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The ball-on-plate balancing system has a camera that captures the ball position and a plate whose inclination angles are limited.This
paper proposes a PID controller design method for the ball and plate system based on the generalized Kalman-Yakubovich-Popov
lemma. The design method has two features: first, the structure of the controller called I-PD prevents large input signals against
major changes in the reference signal; second, a low-pass filter is introduced into the feedback loop to reduce the influence of the
measurement noise produced by the camera. Both simulations and experiments are used to evaluate the effectiveness of the design
method.

1. Introduction

The ball and plate [1] is an unstable underactuated nonlinear
system that has double integrators at the origin and that has
two control inputs against four degrees of freedom (DOF). A
camera located above the plate captures the position of the
ball, and two motors manipulate the inclination angles of the
plate to keep the ball on the plate.The ball and plate system is
an extension of the ball and beam system [2] from one to two
dimensions. The system has demonstrated various controller
designmethods for positioning and trajectory tracking of the
ball: proportional integral derivative (PID) control [3], fuzzy
control [4], neural network control [3, 5], and model predic-
tive control [6]. In particular, PID control has the benefits
of simple implementation and fewer hardware requirements,
and it has been applied in many successful designs [7].
Because PID control enables us a limited performance,
optimizing the parameters in a PID controller satisfying
design specifications is an important subject for study. In the
controller design of the ball and plate, it requires to consider
limitation of the inclination angles with good transient and
steady-state responses. Although proportional and derivative
controllers are required to improve transient responses, a
jump in the reference signal generates a large input signal

that reaches the limitation angle that degrades the transient
responses [8]. In addition, ball position data from the camera
include measurement noise that also degrades the steady-
state responses.

To overcome the above issues, this paper proposes a
PID controller design method for the ball and plate system
by open-loop shaping based on the generalized Kalman-
Yakubovich-Popov (GKYP) lemma [9].TheGKYP lemma is a
generalization of the standard KYP lemma [10], which estab-
lishes the equivalence between a frequency domain inequality
(FDI) for a transfer function and a linear matrix inequality
(LMI) associatedwith its state-space realization.The standard
KYP lemma is available for the infinite frequency range
while the generalized one can limit the frequency range to
be (semi) finite. By introducing the GKYP lemma to PID
controller design, design specifications by FDIs in the finite
frequency ranges for the open-loop transfer function result
in LMIs [9]. The GKYP lemma gives a systematic open-
loop shaping design method through optimization to realize
desirable transient and steady-state responses. In this visual
feedback system, we introduce a low-pass filter. Since the
filter gives freedom in optimization, it allows better steady-
state responses and reduces the influence of themeasurement
noise. To prevent large input signals fromP andD controllers,
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Figure 1: 2D Ball Balancer.

we adopt the I-PD (integral-proportional derivative) struc-
ture, whose design is still in the framework of the GKYP
lemma, because the open-loop transfer functions of PID and
I-PD structures are fundamentally the same.

The paper is organized as follows. The description of the
ball and plate system, including its modeling and the mea-
surement noise, is presented in Section 2. The GKYP lemma
based I-PD controller design method with a low-pass filter
is provided in Section 3. The design of the I-PD controller is
described in Section 4. Simulation and experimental results
are presented in Sections 5 and 6, respectively. Finally, in
Section 7, we present our conclusions.

The notation used is standard. For a matrix 𝑀, the
transpose and complex conjugate transpose are denoted by
𝑀
⊤ and 𝑀∗, respectively. For a Hermitian matrix 𝑀, 𝑀 ≻

(⪰) 0 and 𝑀 ≺ (⪯) 0 denote positive (semi) definiteness
and negative (semi) definiteness, respectively.The symbolH

𝑛

stands for the set of 𝑛 × 𝑛 Hermitian matrices. The subscript
𝑛 is omitted if 𝑛 = 2. The real and imaginary parts of 𝑀
are denoted by R(𝑀) and I(𝑀). For matrices Φ and 𝑃,
Φ⊗𝑃 denotes the Kronecker product.L{𝑥(𝑡)} represents the
Laplace transform of a signal 𝑥(𝑡).

2. Ball and Plate System

The ball and plate, a QUANSER 2D Ball Balancer, is shown
in Figure 1. The system consists of a plate, a ball, an overhead
camera, and two servo units. The plate is allowed to swivel
in both the 𝑋- and 𝑌-directions. The overhead CMOS
digital camera, a Point Grey Research Inc. FFMV-03M2C-CS,
measures the position of the ball. The two servo units located
under the plate are QUANSER SRV02 devices, each of which
has a peak time of approximately 200 ([ms]) and an overshoot
of approximately 5%. Each of the devices is connected to a
side of the plate through a two DOF gimbal. The sampling
time of the control system and the frame rate provided by
the camera are 1 ([ms]) and 60 ([fps]), respectively. Thus the
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Figure 2: The ball and plate system.

image information is renewed approximately every 17 ([ms]).
There is a constant time delay of less than 60 ([ms]) between
themeasurement of the ball position and themanipulation of
the servo units in the visual feedback system.

2.1. Modeling. The𝑋-direction of the ball and plate system is
illustrated in Figure 2. We assume that the ball is completely
symmetric and homogeneous and does not slip on the plate
and that all frictions are neglected. The plate rotates in the
𝑋𝑌-Cartesian coordinates with the origin at the center of the
plate. The equations of motion are
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(1)

where (𝑥
𝑏
, 𝑦
𝑏
) is the position of the ball on the plate, 𝛼 and

𝛽 are the inclination angles of the plate to the 𝑋- and 𝑌-axis,
respectively, 𝑚

𝑏
is the mass of the ball, 𝑟

𝑏
is the radius of the

ball, 𝑔 is the gravitational acceleration, and 𝐼
𝑏
is the inertia of

the ball. In Figure 2, 𝜃
𝑥
represents the angle of the load gear.

The relationship between 𝛼 and 𝜃
𝑥
is as follows:

sin𝛼 =
2 sin 𝜃

𝑥
𝑟arm

𝐿 tbl
, (2)

where 𝐿 tbl is the length of the side of the plate and 𝑟arm is the
length between the joint and the center of the load gear. The
relationship of 𝛽 and 𝜃

𝑦
is the same as (2), since both gear

systems have the same hardware and the plate is symmetrical.
The numerical values of the constant parameters in the
equations of motion and (2) are shown in Table 1. Since 𝜃

𝑥

and 𝜃
𝑦
are limited as

−30 [
∘
] ≤ {𝜃

𝑥
, 𝜃
𝑦
} ≤ 30 [

∘
] , (3)

from (2), the working ranges of 𝛼 and 𝛽 are

−5.3 [
∘
] ≤ {𝛼, 𝛽} ≤ 5.3 [

∘
] . (4)

If the angular velocities �̇� and ̇𝛽 are relatively low, the
approximations

�̇� ̇𝛽 = 0, �̇�
2
= 0, ̇𝛽

2
= 0 (5)
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Table 1: Parameters of the ball and plate system.

Parameters Numerical values
𝑚
𝑏

0.0252 [kg]
𝑟
𝑏

0.0170 [m]
𝑔 9.81 [m/s2]
𝐼
𝑏

2.89 × 10
−6 [kg⋅m]

𝐿 tbl 0.275 [m]
𝑟arm 0.0254 [m]

are often used. Linearizing the equations of motion at 𝜃
𝑥
= 0

and 𝜃
𝑦
= 0, we have
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Since the axes are independent of each other, we can focus
on one axis, for example, the𝑋-axis. For the input 𝜃

𝑥
and the

output 𝑥
𝑏
, the transfer function is given by

𝑃 (𝑠) =
𝑋
𝑏
(𝑠)

Θ
𝑥
(𝑠)

=

𝐾bap

𝑠2
, (7)

where𝑋
𝑏
(𝑠) = L{𝑥

𝑏
(𝑡)}, Θ

𝑥
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𝑥
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2
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)
. (8)

2.2. Measurement Noise. In this visual feedback system, there
is inevitable noise from the camera. To examine the noise
level and frequencies, we observed the error signal between
a fixed ball position and a measurement signal. The results
are shown in Figure 3, where the upper part represents a time
history of the error signal including noise and the lower part
represents the fast Fourier transform (FFT) analysis of the
error signal. The noise level in the error signals is relatively
high at frequencies over 20 ([rad/s]).

3. I-PD Control by GKYP Lemma

This section describes an I-PD controller design method
based on the GKYP lemma. The feedback control system is
shown in Figure 4, where a filter is introduced into the control
system.

3.1. Low-Pass Filter. In the previous section, we showed that
themeasurement noise degrades the control performance. To
reduce the influence of the noise, a low-pass filter is available
in the controller design. According to the noise properties
that we observed, it is sufficient to introduce a first-order low-
pass filter into the output of the measurement, such that

𝐹 (𝑠) =
𝜇

𝑠 + 𝜇
, (9)

where 𝜇 ([rad/s]) is the cut-off frequency.
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Figure 3: Time history and FFT analysis results of measument
signal.
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Figure 4: Feedback control system of the ball and plate.

3.2. I-PD Controller. In the standard PID control, major
changes in the reference signals cause large input signals to
be generated by the proportional and derivative actions in the
controller that saturate the actuator. Indeed, it is difficult to
tune the parameters in the PID controller (Figure 4) such that
the actuator in this visual feedback system is not saturated.
The control system with the I-PD controller (Figure 4) has
a structure whose inner loop includes the proportional and
derivative actions [7, 8]. In this structure, the integral action
alone acts on the error signal and prevents large signals being
input to the actuator. The control input 𝑢 can be written as

𝑢 = −𝐾
𝑝
𝑦 +

𝐾
𝑖

𝑠
(𝑟 − 𝑦) −

𝐾
𝑑
𝑠

𝜏𝑠 + 1
𝑦, (10)

where 𝜏(> 0) is the parameter to approximate the differen-
tiator by a proper transfer function.𝐾

𝑝
,𝐾
𝑖
, and𝐾

𝑑
represent

the proportional, integral, and derivative gains, respectively.
The open-loop transfer function is

𝐿 (𝑠) = 𝐹 (𝑠) 𝑃 (𝑠)𝐾 (𝑠) , (11)

where

𝐾 (𝑠) = 𝐾
𝑝
+
𝐾
𝑖

𝑠
+

𝐾
𝑑
𝑠

𝜏𝑠 + 1
= 𝐾
𝑝
(1 +

1

𝑇
𝑖
𝑠
+

𝑇
𝑑
𝑠

𝜏𝑠 + 1
) . (12)

𝑇
𝑖
and 𝑇

𝑑
are the integral time and derivative time, respec-

tively. It should be noted that the open-loop transfer function
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of the I-PD structure is the same as that of the standard
PID structure. To tune the parameters in the I-PD controller,
we employ an open-loop shaping that realizes a desirable
frequency response of the closed-loop system.

3.3. Generalized KYP Lemma. It is known that design spec-
ifications for an open-loop transfer function can be reduced
to LMIs through the GKYP lemma [9]. We briefly review this
lemma in the case of continuous-time systems.

The design specification consists of a frequency range and
a desired property in that range. The frequency range can be
represented by

Λ (Φ,Ψ) := {𝑠 ∈ C | 𝜎 (𝑠, Φ) = 0, 𝜎 (𝑠, Ψ) ≥ 0} , (13)

where Φ,Ψ ∈ H,

𝜎 (𝑠, Φ) := [𝑠
∗
1]Φ[

𝑠

1
] = 0. (14)

The equality constraint in (13) distinguishes between
continuous-time and discrete-time specifications. Since we
address continuous-time systems in this paper, we use Φ
such that

Φ := [
0 1

1 0
] . (15)

The inequality constraint 𝜎(𝑠, Ψ) ≥ 0 in (13) sets a frequency
rangeΩ. For example, a low frequency range is written as

Ω = {𝜔 | 𝜔 ≤ 𝜛
𝑙
} = {𝜔 | 𝜎 (𝑗𝜔, Ψ) ≥ 0} , (16)

where

Ψ = [
0 −𝑗

𝑗 2𝜛
𝑙

] . (17)

Table 2 presents a summary of the choice of Ψ versus a type
of the frequency range Ω, where 𝜛

ℓ
, 𝜛
ℎ
, 𝜛
1
, and 𝜛

2
are real

positive numbers, and 𝜛
𝑐
:= (𝜛
1
+ 𝜛
2
)/2. On the other hand,

the desired property in a specific frequency range can be
represented by

[𝐿 (𝑗𝜔) 𝐼]Π [
𝐿
∗
(𝑗𝜔)

𝐼
] ≺ 0, (18)

where

Π = [
Π
11

Π
12

Π
21

Π
22

] ∈ H
𝑚+𝑝

, Π
11
∈ H
𝑝
, Π ⪰ 0, (19)

𝑚 and 𝑝 are the input and output numbers of 𝐿(𝑠), respec-
tively. For SISO systems, consider the requirement that 𝐿(𝑗𝜔)
in a frequency range is on the half plane under a straight line.
That is, 𝐿(𝑗𝜔) is under the straight line, such that

𝑎R [𝐿 (𝑗𝜔)] + 𝑏I [𝐿 (𝑗𝜔)] < 𝑐, (20)

that is equivalent to (18) with

Π = [
0 𝑎 − 𝑗𝑏

𝑎 + 𝑗𝑏 −2𝑐
] ∈ H

2
. (21)

Table 2: Relation between Ψ andΩ for continuous time.

Ψ Ω

[
0 −𝑗

𝑗 2𝜛
ℓ

] 𝜔 ≤ 𝜛
ℓ
(low)

[
−1 𝑗𝜛

𝑐

−𝑗𝜛
𝑐
𝜛
1
𝜛
2

] 𝜛
1
≤ 𝜔 ≤ 𝜛

2
(middle)

[
0 𝑗

−𝑗 −2𝜛
ℎ

] 𝜛
ℎ
≤ 𝜔 (high)

This requirement is designed to reduce sensitivity in a low
frequency range. Another requirement is that 𝐿(𝑗𝜔) in a
frequency range is in the interior of the circle of radius 𝑟with
the center at 𝑐. That is, 𝐿(𝑗𝜔) is in the circle such that

𝐿 (𝑗𝜔) − 𝑐


2

< 𝑟
2
, (22)

which is equivalent to (18) with

Π = [
1 −𝑐

∗

−𝑐 |𝑐|
2
− 𝑟
2] ∈ H

2
. (23)

This requirement is designed to guarantee robustness in a
high frequency range. Under these preparations, the gener-
alized KYP lemma [9] is expressed as follows.

Lemma 1. Let 𝐿(𝑠) be 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷. Λ(Φ,Ψ) in (13) and
Π in (18) are given. Assume that det(𝑠𝐼 − 𝐴) ̸= 0 for all 𝑠 ∈ Λ.
Then the finite frequency condition

[𝐿 (𝑠) 𝐼]Π [
𝐿
∗
(𝑠)

𝐼
] ≺ 0, ∀𝑠 ∈ Λ (Φ,Ψ) (24)

holds if and only if there exist Hermitianmatrices𝑃 and𝑄 such
that the matrix inequality condition

[
[
[

[

Γ [
𝐵

𝐷
]Π
11

Π
11
[
𝐵

𝐷
]

∗

−Π
11

]
]
]

]

≺ 0 (25)

is satisfied where

Γ := [
𝐴 𝐼

𝐶 0
] (Φ
⊤
⊗ 𝑃 + Ψ

⊤
⊗ 𝑄) [

𝐴 𝐼

𝐶 0
]

⊤

+ [

[

0 𝐵Π
12

Π
∗

12
𝐵
⊤
𝐷Π
12
+ Π
∗

12
𝐷
⊤
+ Π
22

]

]

.

(26)

Equation (25) is affine with respect to 𝐵,𝐷, 𝑃,𝑄, andΠ
22
.

In the case where 𝐵 and𝐷 have affine design parameters, (25)
is an LMI.

4. Control System Design

4.1. Filter Design. Considering the control performance and
the noise level, we set the cut-off frequency in (9) as 𝜇 =

20 ([rad/s]). We examine the effectiveness of this filter in
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Figure 5: Time history and FFT analysis result of measurement
signal with low-pass filter.

the same experimental setup as given in Section 2.2. Figure 5
shows the spectral analysis results of the measurement and
filtered signals, which are represented by the dotted and solid
curves, respectively. From these results, it can be seen that the
noise at frequencies over 20 ([rad/s]) has been reduced.

4.2. State-Space Realization of Open-Loop Transfer Function.
To obtain an LMI based on the GKYP lemma, a state-space
realization of 𝐿(𝑠) is required to be affine with respect to a
set of the design parameters 𝜌 = (𝐾

𝑝
, 𝐾
𝑖
, 𝐾
𝑑
). If we fix 𝜏 in

𝐾(𝑠) at 1.0×10−2, the design parameters appear affinely in the
numerator of𝐾(𝑠). Indeed, the controllable canonical form of
𝐾(𝑠) is written as

[
𝐴
𝑘
𝐵
𝑘
(𝜌)

𝐶
𝑘
𝐷
𝑘
(𝜌)

] =

[
[
[
[
[
[

[

0 0
𝐾
𝑖

𝜏

1 −
1

𝜏
𝐾
𝑖
−
𝐾
𝑑

𝜏2

0 1 𝐾
𝑝
+
𝐾
𝑑

𝜏

]
]
]
]
]
]

]

. (27)

Realizations of 𝑃(𝑠) and 𝐹(𝑠) are also written as

[
𝐴
𝑝

𝐵
𝑝

𝐶
𝑝
𝐷
𝑝

] = [

[

0 1 0

0 0 𝐾bap
1 0 0

]

]

, (28)

[
𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

] = [
−𝜇 1

𝜇 0
] , (29)

respectively. By combining these realizations (27)–(29), we
obtain a realization of 𝐿(𝑠) as

𝐿 (𝑠) = [
𝐴 𝐵 (𝜌)

𝐶 𝐷 (𝜌)
] , (30)

where

𝐴 = [

[

𝐴
𝑘

0 0

𝐶
𝑘
𝐵
𝑝

𝐴
𝑝

0

𝐶
𝑘
𝐷
𝑝
𝐵
𝑓
𝐶
𝑝
𝐵
𝑓
𝐴
𝑓

]

]

, 𝐵 = [

[

𝐵
𝑘
(𝜌)

𝐷
𝑘
(𝜌) 𝐵
𝑝

𝐷
𝑘
(𝜌)𝐷
𝑝
𝐵
𝑓

]

]

,

𝐶 = [𝐶𝑘𝐷𝑝𝐵𝑓 𝐶
𝑝
𝐵
𝑓
𝐶
𝑓] , 𝐷 = 𝐷

𝑘
(𝜌)𝐷
𝑝
𝐷
𝑓
.

(31)

Consequently, the state-space realization of 𝐿(𝑠) is affine with
respect to 𝜌.

4.3. Specifications. To shape the Nyquist plot of 𝐿(𝑠), we
require the following FDI specifications:

−2R [𝐿 (𝑗𝜔)] +I [𝐿 (𝑗𝜔)] > 𝛾
ℓ
,
∀
𝜔 ≤ 0.8, (32)

I [𝐿 (𝑗𝜔)] < 𝛾
𝑚
, 2.5 ≤

∀
𝜔 ≤ 2.8, (33)

𝐿 (𝑗𝜔)
 < 𝛾ℎ,

∀
𝜔 ≥ 10. (34)

Specification (32) with a large 𝛾
ℓ
(> 0) ensures sensitivity

reduction in the low frequency range by making the gain of
𝐿(𝑠) high. Specification (33) requires the Nyquist plot to be
outside a circle with its center at the point −1 + 𝑗0 so that
a certain stability margin is guaranteed. Specification (34)
with a small 𝛾

ℎ
ensures robustness against the unmodeled

dynamics that typically exists in the high frequency range.
In addition to the above basic specifications, we also

require the following FDIs that improve the property of
trajectory tracking

4R [𝐿 (𝑗𝜔)] +I [𝐿 (𝑗𝜔)] < 𝛾
1
,
∀
𝜔 ≥ 0.3, (35)

4R [𝐿 (𝑗𝜔)] +I [𝐿 (𝑗𝜔)] > 𝛾
2
,
∀
𝜔 ≥ 0.3. (36)

Since the integral action aloneworks on the error between the
output and the reference signals, the property of trajectory
tracking depends directly on the integrator. Here we focus
on the corner angular frequency 𝜔

𝐼
by the integral action

in the I-PD controller which is given by 𝜔
𝐼
= 1/𝑇

𝑖
, where

𝑇
𝑖
= 𝐾
𝑝
/𝐾
𝑖
. We have a strong integral action, and the error is

corrected quickly when the corner angular frequency is high,
while too high a corner angular frequency causes overshoot
and hunting. Thus we impose restrictions for the phase of
the I-PD controller. It should be noted that the phase at
lower frequencies is about −90 ([deg]) while the phase at
the corner angular frequency is about 0 [deg]. If we find the
frequency at a specific phase from −90 ([deg]) to 0 ([deg]),
the corner angular frequency is greater than that frequency.
Specifications (35) and (36) restrict the phase of the I-PD
controller as well as the open-loop transfer function so that
the corner angular frequency is greater than the frequency at
the lowest point in the frequency range 0.3 ([rad/s]).

4.4. I-PD Controller Design. We design an I-PD controller by
maximizing 𝛾

ℓ
subject to Specifications (32)–(36) where

(𝛾
𝑚
, 𝛾
ℎ
, 𝛾
1
, 𝛾
2
) = (−1, 0.5, 1, −100) . (37)
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Figure 6: Nyquist plot.

That is, the optimization problem is

max
𝐾𝑖 ,𝐾𝑝,𝐾𝑑 ,𝛾ℓ

𝛾
ℓ

subject to (19)–(36) and (37) .

(38)

Each of the design Specifications (32)–(36) is reduced to an
LMI condition through Lemma 1 with the realization (30).
The Specification (32) is modified to 𝜀 ≤ ∀𝜔 ≤ 0.8, where 𝜀 =
1.0 × 10

−4 because 𝐿(𝑠) includes the origin poles that prevent
us from taking 𝜔 = 0. Then the LMI optimization problem
is to maximize 𝛾

ℓ
subject to all these LMI conditions where

𝐾
𝑖
, 𝐾
𝑝
, and 𝐾

𝑑
are the common decision variables, while

𝑃
1
, . . . , 𝑃

5
and 𝑄

1
, . . . , 𝑄

5
appear in the LMIs as independent

decision variables. It should be noted that 𝛾
ℓ
appears alone in

Π
22
in the LMI condition (25) corresponding to (36). In this

sense, 𝛾
ℓ
is also an independent decision variable. It should

also be noted that 𝑃 and 𝑄 in (25) appear in each of the LMI
conditions as the independent decision variables.

To solve this LMI optimization problem, we use YALMIP
R20120806 [11], an LMI parser, and SPDT3 version 4.0 [12],
an LMI solver, on MATLAB R2011b. The resulting optimal
parameters in the I-PD controller and 𝛾

ℓ
are

(𝐾
𝑝
, 𝐾
𝑖
, 𝐾
𝑑
, 𝛾
ℓ
) = (9.2859, 10.7806, 4.138, 11.9464) .

(39)

The Nyquist plots are shown in Figures 6 and 7 where 𝐿(𝑗𝜔)
satisfies the design specifications given in Section 4.3. Since 𝛾

ℓ

is maximized, sensitivity is reduced in the frequency range.
The Bode plots of 𝐹(𝑠)𝑃(𝑠), 𝐿(𝑠), and 𝐾(𝑠) are shown in
Figure 8 where the corner angular frequency 𝜔

𝐼
of the I-PD

controller is larger than 0.3 ([rad/s]).

5. Simulation Results

The I-PD controller whose design is described in the previous
section was evaluated by a simulation of the step response. To
compare the response with that of a standard PID controller,
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we used the PID controller whose gain parameters are the
same as those of the I-PD controller. Since both feedback
systems have the same open-loop transfer function, their
feedback properties must be the same, provided that each
input signal does not saturate. The simulation results of the
step response are shown in Figure 9 where the upper and
lower parts are the output and input signals, respectively.
The solid curves represent the responses given by the I-PD
controller while the dashed curves represent those by the PID
controller. One can see that the input signal given by the PID
controller is saturated, while that by the I-PD controller is not
saturated and satisfies the limitation (3). The output signal
given by the I-PD controller settles down to the desired value
without any overshoot.

It should be noted that the gain parameters in the
designed controller are not tuned with the I-PD structure.
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Figure 9: Step response simulation results.
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Figure 10: Step response experimental results.

In our experience, it is difficult not to saturate the input
limitation for the PID structure using any design method.

6. Experimental Results

This section evaluates the I-PD controller whose design
is given in Section 4 through an experiment of the step
response. The PID controller used in Section 4 was also
evaluated for comparison. The results of trajectory tracking
control by the I-PD controller were also evaluated.

6.1. Step Response Experiment. The results of the step
response experiment are shown in Figure 10 where the
description of the figure is the same as that of Figure 9. In this
experiment, the influence of the time delay appeared and the
input signals were slightly larger than those obtained in the
simulations. The rise and settling time results are, however,
almost the same as those obtained in the simulation.

6.2. Trajectory Tracking Experiments. We tested two kinds
of trajectories for tracking control, a square and a circular
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trajectory. The side of the square trajectory was 0.1 ([m]),
and the radius of the circular trajectory was 0.05 ([m]). The
results are shown in Figure 11 where the left part shows a
trajectory of the square trajectory tracking control, and the
right part shows a trajectory of the circular trajectory tracking
control. The time histories of the ball and input angles are
shown in Figures 12 and 13. In the square trajectory tracking
control experiment, the responses were similar to those in
the step response experiment except for a slight vibration.
Such vibration phenomena are noticeable in the responses
of circular trajectory tracking control, in particular, the case
when the input signal is relatively small. The reason for these
phenomena could be the friction of the ball against the plate
or a backlash of the gear system.

7. Conclusions

This paper applied the GKYP lemma to an open-loop
transfer function including an I-PD controller and a noise
reduction filter for the ball and plate system.Themultiple FDI
specifications for the finite frequency ranges were satisfied
by a solution of the LMI optimization problem. The solution
includes the optimal parameters in the I-PD controller. The
first-order low-pass filter reduced the noise in the high fre-
quency range and improved the steady-state response. Both
simulations and experiments evaluated the effectiveness of
the designmethod by comparing the standard PID controller.

The PI-D (proportional integral-derivative) control sys-
tem, which moved the derivative controller to the inner
feedback loop, also has the same open-loop transfer function
as the standard PID controller. Thus the approach in this
paper can also be applied to the PI-D controller.
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