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A new generalized fractional subequation method based on the relationship of fractional coupled equations is proposed. This
method is applied to the space-time fractional coupled Konopelchenko-Dubrovsky equations and Nizhnik-Novikov-Veselov
equations. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions,
and rational solutions. It is observed that the proposed approach provides a simple and reliable tool for solving many other fractional

coupled differential equations.

1. Introduction

Fractional calculus is one of the generalizations of ordinary
calculus. Generally speaking, there are two kinds of fractional
derivatives. One is nonlocal fractional derivative [1, 2], that
is, Caputo derivative and Riemann-Liouville derivative which
have been used successfully in various fields of science and
engineering. The other one is the local fractional derivative,
that is, Kolwankar-Gangal (K-G) derivative [3, 4], Chen’s
fractal derivative [5, 6], Cresson’s derivative [7], and Jumari€’s
modified Riemann-Liouville derivative [8]. At the same time,
fractional differential equations have attracted much atten-
tion in a variety of applied sciences. However, we have diffi-
culty in finding exact analytical solutions [9-12] of fractional
differential equations that appear more and more frequently
in different research areas and engineering applications. So,
numerical methods have been used to handle these equations,
and some semianalytical techniques [13-16] have also largely
been used to solve these equations.

Based on homogeneous balance principle [17], Jumarie’s
modified Riemann-Liouville derivative [8], and symbolic
computation, S. Zhang and H.-Q. Zhang proposed a frac-
tional subequation method to search for explicit solutions
of FDEs. By using this method, S. Zhang and H.-Q. Zhang

successfully obtained some exact solutions of space-time
fractional biological population model and fractional Fokas
equation [18]. Jafari et al. have given some solutions of the
fractional Cahn-Hilliard and Klein-Gordon equations [19].
Tang et al. [20] proposed a generalized fractional subequation
method for fractional differential equations with variable
coeflicients. Guo et al. [21] and Zhao et al. [22] both improved
the fractional subequation and applied to space-time frac-
tional coupled differential equations; in their paper, they
choose two or three appropriate ansiatz. However, for some
coupled equations [23, 24], even some fractional coupled
equations, we can get the relationship of the functions. So,
we propose a new generalized fractional subequation which
chooses only one appropriate ansitz and use this method to
solve the following two NFDE:s.

(1) The space-time fractional coupled Konopelchenko-
Dubrovsky (KD) equations in the form

3
Dju - Di“u - 6buDu + zazuzDzu - 3D;v +3aDjuv = 0,

D‘;u =D,

@



which is a transformed generalization of the KD equations
[25], where a and b are real constants. Equation (1) is a frac-
tional evolution equation on two spatial dimensions and one
temporal, where x and y are the running coordinates, t is the
time, and u = u(x, y,t) and v = v(x, y,t) are the amplitudes
of the relevant waves. D; (-) and D$(:) are Jumarie’s modified
Riemann-Liouville derivative of order « defined in Section 2,
0 < a < 1. The Jumarie’s modified Riemann-Liouville
derivative has many interesting properties. The KD equations
can be used to describe the ocean dynamics, fluid mechanics,
and plasma physics, and the Gardner, KP, modified KP, and
KD equations are all the special cases of (1). When « = 1,
u, = 0,(1)is the Gardner equation (combined KdV and
modified equation). When ¢ = 1,a = 0, (1) is the well-
known Kadomtsev-Petviashvili (KP) equation, and modified
KP equation reads from (1) fora = 1,b = 0.

(2) The space-time fractional coupled Nizhnik-Novikov-
Veselov (NNV) equation in the form

Dfu = AD}"u + BD'u - 3AuD}v — 3AvD}u

- 3BuD;w - 3BwDZu,
(2)

Diu = D;v,

Dzu = Djw,

where 0 < a < 1, A and B are given constants satisfying
A + B#0, and u, v, and w are the functions of (x, y,t), the
case when & — 1 was studied in [26]. NNV equations have
been studied over several areas of physics including condense
matter physics, fluid mechanics, plasma physics, and optics.
The rest of this paper is organized as follows. In Section 2,
some basic definitions of Jumaries modified Riemann-
Liouville derivative and the main steps of the generalized
fractional subequation method are given. In Section 3, we
construct the exact solutions of above space-time fractional
coupled equations via this new generalized method. Some
conclusions and discussions are shown in Section 4.

2. Jumarie’s Modified Riemann-Liouville
Derivative and Generalized Fractional
Subequation Method

The Jumarie’s modified Riemann-Liouville derivative [8] of
order o time-fractional derivative operator of order « > 0 is
defined as

1 ' —a—1
T(l-a) L E=" 7 (f O - FO)dE
a <0,
P s g [fe-omvo- ©)
r(1_a)dtjo(f H(f &) - f(0)dE,
O<ac<l,
L(f(n) (t))‘x_n, n<a<n+1l, n>1

Abstract and Applied Analysis

Some properties for the proposed modified Riemann-
Liouville derivative are listed in [8] as follows:

a8 r(1+6) S—a
bt = o

Dy (f()g®)=g®)D;f @)+ f(t)Dig(t), (5)
Difg®)] = fylg®] Dig®), (6)

D f[g®)] =Dif[g®)](d'®)" (7)

The above equations play an important role in fractional
calculus in the following sections.

we propose a generalized fractional subequation method;
the essential steps of this method are described as follows.

, 6>0, (4)

Step 1. Suppose that NFDEs with independent variables X =

(X1, X5, X35 ..., X,,,, 1) are given by
o (24
P(u,v,ut,uxl,...,vt,vxl,...,Dtu,Dxlu,...,
D{v,Dv,...)=0, 0O<a<l,
(8)
(24 o
Q(u,v,ut,uxl,...,vt,vxl,...,Dtu,Dxlu,...,

D{v,D{v,...)=0, 0O<a<l,

where Dj(-) and Dzl(-) are Jumarie’s modified Riemann-
Liouville derivative with respect to t and x;, u = u(x,?),
v = v(x, t) are unknown functions, P is a polynomial in u, v,
and their various partial derivatives, Q is a polynomial in u, v,
and their various partial derivatives, and the highest order
derivatives and nonlinear terms are involved.

Step 2. By using the traveling wave transformations

X t) = u(§), X t) =V (E),
)

E=kx; +-+k,x,, +ct,

u(x,... v(xp,...

where ¢ is a constant to be determined later, the NFDE (7)
is reduced to the following nonlinear fractional ordinary
differential equation (ODE) for u(§) and v(§):

P (u, voeu ks e kL *Dgu, kD, ...,
C“D?v, k‘fD?v, . ) =0,
(10)
Q (u, v,cu, klu', v, klv', e C“D?u, k‘fD?u, e

¢*Dgv, ki D, .. )=0,
Step 3. For some coupled equations, we get the relationship

v=fu, (1)

and substituting into (8), one has

Q (u, voeu kol s e kv ,¢*Dgu, kD, ..., )
12

C“ng, k’l"D?v, .. ) =0.
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Step 4. We suppose that (12) has the following solution:

u@® =Y ag, (13)

i=—n

where a; i = -n,-n + 1,...,n — 1,n) are constants to
be determined later, n is a positive integer determined by
balancing the highest order derivatives and nonlinear terms
in (12) (see [17] for details), and ¢ = ¢(&) satisfies the
following fractional Riccati equation:

Dip ) =0+¢ (). (14)

By using the generalized Exp-function method via Mittag-
Leffler functions, S. Zhang and H.-Q. Zhang first obtained
generalized hyperbolic and trigonometric functions of frac-
tional Riccati equation [18], and the obtained five solutions of
(14) are

'—\/—_otanh“(ﬁi), 0<0,
—+/=o coth, (v/-0&), o<0,
¢ (&) = { Votan, (Vo &), >0, (5
—+/ocot, (Vo &), o >0,
—M, w = const,, o0 =0,
v w

where tanh,, coth,, tan,, and cot, are generalized hyper-
bolic and trigonometric functions defined in [18] as

sinh, (x) cosh, (x)

tanh, (x) = coshy ()
anhy, (x) sinh,, (x)

, th, =
cosh, (x) cothy (x)

sinh,, (x) = Fo (%) _ZE“ (—x"‘)’

cosh, (x) = Lo ¥ )+2Ea ()

sin, (x) _ cos, (x)

tang (x) = cos, (x)’ sing, (x)’

cos, (x) = ,

where E, (z) =
function.

Z,‘zzo(zk/l“(l + ka)) is the Mittag-Leffler

Step 5. Substituting (13) into (12) along with (14) and
using the properties of Jumarie’s modified Riemann-Liouville
derivative (4)-(7), we can get a polynomial in ¢(&). Setting
all the coefficients of gok (k =0,1,2,...,-1,-2,...) to zero
yields a set of overdetermined nonlinear algebraic equations
forc, k; (i = 1,2,...,m),aj (j=-n-n+1,...,n-1,n).

Step 6. Take advantage of the known solutions of (14) to get
the solutions of the fractional coupled NPDEs in concern.

3. Solutions of Fractional Coupled KD
Equation and NNV Equations

In this section, we apply the generalized fractional subequa-
tion method for solving the NPDEs (1) and (2).

Example 1. The space-time fractional KD equations. By
considering the traveling wave transformations u = u(§), v =
v(&), and & = Ix+my+nt, (1) can be reduced to the following
nonlinear fractional ODEs:

3
n”‘D?u - l3“D§“u - 6bl“uDgu + Eazl“uzD?u
(17)
- 3m°‘ng + 3al“vD?u =0,

m“D?u = l“D?v. (18)

From (18) and using the definition of Jumarie’s modified
Riemann-Liouville derivative, one gets

o
V= lTu +c, (19)
where ¢ is the arbitrary constant. Substituting (19) into (17),
one obtains

2,
moc

n“ — 6bl*u + §azl"‘u2 -3
2 &

+ 3am®u + 3al“c)
(20)

x Dfu - 13”‘D§“u =0.

By balancing the highest order derivative terms and nonlinear
terms in (20), we suppose that (20) has the following formal
solution:

S
P &)

Substituting (21) into (20) along with (14) and collecting the
coefficients of ¢’ and setting them to be zero, we can get a set
of algebraic equation about [, m, n, ¢, a,, a,, and a,. Solving the
algebraic equations by Mathematica, we have the following.

u) =ay+a&)+ (21)

Case 1. One has

_2b—am®T"

a, = —
0 >
aZ

B 20%
’\/a bl

n= ( (-12abm* + 92’ m** T + 126°I6a - 6ba’cl*  (22)

a, =0, a, =

+ 4a313°‘0) X (Zaz)_l)l/a

Case 2. One has

2b — am®I™* 21%
h=—"1> > @=0 =
n= ( (—12abm"c +9a°m* I + 12b%16a (23)

—6ba’cl” + 4a"P0) x (2a°) 1)



Case 3. One has

2b — am”I™ 20%
=Tz AT a, =0,
n= ( (—12abm“ +9a°m* T + 12b%16a (24)
1/«

—6ba’cl® + 4a3l3“0) X (2a2)_1)
Case 4. One has

2b — am® ™ 21*
ao = az > al = _%) aQ = 0)

n= ( (-12abm* + 92’ m**T"* + 126°I6ac - 6ba’cl*  (25)

+4a3l3“0) X (2a2)_1)1/a

Case 5. One has

_2b—am®T” 204 &
- 2 b - ,\/E bl

n= ( (‘120bm“ + 922 m® 1™ + 12b%160 — 6ba’cl®  (26)

%o a

_1\ 1/«
~8a'P0) x (20%) ")
Case 6. One has
o= 2b — am®I™* 0 - 20 B _21“0
0~ 112 > 1= \/a’ a, = \/a >

n= ( (—12abm"‘ +9a2m* ™ + 12b%16a — 6ba’cl®  (27)

+ 16a3l3“a) X (2612)_1>1/0‘

Case 7. One has

2b — am™ ™ 2% 2%
ao = —2, al = - =

Vo T

n= ( (-12abm" +9a’m** T + 126°I60c - 6ba’cl*  (28)

a

+ 16a3l3“o) X (2‘12),1)1/“

Case 8. One has

a —_— a = —= a, = ——
0 a2 > 1 \/E’ 2 \/E)

n= ( (—12abm® + 9 m** T + 1267160 — 6ba’cl*  (29)

_2b—am®T 20 2%

~9a' ) x (2a7) 1) "
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Using Case 1, (21), and the solutions of (14), we can find
the following exact solutions of NFDEs (1):

y— 2+/-o I* . 2bl* — am®
' Vatanh, (-v=0&) atle
(30)
2v/—om® 26m™1* — am*™
vy =-— + +c,
Vatanh, (-v/=0 &) a’le
where o < 0,& = Ix + my + nt,
- 2+/=cI* +2bl"‘—am°‘
>7 Vacoth, (—vV=0¢&) a2l
31
2o m®* 26m*1* — am®™
V2= + 22 +6
Vacoth, (-v-0&) a’l
where 0 < 0,& = Ix + my + nt,
e 2+/o I* . 2bl* — am®
* Vatan, (Vo§) a’ls
(32)
2+ Jom® 2bm1* — am*™
vy =— + +c,
Vatan, (/o &) a?l>
where 0 > 0, & = Ix + my + nt,
2~/o I* 2bl* — am®
Uy = + ,
Vacot, (1o &) a*l*
(33)
2+ Jom® 2bm° 1% — am*™
vy = + +c,
Vacot, (1 &) a’lPe
where o > 0, & = Ix + my + nt,
b 200" (w+ &%) 261 — am®™
> Val(l+a) atle
(34)

2bm°1* — am®™
a2l20c

_ 20m" (w + &%)

Vs = \Val (1 +a)

+c

where 0 = 0,& = Ix + my + nt. And n = ((-12abm” +
9@’ m?* ™ + 12b%160c— 6ba’cl® + 4a° %) [2a*) /%, I, m, ¢, and
w are arbitrary constants.

From Cases 2, 3, 4, 5, 6, 7, and 8, we obtain many other
exact solutions of (1). Here, we omit them for simplicity.

For a = 1, generalized hyperbolic function solutions and
generalized trigonometric function solutions degrade into
hyperbolic function solutions and trigonometric function
solutions. We stress on the fact that when « — 1 these
obtained exact solutions including solitary solutions and
rational solutions give the ones of the standard form equation
of the space-time fractional KD equation (1).

Example 2 (The space-time fractional NNV equations). By
considering the traveling wave transformations u = u(§),
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v=v(&), and & = Ix + my + nt, (2) can be reduced to the
following nonlinear fractional ODE:s:

n“D‘gu = Al3“D2“u + BmmuDg“u - 3Al“uD?v

(35)

- 3Al“vD?u - SBm“uD?w - 3Bm°‘wD?u,
l“D?u = m“D?v, (36)
m‘ngu = l“Dgw. (37)

From (36)-(37) and using the definition of Jumarie’s modified
Riemann-Liouville derivative, one gets

l(X
v=—u+q,
m
(38)

o
w = l—au + 6,
where ¢, and ¢, are arbitrary constants. Substituting (38) into
(35), one obtains

2c

lZ(X
(n“ +6A—u+3Al%; + 6bn;—“u + 3Bm“cl)
" (39)
X D?u - (Al3°‘ + Bm3“) Dg“u =0.

By balancing the highest order derivative terms and nonlinear
terms in (39), we suppose that (39) has the following formal
solution:

b b
u@ =by+be @) +be’ )+ . (35) * ;E). (40)

Substituting (40) into (39) along with (14), and collecting the
coefficients of ¢’ and setting them to be zero, we can get a set
of algebraic equation about [, m, n, ¢, ¢, by, by, b,, by, and b,.
Solving the algebraic equations by Mathematica, we have

Case 1. One has

m** (8Al3“a + 8Bm’** 0 — 3A¢,1* - 3Be,m™ — n"‘)
6AP* + 6Bm>*

b, = -2m"I%,

0

>

b, = 2m“I*0°.
(41)

Case 2. One has

m*1® (8Al3"‘0 + 8Bm™* 0 — 3A¢,1* - 3Be,m™ — n“)

0 6AD* + 6Bm>* ’
b =0, b, =0,
b,=0, b =2m""".

(42)

5
Case 3. One has
m*1® (8Al3"‘0 + 8Bm**o — 3A¢ 1% - 3Be,m”™ — n“)
o 6AY + 6Bm3* ’
b, =0, b, = 2m"1%,
b, =0, b, =0.
(43)

Using Case 1, (40), and the solutions of (14), we can find
the following exact solutions of NFDEs (2):

2m*l%o
u; = —2m*®otanh® (V-0 &) - ————
' (V=e%) tanh? (v=0 &)

m** (8Al3“o + 8Bm** — 3Be,m™ — 3A¢ 1% — n"‘)

N 6ADP* + 6Bm® :
2%
Vv, = —2l2a0‘ tanhz V—0 -
! «(V=o8) tanh? (V=0 £)

+ (m“l“ (8A15“0 + 8BI*“m™ o — 3Bc,I**m"
—3Aq I - lzo‘n‘x)
x (641" + 6Bm™) " +¢),

2m* o

tanh’ (V=0 &)

+ (m”‘l“ (8Al3“m2“a +8Bm™* o — 3Beym>*m®

w, = -2m**o tanh, (V=0t) -

—3Acq *m™ - mZ“n“)

X (6Al3°‘ + 6Bm3“)71) +6,
(44)

where 0 < 0,& = Ix + my + nt,

2m*l%o
u, = —2m"I“¢ coth? (V=0&) - ————
2 - (V=) coth? (v=0&)

m** (8Al3“a + 8Bm** g — 3Be,m™ — 3A¢ 1% — n“)
+ >
6AIP* + 6Bm>*

2%
v, = 2% coth® (V=0&) - ———
2 * ( 5) cothi (V=08

+ ( (8A15“0 + 8BI**m™* o — 3Bc,I**m"
—3Ac " - lz‘xn“)

x (6AP* + 6Bm3“)_1) +a,



2m* o

coth? (v/=a¥)

+ ( (8Als‘xm2“a +8Bm™ 0 — 3Be,m”*m*

w, = —2m**ocoth’ (\/;E) -

—3Aq *m™ - mzana)

x (6AP* + 6Bm™) ')+,
(45)

where o < 0,& = Ix + my + nt,
2m*l%o
tan? (Vo )

m*1* (SAZS“G + 8Bm* 0 — 3Be,m™ — 3A¢ 1% - n"‘)
+ >
6AI* + 6Bm>*

uy = 2m* o tan’, (Vo &) +

20%g

tan2 (Vo 8)

+ ( (8Als“a +8BI**m’* o — 3Bc,I**m"”

vy = 2% tan’ (Vo &) +

~3Aq P - lzan“)
x (6Al3“ + 6Bm3°‘)_1) +op,

2m*o
wy = 2m* o tan’ (Vo &) + g

tan? (1/o &)
+ ( (8Al3"‘m2“a +8Bm™ 0 — 3Be,m’*m*
—3A¢I“m™ - mz‘xn’x)

x (641 +6Bm™) " ) +o,
(46)

where o > 0,& = Ix + my + nt,

2m*l%o
o (o)

m*1* (8Al3“(f + 8Bm’*o — 3Be,m™ — 3A¢ 1% — n"‘)

uy = 2m*I“ocot’ (Vo &) +

+ b
6AP* + 6Bm>*
2 2 2%
Vy = 21 "‘O‘CO'[“ (\/EE) + W
o

+ ( (SAIS“G + 8BI**m™* o — 3Bc,I**m*
—3A¢ % - lzan‘x)

x (6AP* + 6Bm3“)_1) +a,
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2m**
w, = 2m*ocot’ (Vo &) + Mo

o2 (Vo)

+ ( (8Al3“m2“a +8Bm™ 0 — 3Be,m’*m*

—3Acq *m™ - mz‘xn“)
X (6Al3"‘ + 6Bm3°‘)_1) +6,
(47)

where o > 0,& = Ix + my + nt,

202m* (w + € 20w T2 (1 + a)

U =
’ I*(1+a) ( + E%)?

m*® (8Al3“0 + 8Bm™ 0 — 3Be,m™ — 3A¢1* - n"‘)
+ bl
6AP* + 6Bm3*

_ 207w+ E) 2T (1+a)
T T2 (1+a) (0 + £%)?

+((8AI%0 + 8B m**0 - 3Beym™ P - 341

_ZZanot)
x (6AP* + 6Bm3“)71> +p,

wn = 2071 (w + E“)z . 21T (1 + a)
P DP(l+a) (@ + &%)

+ ( (8Al3“m2“a + 8BI*m™* o — 3Be,m™*

—3Acq *m™ - mz‘xna)

x (641 +6Bm™) ")+,
(48)

where 0 = 0,& = Ix + my + nt. And I, m, ¢, and
w are arbitrary constants, tanh,, coth,, tan,, and cot, are
generalized hyperbolic and trigonometric functions.

From Cases 2 and 3, we obtain many other exact solutions
of (2). Here, we omit them for simplicity, too.

As « — 1, solutions (44)-(48) obtained above become
the ones of the standard form equation of the NNV model,
and the solutions cannot be directly constructed by other
methods.

4. Conclusion

In the paper, based on the relationship of the fractional cou-
pled equations and the properties of the Jumarie’s modified
Riemann-Liouville derivative, we proposed a new generalized
fractional subequation method to construct exact solutions of
space-time fractional coupled differential equations. In order
to illustrate the validity and advantages of the algorithm, we
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apply it to space-time fractional coupled Konopelchenko-
Dubrovsky equations and Nizhnik-Novikov-Veselov equa-
tions. As a results, many exact solutions are obtained. The
results show that this new generalized fractional subequa-
tions method is direct, effective, and can be used for many
other fractional coupled differential equations.
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