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Compressed sensing (CS) is a theory which exploits the sparsity characteristic of the original signal in signal sampling and coding.
By solving an optimization problem, the original sparse signal can be reconstructed accurately. In this paper, a new Tree-based
BacktrackingOrthogonalMatching Pursuit (TBOMP) algorithm is presentedwith the idea of the treemodel inwavelet domain.The
algorithm can convert the wavelet tree structure to the corresponding relations of candidate atoms without any prior information of
signal sparsity.Thus, the atom selection process will be more structural and the search space can be narrowed. Moreover, according
to the backtracking process, the previous chosen atoms’ reliability can be detected and the unreliable atoms can be deleted at each
iteration, which leads to an accurate reconstruction of the signal ultimately. Compared with other compressed sensing algorithms,
simulation results show the proposed algorithm’s superior performance to that of several other OMP-type algorithms.

1. Introduction

Compressive sensing (CS) [1, 2] aims to recover sparse or
compressible signal with low amount of information and high
probability. It breaks the traditional rule of Nyquist sampling
theorem, which states that a signal’s information is preserved
if it is uniformly sampled at a rate at least two times faster than
its Fourier bandwidth. By this state-of-the-art signal com-
pression and processing theory, the signal sampling fre-
quency, the cost of processing time, data storage, and trans-
mission can be greatly reduced.

For a given orthogonal basis Ψ = {𝜓
1
, . . . , 𝜓

𝑁
}, the signal

𝑥 ∈ 𝑅
𝑁×1 can be represented in terms of the coefficient vector

𝛼 as

𝑥 =

𝑁

∑

𝑘=1

𝜓
𝑘
𝛼
𝑘
= Ψ𝛼. (1)

The corresponding inverse transformation is 𝛼 = Ψ
𝐻
𝑥,

ΨΨ
𝐻

= Ψ
𝐻
Ψ = 𝐼, and Ψ ∈ 𝐶

𝑁×𝑁. Here, 𝐼 is the identity

matrix. We say that 𝑥 is𝐾-sparse under the orthogonal basis
Ψ if only𝐾 ≪ 𝑁 coefficients 𝛼

𝑘
of 𝑥 are nonzero.

Usually, the signal is not sparse but its coefficient can be
considered to be sparse or compressible after some transfor-
mations, such as the wavelet transformation.

Suppose that a matrix Φ represents the𝑀×𝑁measure-
mentmatrix.Then𝛼 is accomplished by collecting ameasure-
ment vector 𝑦 of dimension 𝑀 with 𝑀 ≪ 𝑁. 𝑦 can be
expressed as 𝑦 = Φ𝛼. Then, (1) becomes

𝑦 = Φ𝛼 = ΦΨ
𝐻
𝑥. (2)

Φ is called as the CS measurement matrix and its columns
are called atoms. The matrix Φ is rank deficient and hence
loses information in general. The CS reconstruction problem
wishes to recover the coefficient vector 𝛼 from the set of 𝑀
linear measurements 𝑦. Since 𝑀 < 𝑁, the reconstruction of
𝛼 from 𝑦 is generally ill-posed.

The two major algorithmic approaches to sparse recov-
ery are methods based on (𝑙

1
) minimization and iterative
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methods (matching pursuits). We now briefly describe these
methods, as follows.

1.1. (𝑙
1
) Minimization. The sparse recovery of this approach

can be stated as the problem of finding the sparsest signal 𝛼 =

Ψ
𝐻
𝑥 with the given measurements 𝑦:

(𝑙
0
) : min 󵄩󵄩󵄩󵄩󵄩Ψ

𝐻
𝑥
󵄩󵄩󵄩󵄩󵄩𝑙0

s.t. 𝑦 = ΦΨ
𝐻
𝑥.

(3)

Donoho and his associates advocated the principle that
for some measurement matrices Φ, the highly nonconvex
combinatorial optimization problem (𝑙

0
) should be equiva-

lent to its convex relaxation:

(𝑙
1
) : min 󵄩󵄩󵄩󵄩󵄩Ψ

𝐻
𝑥
󵄩󵄩󵄩󵄩󵄩𝑙1

s.t. 𝑦 = ΦΨ
𝐻
𝑥.

(4)

Reference [3] showed that if the measurement matrix sat-
isfies the restricted isometry property (RIP), then a𝐾-sparse
signal can be recovered exactly; that is,

(1 − 𝛿
𝐾
) ‖𝑥‖
2

2
≤ ‖Φ𝑥‖

2

2
≤ (1 + 𝛿

𝐾
) ‖𝑥‖
2

2
. (5)

𝛿
𝐾
is called as the Restricted Isometry Constant of Φ. It has

been shown that (𝑙
1
) minimization can recover a sparse signal

exactly under various conditions on restricted isometry con-
stants, see [4, 5]. Then, the convex problem (𝑙

1
) can be solved

using method of convex and even linear programming.

1.2. Orthogonal Matching Pursuit (OMP). An alternative
approach to sparse recovery is via iterative algorithms, which
find the support of the𝐾-sparse signal 𝛼 progressively. Once
𝑆 = supp(𝛼) is found correctly, it is easy to compute the signal
𝛼 from its measurements 𝑦 as 𝛼 = (Φ

𝑆
)
−1
𝑦, whereΦ

𝑆
denotes

the measurement matrixΦ restricted to columns indexed by
𝑆.

A basic iterative algorithm is Orthogonal Matching Pur-
suit (OMP) [6]. OMP recovers the support of 𝛼, one index at
a time, in 𝑛 steps. Under a hypothetical assumption that is an
isometry, that is, the columns ofΦ are orthogonal, the signal
𝛼 can be exactly recovered from its measurements 𝑦 as 𝛼 =

Φ
∗
𝑦.
The problem is that the 𝑀 × 𝑁 matrix Φ is never an

isometry in the interesting range where the number of mea-
surements𝑀 is smaller than the ambient dimension𝑁. Even
though the matrix is not an isometry, one can still use the
notion of coherence in recovery of sparse signals. In that
setting, greedy algorithms are used with incoherent dictio-
naries to recover such signals, see [7, 8]. In our setting, for the
commonly used random matrices, one expects the columns
to be approximately orthogonal, and the observation vector
𝛼 = Φ

∗
𝑦 to be a good approximation to the original signal 𝛼.

Tropp and Gilbert [6] analyzed the performance of OMP
for Gaussian measurement matrices Φ; a similar result holds
for general sub-gaussianmatrices.They proved that, for every

fixed 𝐾-sparse 𝑁-dimensional signal 𝛼 and a random Gaus-
sian measurement matrix Φ, OMP recovers (the support of)
𝛼 from the measurements 𝑦 correctly with high probability,
provided the number of measurements is𝑀 ∼ 𝐾 log𝑁.

The (𝑙
1
)-minimization method has the strongest known

guarantees of sparse recovery. Once the measurement matrix
Φ satisfies the Restricted Isometry Condition, this method
works correctly for all sparse signals 𝛼. (𝑙

1
)-minimization is

based on linear programming, which has its advantages and
disadvantages. One thinks of linear programming as a black
box and any development of fast solvers will reduce the run-
ning time of the sparse recovery method. On the other hand,
it is not very clear what this running time is, as there is no
strongly polynomial time algorithm in linear programming
yet. All known solvers take time polynomial not only in the
dimension of the program 𝑁 but also on certain condition
numbers of the program. While for some classes of random
matrices the expected running time of linear programming
solvers can be bounded, estimating condition numbers is
hard for specific matrices. For example, there is no result yet
showing that the Restricted Isometry Condition implies that
the condition numbers of the corresponding linear program
is polynomial in𝑁.

OMP is quite fast, both theoretically and experimentally.
It makes 𝑛 iterations, where each iteration amounts to a mul-
tiplication by a𝑁×𝑀matrixΦ∗ (computing the observation
vector 𝛼) and solving a least squares problem in dimensions
at most𝑀×𝑛. This yields strongly polynomial running time.
In practice, OMP is observed to perform faster and is easier to
implement than (𝑙

1
)-minimization. For more details, see [6].

OMP is quite transparent; at each iteration, it selects a new
coordinate from the support of the signal 𝛼 in a very specific
and natural way. In contrast, the known (𝑙

1
)-minimization

solvers, such as the simplex method and interior point meth-
ods, compute a path toward the solution. However, the geom-
etry of (𝑙

1
) is clear, whereas the analysis of greedy algorithms

can be difficult simply because they are iterative.
On the other hand, OMP has weaker guarantees of exact

recovery. Unlike (𝑙
1
)-minimization, the guarantees of OMP

are nonuniform: for each fixed sparse signal 𝛼 and not for all
signals, the algorithm performs correctly with high probabil-
ity. Rauhut has shown that uniform guarantees for OMP are
impossible for natural random measurement matrices [9].

Moreover, OMP’s condition on measurement matrices
given in [6] is more restrictive than the Restricted Isometry
Condition. In particular, it is not known whether OMP suc-
ceeds in the important class of partial Fourier measurement
matrices.

These open problems about OMP, first stated in [6] and
often reverberated in the Compressed Sensing community,
motivated the recentworks on themodifiedOMPalgorithms,
such as the model-based Compressive Sensing [10], Tree-
Based Orthogonal Matching Pursuit [11], Compressive Sam-
pling Matching Pursuit (CoSaMP) [12], Regularized Orthog-
onal Matching Pursuit (ROMP) [13], and Backtracking-
BasedMatching Pursuit (BAOMP) [14]. ROMP and CoSaMP
require the sparsity level as an input parameter. However,
in the most practical applications, this information may not
be known before reconstruction. Although the sparsity level
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is not required for the OMP and BAOMP, they do not use
the characteristics of the sparse representation, such as the
tree structure of wavelet transform. In this paper, a new Tree-
based Backtracking Orthogonal Matching Pursuit (TBOMP)
algorithm is presented based on the tree model in wavelet
domain. Our algorithm converts the wavelet tree structure to
the corresponding relations of candidate atoms without the
prior information of signal sparsity level. Also, combing with
the backtracking algorithm, the unreliable atoms can be
deleted. Compared with OMP, ROMP, and BAOMP algo-
rithms, the atom selection process will be more traceable,
normalizable, and structural.

2. Tree-Based Backtracking Orthogonal
Matching Pursuit (TBOMP) Algorithm

In this section, we will first review the wavelet tree structure.
Second, the proposed TBOMP algorithmwill be presented in
detail.

2.1. Wavelet Tree Structure. Consider a signal 𝑥 of length𝑁 =

2
𝐿, after 𝐿-level wavelet transformations, the set of 𝐾-tree
sparse signals is defined as

Γ
𝑘
=
{

{

{

𝑥 = 𝜐
𝐿
] +
1

∑

𝑖=𝐿

2
𝐿−𝑖

∑

𝑗=1

𝜔
𝑖,𝑗
𝜓
𝑖,𝑗

: 𝜔|
Ω
𝐶 = 0, |Ω| = 𝐾

}

}

}

, (6)

where ] is the scaling function and𝜓
𝑖,𝑗
is the wavelet function

at scale 𝑖 and offset 𝑗. The wavelet transform consists of the
scale coefficient 𝜐

𝐿
and wavelet coefficients 𝜔

𝑖,𝑗
at scale 𝑖, 1 ≤

𝑖 ≤ 𝐿, and position 𝑗, with 1 ≤ 𝑗 ≤ 2
𝐿−𝑖.

Suppose that 𝛼 = [𝜐
𝐿
, 𝜔
𝐿,0

, 𝜔
𝐿−1,0

, 𝜔
𝐿−1,1

, 𝜔
𝐿−2,0

, . . . ]
𝑇 is

the vector of the scaling and wavelet coefficients of 𝑥with the
maximum decomposition level 𝐿. Also, it is a set of wavelet
coefficients Ω forms a connected subtree [10]. The set Ω

defines a subspace of signals whose support is contained in
Ω, which means that all wavelet coefficients outside Ω are
approximately zero. The nested structure of wavelet coef-
ficients creates a parent/child relationship between wavelet
coefficients at different scales. We say that 𝜔

𝑖+1,⌊𝑗/2⌋
(⌊⋅⌋

denotes rounded down) is the parent of 𝜔
𝑖,𝑗
. Also, 𝜔

𝑖−1,2𝑗
and

𝜔
𝑖−1,2𝑗+1

are the children of 𝜔
𝑖,𝑗
. These relations can be

expressed graphically by the wavelet coefficient tree in Fig-
ure 2(a).The relationship between the parent and child nodes
is that the index value of the parent node in a level is 1/2 times
the index of the child node.

A kind of tree structure (greedy tree) was proposed in
[15]. For the greedy tree, if a coefficient is significant then
its child and all of its grandchildren are likely significant
[11]. Figure 1 depicts two cases of greedy tree approximation.
The number of each node is the wavelet coefficient modulus.
Nodes not labeled depict zeros. In the first case, the wavelet
coefficients decay monotonically along the tree branches
toward the leaves. Suppose that the wavelet treeΩ containing
𝑃 wavelet coefficients; that is, |Ω| = 𝑃. The 𝑃-term greedy
tree approximation (here, we assume that 𝑃 = 4) can be pro-
ceeded in three steps: (1) find the𝑝,𝑝 ≤ 4 largest wavelet coef-
ficient terms; (2) form the smallest connected rooted subtree

that contains all of these 𝑝 coefficients; and then (3) increase
𝑝 until |Ω| = 4.

Initializing 𝑝 = 2, two coefficients 10 and 8 will be found
and will form a minimum, connected subtree Ω. Gradually
increase 𝑝 until 𝑝 = 4, the greedy tree approximation forms
the connected rooted subtree Ω, 10-8-4-3, with 4 nodes that
maximize the sum of the wavelet coefficients in the subtree.
This process was shown in Figure 1(a), the error is small.
Another case was shown in Figure 1(b), when the wavelet
coefficients do not decay monotonically along the tree
branches toward the leaves, an isolated significant coefficient
away from the root will be selected, either of its all ancestor
coefficients. These ancestor coefficients may be very small,
which will increase the approximation error. For example,
initializing 𝑝 = 2, then two coefficients 10 and 8 will be found
and the resulted subtree is 10-0-0-8 with 𝑝 = |Ω| = 4. Obvi-
ously, the error is large.

We can see that the process of greedy tree approximation
is simple, but when the tree includes isolated large coefficients
far from the tree root, the approximation error will be
increased. Thus, backtracking is imposed to deleting the
wrong nodes selected by the greedy tree. This will be illus-
trated in the Section 2.2.

2.2. Tree-Based Backtracking Orthogonal Matching Pursuit
(TBOMP) Algorithm. Our proposed Tree-based Backtrack-
ing Orthogonal Matching Pursuit (TBOMP) is as follows.

Algorithm 1 (TBOMP).

Symbol Description

𝜔—wavelet high frequency coefficient vector;
𝜔̂—reconstruction wavelet high frequency coefficient
vector;
𝐴—measurement matrix, 𝑦 = 𝐴𝜔;
𝑎
𝑖
—the 𝑖th column vector of 𝐴, 1 ≤ 𝑖 ≤ 𝑁;

𝜇
1
, 𝜇
2
—parameters of thresholds, 𝜇

1
, 𝜇
2
∈ [0, 1];

Λ
𝑛
—index set,Λ denotes the index set of all columns

{𝑎
𝑖
} of matrix 𝐴;

𝑛max—number of maximum iterations allowed;
Γ
𝑛
—atom-deleting set in the 𝑛th iteration;

𝐶
𝑛
—candidate set of the root atoms in the 𝑛th

iteration;
𝐹
𝑛
—family set that consists of the subtrees corre-

sponding to the root nodes in 𝐶
𝑛
.

Initialization. 𝑟
0
= 𝑦 (initial residual), Λ

0
= 0, Γ

0
= 0, and

𝐶
0
= 0.

Loop

(1) Initial selection: select the candidate set𝐶
𝑛
with abso-

lute values of correlations satisfying:
󵄨󵄨󵄨󵄨󵄨
⟨𝑟
𝑛−1

, 𝑎
𝐶𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
≥ 𝜇
1
⋅max
𝑖∈Λ 𝑛

󵄨󵄨󵄨󵄨⟨𝑟𝑛−1, 𝑎𝑖⟩
󵄨󵄨󵄨󵄨 ,

Λ
𝑛
= Λ \ Λ

𝑛−1
.

(7)
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Figure 1: Greedy tree search.
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(a) Wavelet tree structure
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(b) Process of tree nodes selection in the
TBOMP

Figure 2: Wavelet tree structure.

(2) According to the 2-times relationship of wavelet tree
node indices, find thewavelet tree rooted at each node
in 𝐶
𝑛
. Then the family set 𝐹

𝑛
consists of the atoms

indexed by 𝐶
𝑛
and all of their families can be found.

For example, assume that 𝐶
𝑛
= {𝑐
1

𝑛
, 𝑐
2

𝑛
, . . . , 𝑐

𝑄

𝑛
}, then

the wavelet subtrees rooted at 𝑐1
𝑛
, 𝑐
2

𝑛
, . . . , 𝑐

𝑄

𝑛
will be

found, respectively, in this step.The index sets of these
𝑄 trees are denoted as 𝐹1

𝑛
, 𝐹
2

𝑛
, . . . , 𝐹

𝑄

𝑛
.

(3) Compute 𝜔̂𝑛
𝐹
𝑞

𝑛

= (𝐴
𝐻

𝐹
𝑞

𝑛

𝐴
𝐹
𝑞

𝑛
)
−1
𝐴
𝐻

𝐹
𝑞

𝑛

𝑦, 1 ≤ 𝑞 ≤ 𝑄.

(4) Find 𝐹
𝑞

𝑛
such that 𝜔𝑛

𝐹
𝑞

𝑛

minimizing the residual as fol-
lows:

𝑞 = arg min
1≤𝑞≤𝑄

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝐴

𝐹
𝑞

𝑛
𝜔̂
𝑛

𝐹
𝑞

𝑛

󵄩󵄩󵄩󵄩󵄩2
. (8)

(5) Select atom deleting index set Γ
𝑛
satisfying

󵄨󵄨󵄨󵄨󵄨󵄨
𝜔̂
𝑛

Λ 𝑛−1∪𝐹
𝑞

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜇
2
⋅max

󵄨󵄨󵄨󵄨󵄨󵄨
𝜔̂
𝑛

𝐹
𝑞

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
. (9)

(6) SetΛ
𝑛
= {Λ
𝑛−1

∪𝐹
𝑞

𝑛
} \Γ
𝑛
, 𝑎
{𝑖:𝑖∈Λ 𝑛}

= 0, and update the
residual as follows:

𝑟
𝑛
= 𝑦 − 𝐴

Λ 𝑛
𝜔̂
𝑛

Λ 𝑛
. (10)

(7) If ‖𝑟
𝑛
‖
2
< 𝜀or if 𝑛 = 𝑛max, quit the iteration; otherwise,

set 𝑛 = 𝑛 + 1, go to step 1.

End Loop.

Output. the estimated support set Λ
𝑛
and the nonzero values

𝜔̂
Λ 𝑛

= (𝐴
𝐻

Λ 𝑛
𝐴
Λ 𝑛
)
−1
𝐴
𝐻

Λ 𝑛
𝑦.

As seen in the above algorithm, we combined the charac-
teristics of tree structure and the BAOMP algorithm. In the
first step, TBOMP selects candidate set𝐶

𝑛
whose correlations

between the columns of Φ
Λ 𝑛

and the residual 𝑟
𝑛−1

are not
smaller than 𝜇

1
⋅max
𝑖∈Λ 𝑛

|⟨𝑟
𝑛−1

, 𝑎
𝑖
⟩|,Λ
𝑛
= Λ\Λ

𝑛−1
. Here, the

constant 𝜇
1
is used to adaptively decide how many atoms are

chosen at each time.Then the atoms corresponding to the ele-
ments of 𝐶

𝑛
are set as the root nodes of subtrees. As we men-

tioned in Section 2.1, due to the 2-times relationship between
the indices of parent and child nodes, the subtree of each atom
corresponding to an index in 𝐶

𝑛
can be found to form the

family set𝐹𝑞
𝑛
, which consists of the indices of the family atoms

in the 𝑞th subtree. In the third step, least square method is
applied to obtain the reconstruction wavelet high frequency
coefficients 𝜔̂𝑛

𝐹
𝑞

𝑛

corresponding to the atoms indexed by 𝐹
𝑞

𝑛
.

Then the optimal subtree indexed by 𝐹
𝑞

𝑛
will be selected

according to step (4). In this step, theremay exist insignificant
atoms in 𝑎

𝐹
𝑞

𝑛

. This is because that we only simply applied the
2-times relationship discipline in the searching processing of
subtrees. Thus, the backtracking deleting method is intro-
duced in the algorithm to identify the true support set of 𝐹𝑞

𝑛
.

The backtracking deleting set Γ
𝑛
consists of the indices cor-

responding to all the reconstructed coefficients satisfying (9).
Then, the index set is updated byΛ

𝑛
= {Λ
𝑛−1

∪𝐹
𝑞

𝑛
} \Γ
𝑛
at this

iteration. According to the atoms corresponding to the
indices in the set Λ

𝑛
, the reconstruction coefficients 𝜔̂𝑛

Λ 𝑛
can

be computed. Finally, update the residual by (10) and go to the
next iteration. If ‖𝑟

𝑛
‖
2
< 𝜀 or 𝑛 = 𝑛max, quit the iteration.

In the TBOMP, the process of tree nodes selection was
shown in Figure 2; the first step of the algorithm is to select
candidate set 𝐶

𝑛
by (7). For example, suppose that 𝐶

1
=

{𝜔
𝐿,0

, 𝜔
𝐿−2,3

} was chosen at the first iteration. The nodes of
subtreeB rooted at𝜔

𝐿,0
and the family nodes rooted at𝜔

𝐿−2,3

are the significant coefficients needed to be found. According
to the 2-times relationship of wavelet tree node indices and
Figure 2(b), 𝜔

𝐿−1,0
and 𝜔

𝐿−2,0
are the child and grandchild

nodes of 𝜔
𝐿,0
. Thus, subtree A rooted at the node 𝜔

𝐿,0
will

be found in the first iteration.
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Figure 3: Reconstruction signal by TBOMP algorithm.
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Figure 4: Reconstruction of TBOMP algorithm.

Nowwe assume that the subtreeA is the optimal tree cor-
responding to𝜔

𝐿,0
. At the end of this iteration, the backtrack-

ing algorithm will remove the node 𝜔
𝐿−2,0

according to step 5
of the TBOMP algorithm described above. In the remaining
iteration, node 𝜔

𝐿−2,1
will be choosen as the child node

of 𝜔
𝐿−1,0

. Ultimately, subtree B will be found accurately.
Analogously, the searching process of the subtree rooted at
the node 𝜔

𝐿−2,3
is the same, and it can be proceeded simul-

taneously.
These characteristics of tree structure provide a new way

for the study of reconstruction algorithm. Thanks to the tree
structure of wavelet coefficients, when the signal is sparsely
represented by the wavelet transform, it also provides a clew
for the selection of atoms in the reconstruction algorithm.
This will greatly improve the reliability of the atom selection.

The coefficients of wavelet decomposition include low-
frequency coefficients and high-frequency coefficients (scal-
ing coefficients and wavelet coefficients in 𝛼).Themore levels
of wavelet decomposition, the less low-frequency coefficients,
and more important information is reserved in the high-
frequency coefficients. Compared with the high-frequency
coefficients, the number of low-frequency coefficients are
much less if the decomposition level is big enough. Since
the low-frequency coefficients play an important role in the
wavelet reconstruction, in our proposed algorithm, only the
high-frequency coefficients are measured by measurement

matrix. For the reconstruction, we combine the reconstructed
high-frequency coefficients 𝜔̂ and the unprocessed low-
frequency coefficients. Then the inverse wavelet transform is
applied to obtain a reconstructed 𝑥 of the original signal 𝑥.

3. Simulation Results

In this section, several experiments will be given for the
TBOMPalgorithm. In the first experiment, the original signal
𝑥 is a one-dimensional blocks signal with length 𝑁 = 256.
It was recovered from 𝑀 = 64 measurements by using the
Gaussian random measurement matrix. The wavelet decom-
position level is 4 and the wavelet function is Db1. Figure 3
shows the reconstruction result of 7th iterations by using the
TBOMP algorithm.

In the first iteration of the TBOMP algorithm, according
to the parent-child relations of wavelet tree, some unreliable
atoms will be chosen, which leads to a wrong reconstruction
result. Asmarked by the cycles in Figure 4(a).Then according
to the backtracking deleting method, the wrong selected
atoms can be deleted. After the second and the third itera-
tions, some atoms are still not found. After the 7th iteration,
the reconstruction result (Figure 3(c)) with TBOMP algo-
rithm is exactly same as the original wavelet coefficients
shown in Figure 3(b).
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(b) A zoom-in view of Figure 5(a)
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(c) Original and Reconstruction signals of
Doppler signal by OMP
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(d) A zoom-in view of Figure 5(c)
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(e) Original and Reconstruction signals of
Heavysine signal by TBOMP
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(f) A zoom-in view of Figure 5(e)
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(h) A zoom-in view of Figure 5(g)

Figure 5: Reconstruction results of Doppler and HeavySine signal by TBOMP and OMP algorithms.

Similar results can be obtained for other signals. Recon-
struction results of Doppler and Heavysine signals by using
our TBOMP algorithm are shown in Figure 5. Here, we com-
pared our reconstruction results with the classical OMP algo-
rithm,𝑀/𝑁 = 1/4.

In the next experiment, wewill compare theTBOMPwith
some popular algorithms such as OMP, ROMP, and BAOMP.
Here, only the high frequency coefficients are measured; the
low-frequency coefficients will not be processed [16]. The
wavelet function is choosen as the “sym8” in MATLAB. The
decomposition level is 5 for these four algorithms. Define
SNR = 20 log

10
(std(𝑥)/std(𝑥 − 𝑥)), where std denotes

the standard deviation. Because of the randomness of the
sensing matrix, numerical result at each time is different.
Hereafter, we use the same sensing matrix in one experiment
for these four algorithms.

We use the Bumps signal of length𝑁 = 2048 and change
the values of𝑀 simultaneously in order to guarantee the same
experiment condition. After 5 layers of wavelet decomposi-
tions, there are 64 low-pass coefficients in the 5th decom-
position layer and total 1984 high-pass coefficients in the 5
decomposition layers. In order to obtain a fair comparison,
in the Figure 6, the measurements number used in these four
algorithms is 500 − 64 = 436. For sake of simplicity, when
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Figure 6: Comparison signal of TBOMP and BAOMP in time domain.
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Figure 7: SNR comparison for different values of𝑀.

we mention that𝑀measurements in the TBOMP, we means
that𝑀 is the sum of the low-pass coefficient number and the
measurement number of the high-pass coefficients.

When 𝑀 = 500, the compression ratio is about 1/4.
The reconstruction results of Bumps signal of TBOMP and
BAOMP are shown Figure 6. The SNR of TBOMP is about
1.8 dB higher than the BAOMP.

Since ROMP requires the sparsity level 𝐾 to be known
for exact recovery, in the experiments, the best sparsity value
𝐾 of the wavelet coefficients can be estimated according to
repeated experiments and then used in the simulations. Fig-
ure 7 shows the SNR comparison results for different values
of𝑀. The values of𝑀 are selected as 200, 500, 800, 1100, and
1400, respectively. For each𝑀, we conduct the experiment 10
independent trials and calculate the average SNR. It is obvi-
ously that the reconstruction result of TBOMP algorithm is
superior to others.

4. Conclusion

Sparse reconstruction algorithm is one of the three core
problems (signal sparse representation, measurement matrix
design, and reconstruction algorithm design) of CS. The
existed sparse reconstruction algorithms such as ROMP and

CoSaMP algorithms employ the sparsity 𝐾 as the prior
knowledge for exact recovery, which hasmany limitations for
the realistic applications. However, although the sparsity level
are not required for OMP and BAOMP algorithms, they do
not use the characteristics of special sparse basis to improve
the performance of the algorithms. In this paper, a new Tree-
based Backtracking Orthogonal Matching Pursuit (TBOMP)
algorithm was proposed based on the tree model in wavelet
domain. Our algorithm can convert the wavelet tree struc-
tures to the corresponding relations of candidate atoms with-
out any prior information of signal sparsity level. Moreover,
the unreliable atoms can be deleted according to the back-
tracking algorithm. Compared with other compressive sens-
ing algorithms (OMP, ROMP, andBAOMP), the signal recon-
struction results of TBOMPoutperform the abovementioned
CS algorithms.
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