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This paper shows the following. (1) X is a uniformly non-𝑙(1)3 space if and only if there exist two constants 𝛼, 𝛽 > 0 such that, for
every 3-dimensional subspace Y of X, there exists a ball-coveringB of Y with 𝑐(B) = 4 or 5 which is 𝛼-off the origin and 𝑟(B) ≤ 𝛽.
(2) If a separable space X has the Radon-Nikodym property, then X∗ has the ball-covering property. Using this general result, we
find sufficient conditions in order that an Orlicz function space has the ball-covering property.

1. Introduction

Let (𝑋, ‖ ⋅‖) be a real Banach space. 𝑆(𝑋) and 𝐵(𝑋) denote the
unit sphere and unit ball, respectively. 𝑋∗ denote the dual
space of𝑋. Let𝐵(𝑥, 𝑟) denote the closed ball centered at 𝑥 and
of radius 𝑟 > 0. Let 𝑁, 𝑅, and 𝑅+ denote the set of natural
numbers, reals, and nonnegative reals, respectively.

It is no doubt that the study of geometric and topological
properties of unit balls of normed spaces has played an
important role in geometry of Banach spaces. Almost all
properties of Banach spaces, such as convexity, smoothness,
reflexivity, and the Radon-Nikodym property, can be viewed
as the corresponding properties of their unit balls. We should
mention here that there are many topics studying behavior
of ball collections. For example, theMazur intersection prop-
erty, the packing sphere problem of unit balls, the measure of
noncompactness with respect to topological degree, and the
ball topology have also brought great attention ofmanymath-
ematicians.

Starting with a different viewpoint, a notion of ball-cov-
ering property is introduced by Cheng [1].

Definition 1. A Banach space is said to have the ball-covering
property if its unit sphere can be contained in the union of
countably many balls off the origin. In this case, we also say
that the norm has ball-covering property.

In [2], it was established that if 𝑋 is a locally uniformly
convex space and 𝐵(𝑋∗) is𝑤∗-separable, then𝑋 has the ball-
covering property. In [3], Cheng proved that by constructing
the equivalent norms on 𝑙∞, there exists a Banach space (𝑙∞,
‖ ⋅ ‖
0
) such that (𝑙∞, ‖ ⋅ ‖0) has not ball-covering property. In

[4], it was established that for every 𝜀 > 0 every Banach space
with a 𝑤∗-separable dual has an 1 + 𝜀-equivalent norm with
the ball-covering property. For a ball-covering B = {𝐵(𝑥𝑖;

𝑟𝑖)}𝑖∈𝐼 of𝑋, we denote by 𝑐(B) its cardinality and by 𝑟(B) the
least upper bound of the radius set {𝑟𝑖}𝑖∈𝐼, and we call it the
radius ofB. We say that a ball covering is minimal if its car-
dinality is the smallest of all cardinalities of ball coverings.We
call a given ball covering B𝛼-off the origin if inf{‖𝑥‖ : 𝑥 ∈

∪B} ≥ 𝛼. LetBmin = Bmin(𝑋) be any minimal ball covering
of𝑋. Cheng [1] showed the following results.

Proposition 2. Suppose that 𝑋 is an 𝑛-dimensional Banach
space. Then

(1) 𝑛 + 1 ≤ 𝑐(Bmin) ≤ 2𝑛;

(2) if𝑋 is smooth, then 𝑐(Bmin) = 𝑛 + 1;

(3) 𝑐(Bmin) = 2𝑛 if and only if 𝑋 is isometric to (𝑅𝑛,
‖ ⋅ ‖∞).

It is easy to see that (𝑅𝑛, ‖ ⋅ ‖1) is isometric to (𝑅𝑛, ‖ ⋅ ‖∞).
Moreover, Cheng [5, 6] showed the following results.
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Proposition 3. Suppose that𝑋 is a Banach space. Then𝑋 is a
uniformly nonsquare space if and only if there exist two con-
stants 𝛼, 𝛽 > 0 such that, for every 2-dimensional subspace𝑌 of
𝑋, there exists a ball-covering B of 𝑌 with 𝑐(B) = 3 which is
𝛼-off the origin and 𝑟(B) ≤ 𝛽.

Definition 4. ABanach space𝑋 is said to be non-𝑙(1)𝑛 space, if,
for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑆(𝑋),

min {󵄩󵄩󵄩󵄩𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 : 𝜉𝑖 = ±1, 𝑖 ∈ {1, 2, . . . , 𝑛}}

< 𝑛.

(1)

Definition 5. A Banach space 𝑋 is said to be uniformly non-
𝑙(1)𝑛 space, if there exists 𝛿 > 0 such that, for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈
𝑆(𝑋),

min {󵄩󵄩󵄩󵄩𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 : 𝜉𝑖 = ±1, 𝑖 ∈ {1, 2, . . . , 𝑛}}

< 𝑛 − 𝛿.

(2)

Relationships between various kinds of convexity of Ba-
nach spaces and reflexivity have been developed by many
authors. Giesy [7] and James [8] raised the question whether
Banach spaces which are uniformly non-𝑙(1)𝑛 with some pos-
itive integer 𝑛 ≥ 2 are reflexive. James [8] settled the question
affirmatively for 𝑛 = 2 and gave a partial result for 𝑛 = 3.
Afterwards, the same author presented in [9] an example of a
nonreflexive uniformly non-𝑙(1)3 Banach space.

Definition 6. A Banach space 𝑋 is said to have the Radon-
Nikodym property whenever if (𝑇, Σ, 𝜇) is a nonatomic mea-
sure space and V is a vector measure on Σ with values in 𝑋
which is absolutely continuous with respect to 𝜇 and has
bounded variation; then there exists 𝑓 ∈ 𝐿1(𝑋) such that, for
any 𝐴 ∈ Σ,

V (𝐴) = ∫
𝐴

𝑓 (𝑡) 𝑑𝑡. (3)

Let us recall some geometrical notions that will be used
in the further part of this paper. A point 𝑥 ∈ 𝐶 is said to be a
strongly exposed point of 𝐶 if there exists 𝑥∗ ∈ 𝑋∗ such that
𝑥𝑛 → 𝑥whenever 𝑥∗(𝑥𝑛) → 𝑥∗(𝑥) = sup{𝑥∗(𝑥) : 𝑥 ∈ 𝐶}. It
is well known that Banach spaces have the Radon-Nikodym
property if and only if every bounded closed convex subset of
𝑋 is the closed convex hull of its strongly exposed points. A
point 𝑥 ∈ 𝑆(𝑋) is said to be a smooth point if it has a unique
supporting functional𝑓𝑥. If every 𝑥 ∈ 𝑆(𝑋) is a smooth point,
then 𝑋 is called smooth. Let 𝐷 be a nonempty open convex
subset of 𝑋 and let 𝑓 be a real-valued continuous convex
function on 𝐷. Recall that 𝑓 is said to be Gateaux differenti-
able at the point 𝑥 in𝐷 if the limit

𝑓
󸀠
(𝑥) (𝑦) = lim

𝑡→0

𝑓 (𝑥 + 𝑡𝑦) − 𝑓 (𝑥)

𝑡
(∗)

exists for all 𝑦 ∈ 𝑋. When this is the case, the limit is a con-
tinuous linear function of 𝑦, denoted by 𝑓󸀠(𝑥).

In this paper, firstly, we prove that 𝑋 is a uniformly non-
𝑙
(1)
3 nonsquare if and only if there exist two constants 𝛼, 𝛽 > 0
such that, for every 3-dimensional subspace 𝑌 of 𝑋, there
exists a ball-coveringB of𝑌with 𝑐(B) = 4 or 5 which is 𝛼-off
the origin and 𝑟(B) ≤ 𝛽. Secondly, we will also prove that if a
separable Banach space𝑋 has the Radon-Nikodym property,
then 𝑋∗ has the ball-covering property. Using this general
result, we find sufficient conditions for an Orlicz function
space to have ball-covering property. The topic of this paper
is related to the topic of [1–6, 10–12].

2. Main Results

Theorem 7. Suppose that 𝑋 is a Banach space. Then, 𝑋 is a
uniformly non-𝑙(1)3 space if and only if there exist two constants
𝛼, 𝛽 > 0 such that, for every 3-dimensional subspace 𝑌 of 𝑋,
there exists a ball-coveringB of 𝑌 with 𝑐(B) = 4 or 5 which is
𝛼-off the origin and 𝑟(B) ≤ 𝛽.

In order to prove the theorem, we give some lemmas.

Lemma 8. Let {𝑥𝑛}
∞
𝑛=1 and {𝑦𝑛}

∞
𝑛=1 be sequences in 𝑋. If 𝛼𝑛 ≥

0, 𝛽𝑛 ≥ 0, and lim𝑛→∞‖𝑥𝑛 + 𝑦𝑛‖ = lim𝑛→∞‖2𝑥𝑛‖ =

lim𝑛→∞‖2𝑦𝑛‖ = 2, then lim𝑛→∞‖𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛‖ = 1 if and
only if lim𝑛→∞(𝛼𝑛 + 𝛽𝑛) = 1.

Proof

Sufficiency. Let lim𝑛→∞(𝛼𝑛 + 𝛽𝑛) = 1. By lim𝑛→∞‖𝑥𝑛‖ =

lim𝑛→∞‖𝑦𝑛‖ = 1, we obtain that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 ≤ lim sup
𝑛→∞

(𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩)

= lim sup
𝑛→∞

(𝛼𝑛 + 𝛽𝑛) = 1.
(4)

Moreover, wemay assumewithout loss of generality that 𝛼𝑛 ≥
𝛽𝑛. Noticing that lim𝑛→∞‖𝑥𝑛 + 𝑦𝑛‖ = lim𝑛→∞‖2𝑥𝑛‖ =

lim𝑛→∞‖2𝑦𝑛‖ = 2, we have

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

= lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 + 𝑦𝑛) − (𝛼𝑛 − 𝛽𝑛) 𝑦𝑛
󵄩󵄩󵄩󵄩

≥ lim inf
𝑛→∞

(𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦𝑛

󵄩󵄩󵄩󵄩 − (𝛼𝑛 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩)

= lim inf
𝑛→∞

(𝛼𝑛 + 𝛽𝑛)

= 1.

(5)

Hence, we have lim𝑛→∞‖𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛‖ = 1.

Necessity. Let lim𝑛→∞‖𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛‖ = 1. By (𝛼𝑛 + 𝛽𝑛)
−1
(𝛼𝑛 +

𝛽𝑛) = 1 for any 𝑛 ∈ 𝑁 and the sufficiently part of the proof
that has been just finished, we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑥𝑛 +

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 1. (6)
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This implies that

1 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(𝛼𝑛 + 𝛽𝑛)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑥𝑛 +

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(𝛼𝑛 + 𝛽𝑛) ,

(7)

which completes the proof.

Lemma 9. If {𝑥𝑛}
∞
𝑛=1, {𝑦𝑛}

∞
𝑛=1, and {𝑧𝑛}

∞
𝑛=1 are three sequences

and lim𝑛→∞min{‖𝜉1𝑥𝑛 + 𝜉2𝑦𝑛 + 𝜉3𝑧𝑛‖ : 𝜉𝑖 = ±1} =

lim𝑛→∞‖3𝑥𝑛‖ = lim𝑛→∞‖3𝑦𝑛‖ = lim𝑛→∞‖3𝑧𝑛‖ = 3, then

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑛 +

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑥𝑛 +

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 2. (8)

Proof. Since lim𝑛→∞min{‖𝜉1𝑥𝑛 + 𝜉2𝑦𝑛 + 𝜉3𝑧𝑛‖ : 𝜉𝑖 = ±1} =
lim𝑛→∞‖3𝑥𝑛‖ = lim𝑛→∞‖3𝑦𝑛‖ = lim𝑛→∞‖3𝑧𝑛‖ = 3,
we obtain that lim inf𝑛→∞‖𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛‖ = 3 and
lim inf𝑛→∞‖𝑥𝑛−𝑦𝑛+𝑧𝑛‖ = 3.Therefore, by lim𝑛→∞‖𝑥𝑛‖ = 1
and lim𝑛→∞‖𝑦𝑛‖ = 1, we have

2 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 + lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

≥ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦𝑛
󵄩󵄩󵄩󵄩

≥ lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑧𝑛

󵄩󵄩󵄩󵄩)

≥ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛
󵄩󵄩󵄩󵄩 − lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩

= 2.

(9)

Noticing that lim sup𝑛→∞‖𝑥𝑛 + 𝑦𝑛‖ ≤ 2, we have
lim𝑛→∞‖𝑥𝑛+𝑦𝑛‖ = 2. Similarly, we have lim𝑛→∞‖𝑥𝑛−𝑦𝑛‖ =
2. This implies that lim𝑛→∞min{‖𝑥𝑛 − 𝑦𝑛‖, ‖𝑥𝑛 + 𝑦𝑛‖} = 2.
Moreover, wemay assumewithout loss of generality that 𝛼𝑛 ≥
𝛽𝑛. Then

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑛 +

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑥𝑛 +

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛) −

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
(𝑥𝑛 − 𝑦𝑛) −

𝛽𝑛 − 𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≥ lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛

󵄩󵄩󵄩󵄩 −
𝛽𝑛

𝛼𝑛 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 −

𝛼𝑛 − 𝛽𝑛

𝛼𝑛 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩)

= lim inf
𝑛→∞

(3 −
2𝛽𝑛

𝛼𝑛 + 𝛽𝑛
−
𝛼𝑛 − 𝛽𝑛

𝛼𝑛 + 𝛽𝑛
)

= 2.

(10)

Moreover, it is easy to see that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑛 +

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑥𝑛 +

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 2. (11)

This implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑛 +

𝛼𝑛

𝛼𝑛 + 𝛽𝑛
𝑥𝑛 +

𝛽𝑛

𝛼𝑛 + 𝛽𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 2, (12)

which completes the proof.

Lemma 10. Suppose that 𝑋 is a Banach space. Then, 𝑋 is a
uniformly non-𝑙(1)3 space if and only if there exists 𝜀 > 0 such
that, for every 3-dimensional subspace 𝑋3 of 𝑋, if 𝑇 : 𝑋3 →

(𝑅3, ‖ ⋅ ‖1) is a linear isomorphism, then ‖𝑇‖ ⋅ ‖𝑇−1‖ ≥ 1 + 𝜀.

Proof

Necessity. Suppose that, for any natural number 𝑘, there exist a
3-dimensional subspace 𝑋3,𝑘 of 𝑋 and a linear operator 𝑇𝑘
such that𝑇𝑘 : 𝑋3,𝑘 → (𝑅3, ‖ ⋅ ‖1) is a linear isomorphism and
‖𝑇𝑘‖ ⋅‖𝑇

−1
𝑘 ‖ < 1+1/𝑘. Wemay assume without loss of gener-

ality that ‖𝑇𝑘‖ = 1. Moreover, it is easy to see that there exist
𝑦1, 𝑦2, 𝑦3 ∈ 𝑆((𝑅

3, ‖ ⋅ ‖1)) such that

min {󵄩󵄩󵄩󵄩𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉𝑛𝑦3
󵄩󵄩󵄩󵄩 : 𝜉𝑖 = ±1} = 3. (13)

By ‖𝑇𝑘‖ ⋅ ‖𝑇
−1
𝑘 ‖ < 1 + 1/𝑘 and ‖𝑇𝑘‖ = 1, we have

1 ≤
󵄩󵄩󵄩󵄩󵄩
𝑇
−1

𝑘 𝑦1
󵄩󵄩󵄩󵄩󵄩
≤ 1 +

1

𝑘
, 1 ≤

󵄩󵄩󵄩󵄩󵄩
𝑇
−1

𝑘 𝑦2
󵄩󵄩󵄩󵄩󵄩
≤ 1 +

1

𝑘
,

1 ≤
󵄩󵄩󵄩󵄩󵄩
𝑇
−1

𝑘 𝑦3
󵄩󵄩󵄩󵄩󵄩
≤ 1 +

1

𝑘
.

(14)

Let

𝑥1,𝑘 =
𝑇
−1
𝑘 𝑦1

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦1
󵄩󵄩󵄩󵄩
, 𝑥2,𝑘 =

𝑇
−1
𝑘 𝑦2

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦2
󵄩󵄩󵄩󵄩
, 𝑥3,𝑘 =

𝑇
−1
𝑘 𝑦3

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦3
󵄩󵄩󵄩󵄩
.

(15)

Then

3 ≥ min {󵄩󵄩󵄩󵄩𝜉1𝑥1,𝑘 + 𝜉2𝑥2,𝑘 + 𝜉3𝑥3,𝑘
󵄩󵄩󵄩󵄩 : 𝜉𝑖 = ±1}

= min{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉1

𝑇
−1
𝑘 𝑦1

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦1
󵄩󵄩󵄩󵄩
+ 𝜉2

𝑇
−1
𝑘 𝑦2

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦2
󵄩󵄩󵄩󵄩
+ 𝜉3

𝑇
−1
𝑘 𝑦3

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦3
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: 𝜉𝑖 = ±1}

=
󵄩󵄩󵄩󵄩𝑇𝑘

󵄩󵄩󵄩󵄩min{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉1

𝑇−1𝑘 𝑦1
󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦1
󵄩󵄩󵄩󵄩
+ 𝜉2

𝑇−1𝑘 𝑦2
󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦2
󵄩󵄩󵄩󵄩
+ 𝜉3

𝑇−1𝑘 𝑦3
󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦3
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: 𝜉𝑖=±1}

≥ min{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉1
𝑇𝑘𝑇
−1
𝑘 𝑦1

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦1
󵄩󵄩󵄩󵄩
+ 𝜉2

𝑇𝑘𝑇
−1
𝑘 𝑦2

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦2
󵄩󵄩󵄩󵄩
+ 𝜉3

𝑇𝑘𝑇
−1
𝑘 𝑦3

󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦3
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: 𝜉𝑖 = ±1}

= min{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉1

𝑦1
󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦1
󵄩󵄩󵄩󵄩
+ 𝜉2

𝑦2
󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦2
󵄩󵄩󵄩󵄩
+ 𝜉3

𝑦3
󵄩󵄩󵄩󵄩𝑇
−1
𝑘
𝑦3
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: 𝜉𝑖 = ±1} .

(16)

Therefore, by (13) and (14), we have

lim
𝑘→∞

min {󵄩󵄩󵄩󵄩𝜉1𝑥1,𝑘 + 𝜉2𝑥2,𝑘 + 𝜉3𝑥3,𝑘
󵄩󵄩󵄩󵄩 : 𝜉𝑖 = ±1} = 3, (17)

a contradiction. This implies that if there exists 𝜀 > 0 such
that, for every 3-dimensional subspace 𝑋3 of 𝑋, if 𝑇 : 𝑋3 →
(𝑅3, ‖ ⋅ ‖1) is a linear isomorphism, then ‖𝑇‖ ⋅ ‖𝑇−1‖ ≥ 1 + 𝜀.

Sufficiency. Suppose that 𝑋 is not a uniformly non-𝑙(1)3 space.
Then, for any natural number 𝑘, there exist 𝑥1,𝑘, 𝑥2,𝑘, 𝑥3,𝑘 ∈
𝑆(𝑋) such that

lim
𝑘→∞

min {󵄩󵄩󵄩󵄩𝜉1𝑥1,𝑘 + 𝜉2𝑥2,𝑘 + 𝜉3𝑥3,𝑘
󵄩󵄩󵄩󵄩 : 𝜉𝑖 = ±1} = 3. (18)
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We define the subspace 𝑌𝑘 = {𝑡1𝑥1,𝑘 + 𝑡2𝑥2,𝑘 + 𝑡3𝑥3,𝑘 : {𝑡𝑖}
3
𝑖=1 ⊂

𝑅} of 𝑋. We claim that dim𝑌𝑘 = 3. In fact, suppose that
dim𝑌𝑘 < 3. By (18), we obtain that lim𝑘→∞min{‖𝑥1,𝑘+𝑥2,𝑘‖,
‖𝑥1,𝑘 − 𝑥2,𝑘‖} = 2. Hence, for any natural number 𝑘, we may
assumewithout loss of generality that𝑥1,𝑘 and𝑥2,𝑘 are linearly
independent. Notice that dim𝑌𝑘 < 3, so we obtain that
dim𝑌𝑘 = 2. This implies that there exist 𝑡𝑘 ∈ 𝑅 and ℎ𝑘 ∈ 𝑅
such that 𝑥3,𝑘 = 𝑡𝑘𝑥1,𝑘+ℎ𝑘𝑥2,𝑘. By (18) and lim𝑘→∞min{‖𝑥1,𝑘
+ 𝑥2,𝑘‖, ‖𝑥1,𝑘 − 𝑥2,𝑘‖} = 2, we may assume without loss of
generality that 𝑡𝑘 ≥ ℎ𝑘 ≥ 0. By 1 = ‖𝑥3,𝑘‖ = ‖𝑡𝑘𝑥1,𝑘 + ℎ𝑘𝑥2,𝑘‖
and Lemma 8, we have lim𝑘→∞(𝑡𝑘 + ℎ𝑘) = 1. Hence, we have

3 = lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥1,𝑘 + 𝑥2,𝑘 − 𝑥3,𝑘
󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥1,𝑘 + 𝑥2,𝑘 − (𝑡𝑘𝑥1,𝑘 + ℎ𝑘𝑥2,𝑘)
󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩(1 − 𝑡𝑘) 𝑥1,𝑘 + (1 − ℎ𝑘) 𝑥2,𝑘
󵄩󵄩󵄩󵄩

≤ lim sup
𝑘→∞

(1 − 𝑡𝑘)
󵄩󵄩󵄩󵄩𝑥1,𝑘

󵄩󵄩󵄩󵄩 + lim sup
𝑘→∞

(1 − ℎ𝑘)
󵄩󵄩󵄩󵄩𝑥2,𝑘

󵄩󵄩󵄩󵄩

≤ 2,

(19)

a contradiction. This implies that 𝑥1,𝑘, 𝑥2,𝑘, and 𝑥3,𝑘 are line-
arly independent. Then, dim𝑌𝑘 = 3. We define the linear
operator 𝑇𝑘 : 𝑌𝑘 → (𝑅3, ‖ ⋅ ‖1) by the formula

𝑇𝑘 (𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘)

= 𝑡1,𝑘(

1

0

0

) + 𝑡2,𝑘(

0

1

0

) + 𝑡3,𝑘(

0

0

1

) .
(20)

It is easy to see that 𝑇𝑘 is one-one mapping.
Next, wewill prove that lim𝑘→∞‖𝑇𝑘‖ = 1. In fact, it is easy

to see that, for any natural number 𝑘, we have ‖𝑇𝑘‖ ≥ 1.
Suppose that lim𝑘→∞‖𝑇𝑘‖ ̸= 1.Then, wemay assume without
loss of generality that there exists 𝑟 > 0 such that lim𝑘→∞‖𝑇𝑘‖
> 1 + 𝑟. This implies that there exists a sequence {𝑡1,𝑘𝑥1,𝑘 +
𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘}

∞
𝑘=1 ⊂ 𝑆(𝑌𝑘) such that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑇𝑘 (𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘)
󵄩󵄩󵄩󵄩 > 1 +

1

2
𝑟. (21)

By (18), wemay assumewithout loss of generality that 𝑡1,𝑘 ≥ 0,
𝑡2,𝑘 ≥ 0, and 𝑡3,𝑘 ≥ 0. By Lemma 8, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑡2,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥2,𝑘 +

𝑡3,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥3,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 1. (22)

Moreover, by Lemma 9, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑘 +

𝑡2,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥2,𝑘 +

𝑡3,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥3,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 2. (23)

By ‖𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘‖ = 1, we obtain

1 =
󵄩󵄩󵄩󵄩𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑡1,𝑘𝑥1,𝑘

+ (𝑡2,𝑘 + 𝑡3,𝑘) (
𝑡2,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥2,𝑘 +

𝑡3,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥3,𝑘)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

(24)

Therefore, by (22)–(24) and Lemma 8, we obtain lim𝑘→∞(𝑡1,𝑘
+𝑡2,𝑘+𝑡3,𝑘) = 1. Noticing that𝑇𝑘(𝑡1,𝑘𝑥1,𝑘+𝑡2,𝑘𝑥2,𝑘+𝑡3,𝑘𝑥3,𝑘) =
(𝑡1,𝑘, 𝑡2,𝑘, 𝑡3,𝑘), we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑇𝑘 (𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘)
󵄩󵄩󵄩󵄩

= lim
𝑘→∞

(𝑡1,𝑘 + 𝑡2,𝑘 + 𝑡3,𝑘) = 1,
(25)

a contradiction. This implies that lim𝑘→∞‖𝑇𝑘‖ = 1.
Moreover, we claim that lim𝑘→∞‖𝑇

−1
𝑘 ‖ = 1. In fact, it is

easy to see that, for any natural number 𝑘, we have ‖𝑇−1𝑘 ‖ ≥ 1.
Suppose that lim𝑘→∞‖𝑇

−1
𝑘 ‖ ̸= 1. Then, we may assume with-

out loss of generality that there exists 𝑑 > 0 such that
lim𝑘→∞‖𝑇

−1
𝑘 ‖ > 1 + 𝑑. This implies that there exists a

sequence {(𝑡1,𝑘, 𝑡2,𝑘, 𝑡3,𝑘)}
∞
𝑘=1 ⊂ 𝑆((𝑅

3, ‖ ⋅ ‖1)) such that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
−1

𝑘 (𝑡1,𝑘, 𝑡2,𝑘, 𝑡3,𝑘)
󵄩󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘
󵄩󵄩󵄩󵄩 > 1 +

1

2
𝑑.

(26)

By (18), wemay assumewithout loss of generality that 𝑡1,𝑘 ≥ 0,
𝑡2,𝑘 ≥ 0, and 𝑡3,𝑘 ≥ 0. Noticing that {(𝑡1,𝑘, 𝑡2,𝑘, 𝑡3,𝑘)}

∞
𝑘=1 ⊂

𝑆((𝑅3, ‖ ⋅ ‖1)), we have 𝑡1,𝑘 + 𝑡2,𝑘 + 𝑡3,𝑘 = 1. Therefore, by
(22)–(24) and Lemma 8, we have

1 = lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑡1,𝑘𝑥1,𝑘

+ (𝑡2,𝑘 + 𝑡3,𝑘) (
𝑡2,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥2,𝑘 +

𝑡3,𝑘

𝑡2,𝑘 + 𝑡3,𝑘
𝑥3,𝑘)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑡1,𝑘𝑥1,𝑘 + 𝑡2,𝑘𝑥2,𝑘 + 𝑡3,𝑘𝑥3,𝑘
󵄩󵄩󵄩󵄩 ,

(27)

a contradiction. This implies that lim𝑘→∞‖𝑇
−1
𝑘 ‖ = 1. Thus

lim𝑘→∞‖𝑇𝑘‖ ⋅ ‖𝑇
−1
𝑘 ‖ = 1, a contradiction. Hence, we obtain

that 𝑋 is a uniformly non-𝑙(1)3 space, which completes the
proof.

Lemma 11. Suppose that (1) there exists a ball-coveringBn of
(𝑅3, ‖ ⋅ ‖𝑛) and 𝑐(Bn) = 5, (2) ‖ ⋅ ‖𝑛 is uniformly convergent to
‖ ⋅ ‖∞ in 𝐵(𝑅3, ‖ ⋅ ‖∞) and (3)Bn is 𝛼-off the origin for any 𝑛.
Then, 𝑟(Bn) → ∞ as 𝑛 → ∞.

Proof. Let 𝑆(𝑅2, ‖ ⋅ ‖𝑛) ⊂ ∪5𝑖=1𝐵(𝑦
𝑖
𝑛, 𝑟
𝑖
𝑛), ‖𝑦

𝑖
𝑛‖ ≥ 𝑟𝑖𝑛 > 0, and

inf{‖𝑦𝑖𝑛‖−𝑟
𝑖
𝑛 : 1 ≤ 𝑖 ≤ 5, 𝑛 ∈ 𝑁} ≥ 𝛼. Suppose that there exists

𝛿 > 0 such that max1≤𝑖≤5{𝑟
𝑖
𝑛} = 𝑟(Bn) ≤ 𝛿. Then, {𝑦𝑖𝑛}

∞
𝑛=1 and

{𝑟𝑖𝑛}
∞
𝑛=1 are bounded sequences. Hence, we may assume with-

out loss of generality that 𝑦𝑖𝑛 → 𝑦𝑖 and 𝑟𝑖𝑛 → 𝑟𝑖 in ‖ ⋅ ‖∞ for
any {1, . . . , 5}.Then, 𝛼 ≤ ‖𝑦𝑖𝑛‖−𝑟

𝑛
𝑖 → ‖𝑦𝑖‖−𝑟 as 𝑛 → ∞. We

claim that

𝑆 (𝑅
3
, ‖⋅‖∞) ⊂

5

⋃
𝑖=1

𝐵 (𝑦
𝑖
, 𝑟
𝑖
) . (28)
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In fact, for any 𝐴, 𝐵 ⊂ 𝑅3 and 𝑛 ∈ 𝑁 ∪ +∞, let

𝑑𝑛 = max{sup
𝑎∈𝐴

{inf
𝑏∈𝐵
‖𝑎 − 𝑏‖𝑛} , sup

𝑏∈𝐵

{inf
𝑎∈𝐴
‖𝑎 − 𝑏‖𝑛}} . (29)

Since ‖ ⋅ ‖𝑛 is uniformly convergent to ‖ ⋅ ‖∞ in 𝐵(𝑅3, ‖ ⋅ ‖∞),
we obtain that, for any bounded set, ‖ ⋅ ‖𝑛 is uniformly con-
vergent to ‖ ⋅ ‖∞. Moreover, it is easy to see that

lim
𝑛→∞

𝑑∞ (𝐵 (𝑅
3
, ‖⋅‖𝑛) , 𝐵 (𝑅

3
, ‖⋅‖∞)) = 0,

lim
𝑛→∞

𝑑∞ (𝐵 (𝑦
𝑖

𝑛, 𝑟
𝑖

𝑛) , 𝐵 (𝑦
𝑖
, 𝑟
𝑖
)) = 0.

(30)

This implies that

lim
𝑛→∞

𝑑∞ (𝑆 (𝑅
3
, ‖⋅‖𝑛) , 𝑆 (𝑅

3
, ‖⋅‖∞)) = 0,

lim
𝑛→∞

𝑑∞(

5

⋃
𝑖=1

𝐵 (𝑦
𝑖

𝑛, 𝑟
𝑖

𝑛) ,

5

⋃
𝑖=1

𝐵 (𝑦
𝑖
, 𝑟
𝑖
)) = 0.

(31)

Since lim𝑛→∞𝑑∞(𝑆(𝑅
3, ‖ ⋅ ‖𝑛), 𝑆(𝑅

3, ‖ ⋅ ‖∞)) = 0, then, for
any 𝑥 ∈ 𝑆(𝑅3, ‖ ⋅ ‖∞), there exists a sequence {𝑥𝑛}

∞
𝑛=1 ⊂ 𝑆(𝑅

3,

‖ ⋅ ‖𝑛) such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞. Since 𝑆(𝑅3, ‖ ⋅ ‖𝑛) ⊂
∪5𝑖=1𝐵(𝑦

𝑖
𝑛, 𝑟
𝑖
𝑛), then there exists 𝑖 ∈ {1, . . . , 5} such that 𝑥𝑛 ∈

𝐵(𝑦𝑖𝑛, 𝑟
𝑖
𝑛) for any 𝑛 ∈ 𝑁. Noticing that

lim
𝑛→∞

𝑑∞ (𝐵 (𝑦
𝑖

𝑛, 𝑟
𝑖

𝑛) , 𝐵 (𝑦
𝑖
, 𝑟
𝑖
)) = 0, (32)

we have 𝑥 ∈ 𝐵(𝑦𝑖, 𝑟𝑖). This implies that 𝑆(𝑅3, ‖ ⋅ ‖∞) ⊂

∪5𝑖=1𝐵(𝑦
𝑖, 𝑟𝑖). By Proposition 2, we have 𝑐(Bmin(𝑅

3, ‖ ⋅ ‖∞)) =

6, a contradiction.This implies that 𝑟(Bn) → ∞ as 𝑛 → ∞,
which completes the proof.

Proof of Theorem 7

Sufficiency. It is easy to see that there exist two constants𝛼, 𝛽 >
0 such that, for every 3-dimensional subspace 𝑌 of 𝑋, there
exists a ball-coveringB of 𝑌with 𝑐(B) = 5 which is 𝛼-off the
origin and 𝑟(B) ≤ 𝛽. Suppose that𝑋 is not a uniformly non-
𝑙
(1)
3 space. By Lemma 10, for any natural number 𝑘, there exist
a 3-dimensional subspace 𝑋3,𝑘 of 𝑋 and a linear operator 𝑇𝑘
such that𝑇𝑘 : 𝑋3,𝑘 → (𝑅3, ‖ ⋅ ‖1) is a linear isomorphism and
‖𝑇𝑘‖⋅‖𝑇

−1
𝑘 ‖ < 1+1/𝑘. Since (𝑅3, ‖ ⋅ ‖1) and (𝑅

3, ‖ ⋅ ‖∞) are iso-
morphism, there exists a linear operator 𝐺𝑘 such that 𝐺𝑘 :
𝑋3,𝑘 → (𝑅3, ‖ ⋅ ‖∞) is a linear isomorphism and

󵄩󵄩󵄩󵄩𝐺𝑘
󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
𝐺
−1

𝑘

󵄩󵄩󵄩󵄩󵄩
< 1 +

1

𝑘
. (33)

Moreover, we may assume without loss of generality that
‖𝐺𝑘‖ = 1. Let

‖𝑥‖𝑘 =
󵄩󵄩󵄩󵄩󵄩
𝐺
−1

𝑘 𝑥
󵄩󵄩󵄩󵄩󵄩
, ∀𝑥 ∈ 𝑅

3
, (34)

and letB𝑘 be a ball covering of𝑋3,𝑘, where 𝑐(B𝑘) = 5which is
𝛼-off the origin and 𝑟(B𝑘) ≤ 𝛽. It is easy to see that ‖ ⋅ ‖𝑘 is
uniformly convergent to ‖ ⋅ ‖∞ in 𝐵(𝑅3, ‖ ⋅ ‖∞). By Lemma 11,

we have that 𝑟(B𝑘) → ∞ as 𝑘 → ∞, a contradiction.
Hence, we obtain that𝑋 is a uniformly non-𝑙(1)3 space.

Necessity. By Lemma 10, we have 𝑐(B) = 4 or 5. Using the
method of Theorem 3.5 in [6] and Lemma 10, similarly, we
obtain that B is 𝛼-off the origin and 𝑟(B) ≤ 𝛽, which com-
pletes the proof.

Theorem 12. Suppose that𝑋 is a uniformly non-𝑙(1)3 space and
smooth space.Then, there exist two constants𝛼, 𝛽 > 0 such that
for every 3-dimensional subspace𝑌 of𝑋, there exists aminimal
ball-coveringB of𝑌with 𝑐(B) = 4which is𝛼-off the origin and
𝑟(B) ≤ 𝛽.

Proof. By Proposition 2, we obtain that there exist two con-
stants 𝛼, 𝛽 > 0 such that, for every 3-dimensional subspace 𝑌
of𝑋, there exists a minimal ball-coveringB of𝑌with 𝑐(B) =
4. Using the method of Theorem 3.5 in [6] and Lemma 10,
similarly, we obtain that B is 𝛼-off the origin and 𝑟(B) ≤ 𝛽,
which completes the proof.

Theorem 13. Suppose that there exist two constants 𝛼, 𝛽 > 0

such that, for every 3-dimensional subspace𝑌 of𝑋, there exists
aminimal ball-coveringB of𝑌with 𝑐(B) = 5which is𝛼-off the
origin and 𝑟(B) ≤ 𝛽.Then,𝑋 is a uniformly non-𝑙(1)3 space and
not smooth space.

Proof. ByTheorem 7, we obtain that𝑋 is a uniformly non-𝑙(1)3
space. Suppose that 𝑋 is a smooth space. Then, every 3-di-
mensional subspace 𝑌 of 𝑋 is smooth. By Proposition 2, we
obtain that 𝑐(Bmin(𝑌)) = 4. However, there exist two con-
stants 𝛼, 𝛽 > 0 such that, for every 3-dimensional subspace 𝑌
of𝑋, there exists a minimal ball-coveringB of𝑌with 𝑐(B) =
5 which is 𝛼-off the origin and 𝑟(B) ≤ 𝛽, a contradiction.
Hence, we obtain that 𝑋 is not a smooth space, which com-
pletes the proof.

The following theorem (Theorem 15) shows that if a sep-
arable space 𝑋 has the Radon-Nikodym property, then 𝑋∗
has the ball-covering property. We first need a lemma.

Lemma 14 (see [5]). Suppose that 𝑝 is aMinkowski functional
defined on the space 𝑋. Then, 𝑝 is Gateaux differentiable at 𝑥
and with the Gateaux derivative 𝑥∗ if and only if 𝑥∗ is a𝑤∗-ex-
posed point of𝐶∗ and exposed by 𝑥, where𝐶∗ is the polar of the
level set 𝐶 = {𝑦 ∈ 𝑋 : 𝑝(𝑦) ≤ 1}.

Theorem 15. Suppose that separable space 𝑋 has the Radon-
Nikodym property. Then, 𝑋∗ has the ball-covering property.

Proof. (a) First we will prove that there exists a sequence
{𝑥𝑛}
∞
𝑛=1 of 𝑤

∗-exposed points of 𝐵(𝑋∗∗) such that

sup
𝑛
𝑥
∗
(𝑥𝑛) =

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 , ∀𝑥

∗
∈ 𝑋
∗
. (35)

Since 𝑋 has the Radon-Nikodym property, then the closed
convex hull co(𝐸) of 𝐸 is the whole 𝐵(𝑋), where 𝐸 denotes
strongly exposed points of 𝐵(𝑋).

Pick 𝑦 ∈ 𝐸. Since 𝑦 ∈ 𝐸 is a strongly exposed point of
𝐵(𝑋), there exists 𝑦∗ ∈ 𝑆(𝑋∗) such that 𝑥𝑛 → 𝑦 whenever
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𝑦∗(𝑥𝑛) → 𝑦∗(𝑦) = sup{𝑦∗(𝑥) : 𝑥 ∈ 𝐵(𝑋)} = 1. Next
we will prove that 𝑦 ∈ 𝑆(𝑋∗∗) is𝑤∗-exposed point of 𝐵(𝑋∗∗)
and exposing by 𝑦∗. In fact, suppose that there exists 𝑦∗∗ ∈
𝑆(𝑋∗∗) such that 𝑦∗(𝑦∗∗) = 1. Since weak∗ topology is a
Hausdorff topology, there exist a weak∗ neighbourhood𝑈𝑦 of
𝑦 and a weak∗ neighbourhood 𝑈𝑦∗∗ of 𝑦

∗∗ such that 𝑈𝑦 ∩
𝑈𝑦∗∗ = 0. Define the weak

∗ neighbourhood as follows:

𝑈𝑛 = {𝑥
∗∗
∈ 𝑋
∗∗
:
󵄨󵄨󵄨󵄨𝑦
∗
(𝑥
∗∗
) − 𝑦
∗
(𝑦
∗∗
)
󵄨󵄨󵄨󵄨 <

1

𝑛
}⋂𝑈𝑦∗∗ .

(36)

By the Goldstine theorem, there exists 𝑦𝑛 ∈ 𝐵(𝑋
∗∗) such that

𝑦𝑛 ∈ 𝑈𝑛. Hence, we have that 𝑦
∗(𝑦𝑛) → 1 as 𝑛 → ∞. Since

𝑦 ∈ 𝐸 is a strongly exposed point of 𝐵(𝑋), we obtain that
𝑦𝑛 → 𝑦 as 𝑛 → ∞.This implies that𝑦𝑛 ∈ 𝑈𝑦, when 𝑛 is large
enough. This contradicts the fact that 𝑦𝑛 ∈ 𝑈𝑛. Hence, we
obtain that 𝑦 ∈ 𝑆(𝑋∗∗) is a 𝑤∗-exposed point of 𝐵(𝑋∗∗).

Since 𝑋 is a separable space, then there exists a sequence
{𝑥𝑛}
∞
𝑛=1 such that {𝑥𝑛}

∞
𝑛=1 is a dense sequence in 𝐸. Noticing

that co(𝐸) = 𝐵(𝑋), we have
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 ≥ sup

𝑛
𝑥
∗
(𝑥𝑛) = sup

𝑥∈𝐸

𝑥
∗
(𝑥)

= sup
𝑥∈co(𝐸)

𝑥
∗
(𝑥) = sup

𝑥∈𝐵(𝑋)

𝑥
∗
(𝑥) =

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 .

(37)

(b) Next wewill prove that𝑋∗ has the ball-covering prop-
erty. By Lemma 14, for any 𝑥𝑖 ∈ {𝑥𝑛}

∞
𝑛=1 ⊂ 𝑆(𝑋

∗∗), there exist
𝑥∗𝑖 ∈ 𝑆(𝑋

∗) such that ‖ ⋅ ‖ is Gateaux differentiable at 𝑥∗𝑖 and
with the Gateaux derivative 𝑥𝑖. For each fixed 1 < 𝑖 < ∞, let
𝐵𝑖,𝑚 be the balls defined by

𝐵𝑖,𝑚 = 𝐵(𝑚𝑥
∗

𝑖 , 𝑚 −
1

𝑚
) , 𝑖 = 1, 2, . . . . (38)

Clearly, every 𝐵𝑖,𝑚 has the distance 1/𝑚 from the origin. We
claim that

𝑆 (𝑋
∗
) ⊂ ⋃{𝐵𝑖,𝑚 : 𝑖 = 1, 2, . . . 𝑚 = 1, 2, . . .} . (39)

In fact, pick 𝛼 ∈ (0, 1). Noticing that

sup
𝑛
𝑥
∗
(𝑥𝑛) =

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 , ∀𝑥

∗
∈ 𝑋
∗
, (40)

we obtain that, for 𝑦∗ ∈ 𝑆(𝑋∗), there exists 𝑥 ∈ {𝑥𝑛}
∞
𝑛=1 such

that

𝑦
∗
(𝑥) ≥ 𝛼

󵄩󵄩󵄩󵄩𝑦
∗󵄩󵄩󵄩󵄩 = 𝛼 > 0. (41)

We can assume that 𝑥 = 𝑥𝑗 for some 1 ≤ 𝑗 < ∞. Thus, there
exist 𝛽 ≥ 𝛼 and ℎ∗𝑗 ∈ 𝐻

∗
𝑗 = {𝑥

∗ ∈ 𝑋∗ : 𝑥∗(𝑥𝑗) = 0} such that

𝑦
∗
= 𝛽𝑥
∗
+ ℎ
∗

𝑗 . (42)

We want to show that 𝑦∗ ∈ ∪∞𝑚=1𝐵𝑗,𝑚. Otherwise, for every
𝑚 ∈ 𝑁,

𝑚 −
1

𝑚
≤
󵄩󵄩󵄩󵄩󵄩
𝑚𝑥
∗

𝑗 − 𝑦
∗󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
(𝑚 − 𝛽) 𝑥

∗

𝑗 − ℎ
∗

𝑗

󵄩󵄩󵄩󵄩󵄩
. (43)

Thus,

−
1

𝑚
≤
󵄩󵄩󵄩󵄩󵄩
(𝑚 − 𝛽) 𝑥

∗

𝑗 − ℎ
∗

𝑗

󵄩󵄩󵄩󵄩󵄩
− 𝑚

=
󵄩󵄩󵄩󵄩󵄩
(𝑚 − 𝛽) 𝑥

∗

𝑗 − ℎ
∗

𝑗

󵄩󵄩󵄩󵄩󵄩
− 𝑚

󵄩󵄩󵄩󵄩󵄩
𝑥
∗

𝑗

󵄩󵄩󵄩󵄩󵄩

= (𝑚 − 𝛽) {
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
∗

𝑗 −
1

𝑚 − 𝛽
ℎ
∗

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩󵄩
𝑥
∗

𝑗

󵄩󵄩󵄩󵄩󵄩
} − 𝛽

=

󵄩󵄩󵄩󵄩󵄩
𝑥∗𝑗 − 𝑡ℎ

∗
𝑗

󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩󵄩
𝑥∗𝑗
󵄩󵄩󵄩󵄩󵄩

𝑡
− 𝛽,

(44)

where 𝑡 = 1/(𝑚 − 𝛽). Letting𝑚 → ∞, we observe that

0 ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
∗

𝑗

󵄩󵄩󵄩󵄩󵄩

󸀠
(ℎ
∗

𝑗 ) − 𝛽 ≤ ℎ
∗

𝑗 (𝑥𝑗) − 𝛽 = −𝛽 < 0, (45)

which is a contradiction. Therefore,

𝑆 (𝑋
∗
) ⊂ ⋃{𝐵𝑖,𝑚 : 𝑖 = 1, 2, . . . 𝑚 = 1, 2, . . .} . (46)

Hence, 𝑋∗ has the ball-covering property, which completes
the proof.

Corollary 16. If𝑋∗ is a separable space, then𝑋∗∗ has the ball-
covering property.

Proof. If 𝑋∗ is separable, then 𝑋∗ has the Radon-Nikodym
property. ByTheorem 13, we obtain that𝑋∗∗ has the ball-cov-
ering property, which completes the proof.

3. Applications to Orlicz Function Spaces

It is easy to see that if𝑋 is separable, then𝑋 has the ball-cov-
ering property. Cheng [1] proved that the sequence space 𝑙∞
which is not separable has the ball-covering property. In this
section, we obtain that there exists a nonseparable function
space such that it has the ball-covering property.

Definition 17. 𝑀 : 𝑅 → 𝑅 is called an𝑁-function if it has the
following properties:

(1) 𝑀 is even, convex and𝑀(0) = 0;
(2) 𝑀(𝑢) > 0 for all 𝑢 ̸= 0;
(3) lim𝑢→0𝑀(𝑢)/𝑢 = 0 and lim𝑢→∞𝑀(𝑢)/𝑢 = ∞.

Let (𝐺, Σ, 𝜇) be a finite nonatomic and complete measure
space. Denote by 𝑝 and 𝑞 the right derivative of 𝑀 and 𝑁,
respectively. We define

𝜌𝑀 (𝑥) = ∫
𝐺

𝑀(𝑥 (𝑡)) 𝑑𝑡,

𝐿𝑀 = {𝑥 (𝑡) : 𝜌𝑀 (𝜆𝑥) < ∞, for some𝜆 > 0} ,

𝐸𝑀 = {𝑥 (𝑡) : 𝜌𝑀 (𝜆𝑥) < ∞, ∀𝜆 > 0} .

(47)

It is well known that the Orlicz function space 𝐿𝑀 is a Banach
space when it is equipped with the Luxemburg norm

‖𝑥‖ = inf {𝜆 > 0 : 𝜌𝑀 (
𝑥

𝜆
) ≤ 1} (48)
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or equipped with the Amemiya-Orlicz norm

‖𝑥‖
0
= inf
𝑘>0

1

𝑘
(1 + 𝜌𝑀 (𝑘𝑥)) . (49)

Let𝑝(𝑢) denote the right derivative of𝑀(𝑢) at 𝑢 ∈ 𝑅+ and
let 𝑞(V) be the generalized inverse function of𝑝(𝑢) defined on
𝑅
+ by

𝑞 (V) = sup
𝑢≥0

{𝑢 ≥ 0 : 𝑝 (𝑢) ≤ V} . (50)

Then, we call𝑁(V) = ∫|V|
0
𝑞(𝑠)𝑑𝑠 the complementary function

of𝑀. It is well known that there holds the Young inequality
𝑢V ≤ 𝑀(𝑢)+𝑁(V) and 𝑢V = 𝑀(𝑢)+𝑁(V) ⇔ 𝑢 = |𝑞(V)| sign V
or V = |𝑝(𝑢)| sign 𝑢. Moreover, it is well known that𝑀 and𝑁
are complementary to each other.

We say that an𝑁-function𝑀 ∈ Δ 2(𝑁 ∈ ∇2) if there exist
𝐾 > 2 and 𝑢0 ≥ 0 such that

𝑀(2𝑢) ≤ 𝐾𝑀(𝑢) (𝑢 ≥ 𝑢0) . (51)

By [13], we know that 𝐿𝑀(𝐿
0
𝑀) is separable,⇔ 𝐿𝑀(𝐿

0
𝑀) has

the Radon-Nikodym property⇔ 𝑀 ∈ Δ 2, and𝑀 ∈ Δ 2 ⇔

𝐿𝑀 = 𝐸𝑀(𝐿
0
𝑀 = 𝐸

0
𝑀) ⇔ 𝐿𝑀(𝐿

0
𝑀) is separable. Moreover, by

[13], we know that (𝐸𝑀)
∗
= 𝐿0𝑀 and (𝐸0𝑀)

∗
= 𝐿𝑀.

Theorem 18. If 𝑀 ∈ ∇2 or 𝑀 ∈ Δ 2, then 𝐿𝑀(𝐿0𝑀) has the
ball-covering property.

Proof. By [13], we know that (𝐸𝑀)
∗
= 𝐿0𝑀, (𝐸

0
𝑀)
∗
= 𝐿𝑀.

Using Theorem 15, we obtain that if 𝑀 ∈ ∇2, then 𝐿𝑀(𝐿
0
𝑀)

has the ball-covering property. Moreover, by 𝑀 ∈ Δ 2, we
obtain that 𝐿𝑀(𝐿

0
𝑀) is separable. Hence, 𝐿𝑀(𝐿

0
𝑀) has the

ball-covering property, which completes the proof.

Remark 19. It is well known that there exists an 𝑁-function
𝑀 such that𝑀 ∈ ∇2 and𝑀 ∉ Δ 2.Thismeans that 𝐿𝑀(𝐿

0
𝑀) is

not a separable space.However, byTheorem 18,we obtain that
𝐿𝑀(𝐿

0
𝑀) has ball-covering property.
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