control is obtained firstly by using the control
parametrization method and the time scaling transform.
Then, we obtained the form of the optimal closed loop
control law, where the feedback gain matrix is required
to satisfy a Riccati-like matrix differential equation, and a
practical method was proposed to calculate the feedback gain
matrix.The simulation results demonstrate the validity of the
proposed method.
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