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Small-world networks are ubiquitous in real-life systems, such as the World Wide Web, communication networks, and electric
power grids, and most of them are stochastic. In this paper, we present a model that generates a small-world network in a simple
deterministicway and analyze the relevant topological properties of themodel, such as the degree distribution, clustering coefficient,
and diameter.Meanwhile, according to the special structure of themodel, we derive analytically the exact numbers of spanning trees
in the planar networks. The results show that the model has a discrete exponential degree distribution, high clustering coefficient,
short diameter, and high entropy.

1. Introduction

Over the past decade, a lot of authors in different scientific
communities have made a concerted effort toward unveiling
and understanding the generic properties of complex net-
worked systems in nature and society [1–5]. One of the most
important things is the networkmodeling. Its importance lies
in the fact that it cannot only capture correctly the processes
that assembled the networks that we see today, but also help
to know how various microscopic processes influence the
network topology [6]. At present, many papers related to
complex network models are stochastic [7–9]. But the ran-
domness, while in line with the major features of real-life
networks, makes it harder to gain a visual understanding of
how networks are shaped and how do different nodes relate
to each other [10]. Therefore, it would be not only of major
theoretical interest but also of great practical significance to
construct models that lead to small-world networks in deter-
ministic fashions.

The first successful attempt to generate networks with
high clustering coefficients and small average path length
(APL) is the model introduced by Watts and Strogatz (WS

model) [11]. This pioneering work of Watts and Strogatz
started an avalanche of research on the properties of small-
world networks and the Watts-Strogatz (WS) model [12]. A
much-studied variant of the WS model was proposed by
Newman andWatts [13, 14]. In 1999, Kasturirangan proposed
an alternative model to WS small-world network [15]. Actu-
ally, small-world networks are characterized by three main
properties. First, their APL does not increase linearly with
the system size, but grows logarithmically with the number of
nodes or slower. Second, average node degree of the network
is small. Third, the network has a strong average clustering
[11] compared to an Erdös-Rényi (ER) random network [16,
17] of equal size and average node degree.

In this paper, we propose a generation algorithm of a
deterministic planar network model. And we analyze its top-
ological properties; the results show that our model has a
discrete exponential degree distribution, high clustering, and
small diameter, which appears small-world effect. In addition,
it is known to us that the number of spanning trees is an
important quantity characterizing the reliability of a network.
Generally, the number of spanning trees in a network can
be obtained by directly calculating a related determinant
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corresponding to the network. However, for a large network,
evaluating the relevant determinant is intractable [18].There-
fore, we propose a generic linear algorithm to count the num-
ber of spanning trees of the general planar networks. Using
the algorithm, we derive analytically the exact numbers of
spanning trees in the planar networks. Based on the number
of spanning trees, we determine the entropy of its spanning
trees.

2. Network Construction

The studied network is constructed in an iterative way. We
denote the network after 𝑡 steps by𝑀(𝑡). Then, the network
at step 𝑡 is built as follows. For 𝑡 = 1,𝑀(1) is a complete graph
with 4 nodes. For 𝑡 ≥ 2,𝑀(𝑡) is obtained from𝑀(𝑡 − 1) by
replacing each existing iterative edge in𝑀(𝑡 − 1) with𝑀(1).
The process is repeated till the desired graph order is reached;
see Figure 1.

Now, we compute the order and size of𝑀(𝑡). Let 𝐿V(𝑡),
𝐿
𝑒
(𝑡), and 𝐿

𝑖
(𝑡) denote, respectively, the set of vertices, edges,

and iterative edges introduced at step 𝑡, while 𝑉(𝑡) and 𝐸(𝑡)
are the set of vertices and edges of the graph 𝑀(𝑡). Notice
that, at each iteration, an iterative edge is replaced by two
new iterative edges and three noniterative edges. Therefore,
|𝐿
𝑖
(𝑡)| = 2|𝐿

𝑖
(𝑡 − 1)|, and |𝐿

𝑖
(𝑡)| = 3 ⋅ 2

𝑡−1

(𝑡 ≥ 1). As each
iterative edge introduces at the next iteration two new vertices
and five new edges, we have |𝐿V(𝑡)| = 2|𝐿 𝑖(𝑡−1)| = 3⋅2

𝑡−1

(𝑡 ≥

2) and |𝐿
𝑒
(𝑡)| = 5|𝐿

𝑖
(𝑡 − 1)| = 15 ⋅ 2

𝑡−2

(𝑡 ≥ 2). As 𝐿
𝑖
(1) = 3,

|𝐿V(𝑡)| = 4 and |𝐿𝑒(𝑡)| = 6. Thus,

|𝑉 (𝑡)| =

𝑛

∑

𝑖=0

󵄨󵄨󵄨󵄨
𝐿V (𝑡)

󵄨󵄨󵄨󵄨
= 3 ⋅ 2

𝑡

− 2 (𝑡 ≥ 1) (1)

|𝐸 (𝑡)| =

𝑛

∑

𝑖=0

󵄨󵄨󵄨󵄨
𝐿
𝑒
(𝑡)
󵄨󵄨󵄨󵄨
= 15 ⋅ 2

𝑡−1

− 9 (𝑡 ≥ 1) . (2)

The average degree is then

⟨𝑘⟩ =
2 |𝐸 (𝑡)|

|𝑉 (𝑡)|
=
15 ⋅ 2
𝑡−1

− 9

3 ⋅ 2
𝑡−1
− 1
. (3)

Obviously, for large 𝑡, it is approximately equal to 5.

3. Relevant Characteristics of the
Deterministic Small-World Network

In the following, we concentrate on the degree distribution,
clustering coefficient, and diameter.

3.1. Degree Distribution. The degree is the simplest and the
most intensively studied characteristic of an individual node.
The degree of a node 𝑖 is the number of edges in the whole
network connected to 𝑖. The degree distribution 𝑃(𝑘) is
defined as the probability that a randomly selected node has
exactly 𝑘 edges.

Let 𝑘
𝑖
(𝑡) be the degree of node 𝑖 at step 𝑡. All nodes can

be divided into two categories. (i) Interior nodes; for those
nodes that only connect to noniterative edges, their degree

t = 1 t = 2 t = 3

Figure 1: (Color online) construction of the deterministic planar
network𝑀(𝑡), showing three steps of the iterative progress.The solid
links are iterated links; the dashed links are noniterated links.

is always equal to 3. (ii) Noninterior nodes; one can see that
at any iteration, a iterative edge is replaced by two new iter-
ative edges and three new noniterative edges, so the degree
of noninterior nodes is added 4 at each iteration. Thus, the
degree 𝑘

𝑖
(𝑡) of a node 𝑖 satisfies the relation 𝑘

𝑖
(𝑡+1) = 𝑘

𝑖
(𝑡)+4.

Then, 𝑘
𝑖
(𝑡) = 4𝑡 − 1. And we have

𝑘
𝑖
(𝑡) = {

3, if the node 𝑖 is interior node,
4𝑡 − 1 if the node 𝑖 is noninterior node.

(4)

Let 𝑡
𝑖
be the step at which a node 𝑖 is created, then 𝑘

𝑖
(𝑡
𝑖
) = 3,

and hence, for noninterior nodes, we have

𝑘
𝑖
(𝑡) = 3 + 4 (𝑡 − 𝑡

𝑖
) . (5)

Therefore, the degree spectrum of the present network is a
series of discrete values: at step 𝑡, the number of nodes of
degree 𝑘 = 3, 7, 11, . . . , 4𝑡 − 9, 4𝑡 − 5, 4𝑡 − 1, equals 9 ⋅ 2𝑡−2 −
2, |𝐿(𝑡 − 2)|, |𝐿(𝑡 − 3)|, . . . , |𝐿(2)|, |𝐿(1)|, |𝐿(1)|, respectively.
Other values of degree are absent in the spectrum. Due to
the discreteness of this degree spectrum, it is convenient to
obtain its cumulative degree distribution [18]; that is,

𝑃cum (𝑘) =
∞

∑

𝑘
󸀠
=𝑘

𝑃 (𝑘
󸀠

) . (6)

Using (5), we have 𝑃cum(𝑘) = ∑
∞

𝑘
󸀠
=𝑘
𝑃(𝑘
󸀠

) = 𝑃(𝑡
󸀠

≤ 𝜏 = (3 +

4𝑡 − 𝑘)/4). Hence,

𝑃cum (𝑘) =
𝜏

∑

𝑡
󸀠
=0

󵄨󵄨󵄨󵄨󵄨
𝑛 (𝑡
󸀠

)
󵄨󵄨󵄨󵄨󵄨

|𝑉 (𝑡)|
=
3 ⋅ 2
(3/4)+𝑡−(𝑘/4)

3 ⋅ 2
𝑡
− 2

. (7)

Obviously, when the size of the network is large, the degree
distribution𝑃cum(𝑘) = 2

(3/4)−(𝑘/4) is an exponential of a power
of degree 𝑘.

3.2. Clustering Coefficient. Clustering coefficient is another
significant property of a network, which provides a measure
of the local structure within the network. The most imme-
diate measure of clustering is the clustering coefficient 𝐶

𝑖

for every node 𝑖. By definition, clustering coefficient 𝐶
𝑖
of

a node 𝑖 is the ratio of the total number 𝐸
𝑖
of edges that

actually exist between all 𝑘
𝑖
its nearest neighbors and the

number 𝑘
𝑖
(𝑘
𝑖
− 1)/2 of all possible edges between them; that

is, 𝐶
𝑖
= 2𝐸
𝑖
/[𝑘
𝑖
(𝑘
𝑖
− 1)]. The clustering coefficient 𝐶

𝑡
of the
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Figure 2: (Color online) the network𝑀(𝑡). The solid links are iterated links, the dashed links are noniterated links.

whole network is the average of all individual 𝐶󸀠
𝑖
s. For this

network, we can obtain the exact expression of the clustering
coefficient 𝐶

𝑡
. By construction, for any given node 𝑢 having

a degree 𝑘, there are 𝐸
𝑢
= 3 ⋅ (𝑘 − 1)/2 links that actually

exist among the neighbor nodes. So, one can see that there is
a one-to-one corresponding relation between the coefficient
𝐶(𝑘) of the node and its degree 𝑘:𝐶(𝑘) = 3/𝑘.This expression
indicates that the local clustering scales as 𝐶(𝑘) ∼ 𝑘−1.

Clearly, the number of nodes of degree 𝑘 = 3, 7, 11, . . . ,
4𝑡 − 9, 4𝑡 − 5, 4𝑡 − 1, equals 9 ⋅ 2𝑡−2 − 2, |𝐿(𝑡 − 2)|, |𝐿(𝑡 −
3)|, . . . , |𝐿(2)|, |𝐿(1)|, |𝐿(1)|, respectively. The clustering coef-
ficient 𝐶

𝑡
is given by the following:

𝐶
𝑡
=

9 ⋅ 2
𝑡−2

− 2+9 ⋅ ∑
𝑡−1

𝑖=2
((2
𝑡−1−𝑖

/ (4𝑖 − 1)) + (9/ (4𝑡 − 1)))

3 ⋅ 2
𝑡
− 2

.

(8)

For infinite 𝑡, 𝐶
𝑡
approaches to a constant value of 0.8309, so

the clustering is high.

3.3. Diameter. Besides degree distribution and clustering
coefficient, average path length (APL) is another important
parameter to characterize a network. APL is defined as the
average number of edges along the shortest paths for all
possible pairs of network nodes. People have found the small-
world phenomenon in most real-life networks that behave
with a short APL. For most network models, it is hard to
obtain the analytic solution of APL. To demonstrate the short
distance between any pair of nodes, we can adopt another
parameter that is defined as the maximal communication
delay in the network. If a network has a small diameter,
then this network is undoubtedly with a short APL [19]. For
the network proposed, we denote the diameter at iteration
𝑡 as 𝐷(𝑡). According to Figure 1, we can clearly know that
𝐷(1) = 1 and 𝐷(2) = 2. At each iteration, one can see that
the diameter always lies between a pair of newly created
nodes at this iteration because at each iterative edge we paste
a complete graph 𝑀(1), so the diameter for the network
proposed has the following simple formula,𝐷(𝑡) = 𝑡.

Notice that the logarithm value of total number of nodes
|𝑉(𝑡)| is approximately equal to 𝑡 ln 2 for large 𝑡. Thus, the
diameter grows logarithmically with the number of nodes
and the average path length increases more slowly than
ln |𝑉(𝑡)|.

Based on the above discussions, our model is a determin-
istic small-world network because it is a sparse one with high
clustering and short diameter, which satisfies the necessary
property for small-world network.

4. Spanning Trees in the Network

In this section, we investigate the number of spanning trees
in this network. Our aim is to derive the exact formula for the
number of spanning trees and determine its entropy.

Let 𝑀(𝑡) be a planar graph generated by 𝑡 steps. Since
𝑀(𝑡) is symmetry, suppose that the edges V

1
V
2
, V
1
V
3
, and V

2
V
3

are weighted by (𝑥
𝑡−1
, 𝑦
𝑡−1
), where 𝑥

𝑡−1
denote the number of

spanning trees of the subgraph𝐹
1
and𝑦
𝑡−1

denote the number
of spanning forests of the subgraph 𝐹

1
with two components

such V
1
and V

2
belong to distinct components. Let 𝑁ST(𝑡)

be the number of spanning trees of 𝑀(𝑡). Figure 3 gives all
spanning trees of𝑀(1) and Figure 4 gives all spanning forests
with two components. Then, by Figure 2, we have

𝑁ST (𝑡) = 9𝑥
2

𝑡−1
𝑦
𝑡−1
+ 6𝑥
𝑡−1
𝑦
2

𝑡−1
+ 𝑦
3

𝑡−1
. (9)

According to Figures 2, 3, and 4, we obtain the recursion
relations between 𝑥

𝑡−1
and 𝑥

𝑡−2
as follows:

𝑥
𝑡−1
= 3𝑥
2

𝑡−2
+ 3𝑦
2

𝑡−2
+ 10𝑥

𝑡−2
𝑦
𝑡−2
,

𝑦
𝑡−1
= 2𝑦
2

𝑡−2
+ 6𝑥
𝑡−2
𝑦
𝑡−2
.

(10)

Let 𝑎
𝑡−1
= 𝑥
𝑡−1
/𝑦
𝑡−1

, by (10) it follows that

𝑎
𝑡−1
=
3 ⋅ 2
𝑡−1

− 2

2
𝑡−1

, (11)

with the initial condition 𝑎
0
= 1. So, we get

𝑦
𝑡
=

𝑡−2

∏

𝑖=0

(20 −
3

2
𝑖−2
)

2
𝑡−𝑖−2

. (12)
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Figure 3: The number of spanning trees of𝑀(1) is 16. The solid link indicates that one node is connected to another node; the dashed link
indicates that one node is not connected to another node.
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Figure 4: The number of spanning forests with two components of𝑀(1) is 8. The solid link indicates that one node is connected to another
node; the dashed link indicates that one node is not connected to another node.

By (9),

𝑁ST (𝑡) = 9𝑥
2

𝑡−1
𝑦
𝑡−1
+ 6𝑥
𝑡−1
𝑦
2

𝑡−1
+ 𝑦
3

𝑡−1
. (13)

Substituting (11) and (12) with (13), we have

𝑁ST (𝑡) = (10 −
3

2
𝑡−2
)

2 𝑡−2

∏

𝑖=0

(20 −
3

2
𝑖−2
)

3⋅2
𝑡−𝑖−2

. (14)

From (14), together with (1), we determine the entropy of
the number of spanning trees—an important quantity char-
acterizing network structure—for𝑀(𝑡) as the limiting value
[20, 21]:

𝐸ST (𝑡) = lim
|𝑉
𝑡
|→∞

ln𝑁ST (𝑡)
󵄨󵄨󵄨󵄨
𝑉
𝑡

󵄨󵄨󵄨󵄨

≈ 1.2109. (15)

The obtained entropy of spanning trees in 𝑀(𝑡) can be
compared to those found in other networks. In the pseudo-
fractal fractal web [22], the entropy is 0.8959, a value less than
1, for the square lattice [23] and the two-dimensional Sier-
pinski gasket [24], their entropy of spanning trees is 1.16624
and 1.0486, respectively, and for the fractal scale-free lattice
[25], the entropy is 1.0397. And all of them have the same
average degree of 4.While in Apollonian network [26] having
the average degree of 6, the entropy is 1.3540, the entropy of
our model with average degree of 5 is between them.

5. Conclusion

In conclusion, we have investigated a simple model, which is
constructed in a deterministic way. Then, we have presented

an exhaustive analysis of many properties of the considered
model and obtained the analytic solutions for most of the
topological features, including degree distributions, cluster-
ing coefficient, and diameter. Finally, according to the special
structure, we give a general algorithm to count the number
of spanning trees of this model. Using the algorithm, we
obtained entropies of spanning trees.
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