
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 891738, 10 pages
http://dx.doi.org/10.1155/2013/891738

Research Article
Turing Patterns in a Predator-Prey System with Self-Diffusion

Hongwei Yin, Xiaoyong Xiao, and Xiaoqing Wen

School of Science, Nanchang University, Nanchang 330031, China

Correspondence should be addressed to Hongwei Yin; hongwei-yin@hotmail.com

Received 24 June 2013; Revised 17 September 2013; Accepted 2 October 2013

Academic Editor: Francisco Soĺıs Lozano
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For a predator-prey system, cross-diffusion has been confirmed to emerge Turing patterns. However, in the real world, the tendency
for prey and predators moving along the direction of lower density of their own species, called self-diffusion, should be considered.
For this, we investigate Turing instability for a predator-prey system with nonlinear diffusion terms including the normal diffusion,
cross-diffusion, and self-diffusion. A sufficient condition of Turing instability for this system is obtained by analyzing the linear
stability of spatial homogeneous equilibrium state of this model. A series of numerical simulations reveal Turing parameter regions
of the interaction of diffusion parameters. According to these regions, we further demonstrate dispersion relations and spatial
patterns. Our results indicate that self-diffusion plays an important role in the spatial patterns.

1. Introduction

In ecological systems, the interactions of different species
indicate abundant dynamical features. It is informative to use
mathematical model to study the interactions of species in
these systems. Among these models, predator-prey systems,
which were based on the pioneering works of Volterra
[1], have been important in ecological problems. However,
since we live in a spatial world, the predator-prey systems
should include spatial factors. Thus, these systems should
be described by using reaction-diffusion equations. As a
result, it is an open problem to understand spatiotemporal
behaviors of the temporal-spatial predator-prey systems [2–
11]. Thereinto, the formation of spatial patterns of predator-
prey systems is a very active research area [12–15], which is
based on the pioneering work of Turing [16] in 1952.

In recent years, there are a lot of bodies of literature to
study the predator-prey system by taking into account the
normal diffusion as well as cross-diffusion [17–20]. Normal
diffusion is a natural phenomenon of the movement of the
prey or the predators from higher-density regions to lower-
density ones. Cross-diffusion of the prey expresses a flux of
the prey because of the presence of the predators and vice
versa. Furthermore, in predator-prey systems, cross-diffusion
can induce Turing instability to produce spatial patterns

even though spatial homogeneous equilibrium states for the
corresponding system in the absence of cross-diffusion are
stable [8, 11, 21–28].

Besides the normal diffusion and the cross-diffusion of
the predator and prey in ecological systems, there exists, in
fact, another diffusion form—self-diffusion for the pressure
of their own species. It can describe the tendency to move
along the direction of lower density of the predator’s and
prey’s own species [29]. Unfortunately, most of the studies
mainly focused on well-posedness of solutions for predator-
prey systems with self-diffusion [30, 31]. Little attention was
paid to examine Turing patterns of these systems. Based on
the above discussion, in this paper we mainly concentrate
on Turing instability of a predator-prey system that includes
a normal diffusion, cross-diffusion, and self-diffusion terms.
To this end, we find a sufficient condition to generate Turing
patterns. By using numerical simulation, for this system we
examine parameter regions of forming patterns and show
snapshots of spatial patterns.

The paper is organized as follows. In Section 2, we
build the predator-prey model with nonlinear diffusion
terms including normal diffusion, cross-diffusion, and self-
diffusion terms and the biological meaning of these param-
eters are interpreted. In Section 3, we find the sufficient
condition of Turing instability. By performing a series of
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numerical simulations, we locate the Turing parameter spaces
when parts of the parameters are fixed in Section 4. In
Section 5, by choosing values of some parameters from
the Turing parameter spaces, we illustrate Turing patterns.
Finally, some conclusions and discussions are given.

2. A Predator-Prey Model with
Nonlinear Diffusion

In this paper, we are interested in the spatiotemporal pat-
terns of the following predator-prey system with nonlinear-
diffusion terms.Mathematical properties for this system have
been investigated in [30, 31]:
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where Ω is a bounded domain in R2 with smooth boundary
𝜕Ω and represents the domain that these two species inhabit.
The vector 𝑛 is the outward unit normal vector of Ω. In this
model, 𝑢
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movement of a species. The positive constants 𝑎
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referred to as cross-diffusion coefficients, which describe that
the prey tends to avoid higher density of the predators and
vice versa by diffusing away. In addition, for the predators and
the prey, the positive constants 𝑎

11
and 𝑎
22
are self-diffusion

rates due to pressure within their own species.
Next, we want to look for the condition on the parameter

values such that a positive homogeneous equilibrium state is
linearly stable in the absence of the cross-diffusion and the
self-diffusion (i.e., a normal reaction-diffusion system) but
unstable in the present of the cross-diffusion and the self-
diffusion.
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Notation 2. For the sake of simplicity, we denote reaction
terms for systems (1) by
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3. Linear Stability Analysis of System (1) with
a Normal Diffusion

Let 𝑎
𝑖𝑗
= 0 for 𝑖, 𝑗 = 1, 2; then the system (1) degenerates into

standard reaction-diffusion equations:
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Then, there exists a unique positive equilibrium state for
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Theorem 1. If there are no cross-diffusion and self-diffusion,
the positive equilibrium state u∗ of the system (6) is locally
asymptotically stable when condition [𝐶1] holds.

Proof. The linearization of (6) around the steady state u∗ can
be therefore expressed by
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By Theorem 1, under condition [𝐶1] system (6) cannot
destabilize u∗. Next, the cross-diffusion and self-diffusion are
taken into account.
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Figure 1: Turing parameter spaces for the system (1). Inside the gray zones, u∗ is unstable, while, for parameters outside these zones, u∗
remains stable.These graphics are obtained by fixing parameters in (21); besides 𝑎
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Remark 4. Theorem 3 is available for a case of the system
(1) equipped with cross-diffusion and self-diffusion; that is,
𝑎
11

̸= 0, 𝑎
12

̸= 0 and 𝑎
22

̸= 0. When 𝑎
11
= 𝑎
12
= 𝑎
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= 0 and
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̸= 0, the system (1) possesses a diffusion term the same as
in [22].

Corollary 5. If 𝑎
21
= 0, then the homogeneous steady state u∗

of the system (1) is always stable.

4. Turing Parameter Space

In this section, we will find some parameter regions of
nonlinear diffusion coefficients where the equilibrium state

u∗ is unstable. For this, according to (15) the sufficient
condition of Turing instability is 𝑏 < 0 and 𝑏2 − 4𝑎𝑐 > 0

besides [𝐶1] and [𝐶2]. In this paper, the parameter values
satisfying conditions [𝐶1] and [𝐶2] are taken as follows:
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Then, for these fixed parameters the homogeneous
steady state u∗ is given by (𝑢∗
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) = (3.4483, 14.4828).

In Figure 1, we examine the parameter regions where
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Figure 2: Dispersion relations for different parameters: in (a), curves of the real part of the eigenvalue are derived by taking 𝑎
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the homogeneous steady state u∗ is expected to be
unstable. These charts are obtained by fixed parameters
in (21) as well as 𝑎

12
= 𝑎
22

= 0.01 for Figure 1(a),
𝑎
11
= 𝑎
22
= 0.01 for Figure 1(b), and 𝑎

11
= 𝑎
12
= 0.01 for

Figure 1(c).
From themathematical viewpoint, the Turing bifurcation

occurs when for the characteristic root of (13), Im(𝜆(𝜇)) = 0
and Re(𝜆(𝜇)) = 0 at 𝜇 = 𝜇

𝑐
̸= 0. Next, we will look for the

critical wave of spatial patterns and note the relationship of 𝜇

and the wave number 𝑘; that is, 𝜇 = 𝑘
2 [26]. Thus, we only

need to confirm that
min
𝑘

det (Gu (u
∗
) − 𝑘
2
Φu) = 0. (22)

Then, the Turing bifurcation thresholds of parameters
satisfy the following equation:

4 det (Gu (u
∗
)) det (Φu (u

∗
))

= (Φ
11
G
22
+ Φ
22
G
11
− Φ
21
G
12
− Φ
12
G
21
)
2

,
(23)
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Figure 3: Snapshots of contour pictures of time evolution of 𝑢
1
and 𝑢

2
. From top to bottom: patterns of 𝑢

1
, 𝑢
2
for 𝑎
11
= 0.05 and of 𝑢

1
, 𝑢
2
for

𝑎
11
= 0.1. From left to right: 2 × 103 iterations, 4 × 104 iterations, and 1 × 106 iterations. Other diffusion parameters: 𝑎

12
= 𝑎
22
= 0.01 and

𝑎
21
= 10.

and the critical wavenumber 𝑘
𝑐
satisfies

𝑘
2

𝑐
=
(Φ
11
G
22
+ Φ
22
G
11
− Φ
21
G
12
− Φ
12
G
21
)

(2 det (Φu (u∗)))
. (24)

To well see the effect of the nonlinear diffusion, according to
Turing parameter regions in Figure 1 we plot the dispersion
relations in Figure 2. The critical parameter values in Fig-
ure 2(a) correspond to 𝑎

11
= 0.201, 𝑎

12
= 0.353 in Figure 2(b),

and 𝑎
22
= 0.558 in Figure 2(c). In addition, we find that the

lowest limit of wavenumber 𝑘 corresponding to the available

Turing modes Re(𝜆) > 0 turns small with 𝑎
11

increasing in
Figure 2(a), with 𝑎

12
increasing in Figure 2(b), and with 𝑎

22

increasing in Figure 2(c).

5. Pattern Formation

In this section, using numericalmethods, we performnumer-
ical simulations of the system (1) in a two-dimensional space
and illustrate that cross-diffusion and self-diffusion induce
spatial patterns. Throughout this section, we assume that
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Figure 4: Snapshots of contour pictures of time evolution of 𝑢
1
and 𝑢

2
. From top to bottom: patterns of 𝑢

1
, 𝑢
2
for 𝑎
12
= 0.15 and of 𝑢

1
, 𝑢
2
for

𝑎
12
= 0.3. From left to right: 2 × 103 iterations, 4 × 104 iterations, and 1 × 106 iterations. Other diffusion parameters: 𝑎

11
= 𝑎
22
= 0.01 and

𝑎
21
= 10.

the region of the system (1) is [0, 𝐿] × [0, 𝐿] ⊂ R2. Hence,
according to the definition of the eigenvalue 𝜇

𝑖
in Notation 2,

we can obtain 𝜇
𝑖
= ((𝑖 − 1)𝜋/𝐿)

2. To numerically solve partial
differential equations, we first have to discretize the space-
time of the system (1). The region of [0, 𝐿] × [0, 𝐿] is solved
in a discrete domain with 𝑀 × 𝑁 lattice sites. The length
of the lattices is defined by a constant ℎ. The time is also
discrete by a constant step 𝜏. All our numerical simulations
employ the Neumann boundary condition. Here, we use the
standard five-point approximation for the two-dimensional
Laplacian derivative and the time evolution is solved by using

the Eulermethod.More precisely, the value (𝑢𝑛+1
1,𝑖,𝑗
, 𝑢
𝑛+1

2,𝑖,𝑗
) at the

time (𝑛 + 1)𝜏 at the mesh position (𝑥
𝑖
, 𝑦
𝑖
) is obtained by

𝑢
𝑛+1

1,𝑖,𝑗
= 𝑢
𝑛

1,𝑖,𝑗
+ 𝜏ΔΦ

1
+ 𝜏𝐺
1
(𝑢
𝑛

1,𝑖,𝑗
, 𝑢
𝑛

2,𝑖,𝑗
) ,

𝑢
𝑛+1

2,𝑖,𝑗
= 𝑢
𝑛

2,𝑖,𝑗
+ 𝜏ΔΦ

2
+ 𝜏𝐺
2
(𝑢
𝑛

1,𝑖,𝑗
, 𝑢
𝑛

2,𝑖,𝑗
) ,

(25)

with Laplacian defined by

ΔΦ
1
=
Φ
1
(𝑢
1,𝑖+1,𝑗

, 𝑢
2,𝑖+1,𝑗

) + Φ
1
(𝑢
1,𝑖−1,𝑗

, 𝑢
2,𝑖−1,𝑗

)

ℎ2
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Figure 5: Snapshots of contour pictures of time evolution of 𝑢
1
and 𝑢

2
. From top to bottom: patterns of 𝑢

1
, 𝑢
2
for 𝑎
22
= 0.35 and of 𝑢

1
, 𝑢
2
for

𝑎
22
= 0.508. From left to right: 2 × 103 iterations, 4 × 104 iterations, and 1 × 106 iterations. Other diffusion parameters: 𝑎

11
= 𝑎
12
= 0.01 and

𝑎
21
= 5.06.

+
Φ
1
(𝑢
1,𝑖,𝑗+1

, 𝑢
2,𝑖,𝑗+1

) + Φ
1
(𝑢
1,𝑖,𝑗−1

, 𝑢
2,𝑖,𝑗−1

)

ℎ2

−
4Φ
1
(𝑢
1,𝑖,𝑗
, 𝑢
2,𝑖,𝑗
)

ℎ2
.

(26)

In this paper, we set ℎ = 1, 𝜏 = 0.001, and𝑀 = 𝑁 = 100.
The initial data of the system (1) is taken as a uniformly

distributed random perturbation in order of 1 × 10−4 around
the homogeneous equilibrium state u∗. More precisely,

𝑢
1
(𝑥, 0) = 𝑢

∗

1
+ 𝜂
1
(𝑥) , 𝑢

2
(𝑥, 0) = 𝑢

∗

2
+ 𝜂
2
(𝑥) ,

(27)

where 𝜂
1
, 𝜂
2
∈ [−1 × 10

−4
, 1 × 10

−4
]. We simulate different

patterns according to the dispersion relations in Figure 2.
In Figure 3, we show the evolution of the spatial patterns

of the prey and the predators at 2 × 103, 4 × 104, and 1 × 106
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iterations for 𝑎
11
= 0.05, 0.1 when we set 𝑎

21
= 10, 𝑎

12
= 0.01,

and 𝑎
22

= 0.01. One can see that the patterns arise from
random initial conditions. After the cold spot patterns for the
prey and the hot spot patterns for the predator arise, they
turn steadily with time until these patterns are temporally
independent. In addition, for 𝑎

11
= 0.1 the cold spot patterns

for the prey and the hot spot patterns for the predator are
looser compared with those for 𝑎

11
= 0.05.

In Figure 4, we fix 𝑎
11
= 0.01, 𝑎

22
= 0.01, and 𝑎

21
=

10 and obtain the spatial patterns of species 𝑢
1
, 𝑢
2
of time

evolution for 𝑎
12

= 0.15 and 𝑎
12

= 0.3. For the case of
𝑎
12

= 0.15, the random initial distribution leads to the
formation of irregular patterns. After a long time evolution,
we find that the cold spot-strip patterns emerge for the prey𝑢

1

and that the hot spot-strip patterns for the predator 𝑢
2
arise.

However, in the case of 𝑎
12
= 0.3, the steady patterns of the

prey 𝑢
1
consist of hot spots in a bigger size, while the steady

patterns of the predator 𝑢
2
are in the formation of bigger cold

spots.
In Figure 5, diffusion parameters are set as 𝑎

11
= 𝑎
12
= 0

and 𝑎
21
= 5.06. We plot the patterns for 𝑎

22
= 0.35 and 𝑎

22
=

0.508, respectively. For both cases, one can see that as time
goes on, the cold spot patterns of the prey 𝑢

1
and the hot spot

patterns of the predator 𝑢
2
ultimately form.

6. Conclusion and Discussion

In this paper, we have studied the prey-predator model with
the nonlinear diffusions including normal diffusion, cross-
diffusion, and self-diffusion. By applying the mathematical
analysis and suitable numerical simulations, we obtain the
sufficient conditions of the formation of Turing patterns
for this nonlinear diffusion and illustrate Turing parameter
regions and Turing patterns when some parameters in system
(1) are set.

In our results, we have provided Theorems 1 and 3
to demonstrate that for the nonlinear diffusion including
self-diffusion and the cross-diffusion of the predator, the
parameter 𝑎

21
plays an important role to induce Turing

instability. Furthermore, if 𝑎
21
= 0, then the homogeneous

equilibrium state u∗ is always stable; that is, the system (1) has
no Turing patterns. By performing numerical simulations,
we find the Turing parameter regions of the interaction
between cross-diffusion 𝑎

21
and other diffusion terms includ-

ing cross-diffusion of the other species and self-diffusions.
Besides, according to these parameter regions, we show the
corresponding dispersion relations and the corresponding
patterns. These results indicate that Turing patterns can
emerge through the interaction between the cross-diffusion
𝑎
21
and self-diffusion as well as other cross-diffusions in the

system (1).
It is well known that for a prey-predator system, the

formation of patterns can occur by introducing the cross-
diffusion. However, our results further show that under
condition (seeTheorem 3), self-diffusion can produce Turing
patterns.
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