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Let𝐻 be a real Hilbert space and𝐶 ⊂ 𝐻 a closed convex subset. Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with the nonempty set
of fixed points Fix(𝑇). Kim and Xu (2005) introduced a modified Mann iteration 𝑥

0
= 𝑥 ∈ 𝐶, 𝑦

𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
)𝑇𝑥
𝑛
, 𝑥
𝑛+1

=

𝛽
𝑛
𝑢+(1−𝛽

𝑛
)𝑦
𝑛
, where𝑢 ∈ 𝐶 is an arbitrary (but fixed) element, and {𝛼

𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1). In the casewhere 0 ∈ 𝐶,

the minimum-norm fixed point of 𝑇 can be obtained by taking 𝑢 = 0. But in the case where 0 ∉ 𝐶, this iteration process becomes
invalid because 𝑥

𝑛
may not belong to 𝐶. In order to overcome this weakness, we introduce a new modified Mann iteration by

boundary point method (see Section 3 for details) for finding theminimumnorm fixed point of 𝑇 and prove its strong convergence
under some assumptions. Since our algorithm does not involve the computation of the metric projection 𝑃

𝐶
, which is often used

so that the strong convergence is guaranteed, it is easy implementable. Our results improve and extend the results of Kim, Xu, and
some others.

1. Introduction

Let 𝐶 be a subset of a real Hilbert space 𝐻 with an inner
product and its induced norm is denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖,
respectively. A mapping 𝑇 : 𝐶 → 𝐶 is called nonexpansive if
‖𝑇𝑥 −𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶. A point 𝑥 ∈ 𝐶 is called a
fixed point of 𝑇 if 𝑇𝑥 = 𝑥. Denote by Fix(𝑇) = {𝑥 ∈ 𝐶 | 𝑇𝑥 =

𝑥} the set of fixed points of 𝑇. Throughout this paper, Fix(𝑇)
is always assumed to be nonempty.

The iteration approximation processes of nonexpansive
mappings have been extensively investigated bymany authors
(see [1–12] and the references therein). A classical iterative
scheme was introduced by Mann [13], which is defined as
follows. Take an initial guess 𝑥

0
∈ 𝐶 arbitrarily and define

{𝑥
𝑛
}, recursively, by

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, 𝑛 ≥ 0, (1)

where {𝛼
𝑛
} is a sequence in the interval [0, 1]. It is well

known that under some certain conditions the sequence {𝑥
𝑛
}

generated by (1) converges weakly to a fixed point of 𝑇, and

Mann iteration may fail to converge strongly even if it is in
the setting of infinite-dimensional Hilbert spaces [14].

Some attempts to modify the Mann iteration method (1)
so that strong convergence is guaranteed have been made.
Nakajo and Takahashi [1] proposed the following modifica-
tion of the Mann iteration method (1):

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

(𝑥
0
) ,

(2)

where 𝑃
𝐾
denotes themetric projection from𝐻 onto a closed

convex subset 𝐾 of 𝐻. They proved that if the sequence
{𝛼
𝑛
} is bounded above from one, then {𝑥

𝑛
} defined by (2)

converges strongly to 𝑃Fix(𝑇)(𝑥0). But, at each iteration step,
an additional projection is needed to calculate, which is not
easy in general. To overcome this weakness, Kim and Xu [15]
proposed a simpler modification of Mann’s iteration scheme,



2 Abstract and Applied Analysis

which generates the iteration sequence {𝑥
𝑛
} via the following

formula:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑢 + (1 − 𝛽

𝑛
) 𝑦
𝑛
,

(3)

where 𝑢 ∈ 𝐶 is an arbitrary (but fixed) element in𝐶, and {𝛼
𝑛
}

and {𝛽
𝑛
} are two sequences in (0, 1). In the setting of Banach

spaces, Kim and Xu proved that the sequence {𝑥
𝑛
} generated

by (3) converges strongly to the fixedpoint𝑃Fix(𝑇)𝑢of 𝑇under
certain appropriate assumptions on the sequences {𝛼

𝑛
} and

{𝛽
𝑛
}.
In many practical problems, such as optimization prob-

lems, finding the minimum norm fixed point of nonexpan-
sive mappings is quite important. In the case where 0 ∈ 𝐶,
taking 𝑢 = 0 in (3), the sequence {𝑥

𝑛
} generated by (3) con-

verges strongly to the minimum norm fixed point of 𝑇 [15].
But, in the casewhere 0 ∉ 𝐶, the iteration scheme (3) becomes
invalid because 𝑥

𝑛
may not belong to 𝐶.

To overcome this weakness, a natural way to modify
algorithm (3) is adopting the metric projection 𝑃

𝐶
so that the

iteration sequence belongs to 𝐶; that is, one may consider the
scheme as follows:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛽
𝑛
𝑢 + (1 − 𝛽

𝑛
) 𝑦
𝑛
) .

(4)

However, since the computation of a projection onto a closed
convex subset is generally difficult, algorithm (4) may not be
a well choice.

The main purpose of this paper is to introduce a new
modified Mann iteration for finding the minimum norm
fixed point of 𝑇, which not only has strong convergence
under some assumptions but also has nothing to do with any
projection operators. At each iteration step, a point in 𝜕𝐶 (the
boundary of 𝐶) is determined via a particular way, so our
modification method is called boundary point method (see
Section 3 for details). Moreover, since our algorithm does not
involve the computation of the metric projection, it is very
easy implementable.

The rest of this paper is organized as follows. Some useful
lemmas are listed in the next section. In the last section, a
function defined on 𝐶 is given firstly, which is important for
us to construct our algorithm, then our algorithm is intro-
duced and the strong convergence theorem is proved.

2. Preliminaries

Throughout this paper, we adopt the notations listed as fol-
lows:

(1) 𝑥
𝑛
→ 𝑥 : {𝑥

𝑛
} converges strongly to 𝑥;

(2) 𝑥
𝑛
⇀ 𝑥 : {𝑥

𝑛
} converges weakly to 𝑥;

(3) 𝜔
𝑤
(𝑥
𝑛
) denotes the set of cluster points of {𝑥

𝑛
} (i.e.,

𝜔
𝑤
(𝑥
𝑛
) = {𝑥 : ∃{𝑥

𝑛
𝑘

} ⊂ {𝑥
𝑛
} such that 𝑥

𝑛
𝑘

⇀ 𝑥});
(4) 𝜕𝐶 denotes the boundary of 𝐶.

We need some lemmas and facts listed as follows.

Lemma 1 (see [16]). Let 𝐾 be a closed convex subset of a real
Hilbert space 𝐻 and let 𝑃

𝐾
be the (metric of nearest point)

projection from𝐻 onto𝐾 (i.e., for 𝑥 ∈ 𝐻, 𝑃
𝐾
𝑥 is the only point

in 𝐾 such that ‖𝑥 − 𝑃
𝐾
𝑥‖ = inf{‖𝑥 − 𝑧‖ : 𝑧 ∈ 𝐾}). Given

𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐾. Then 𝑧 = 𝑃
𝐾
𝑥 if and only if there holds the

following relation:

⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐾. (5)

Since Fix(𝑇) is a closed convex subset of a real Hilbert
space 𝐻, so the metric projection 𝑃Fix(𝑇) is reasonable and
thus there exists a unique element, which is denoted by 𝑥†, in
Fix(𝑇) such that ‖𝑥†‖ = inf

𝑥∈Fix(𝑇)‖𝑥‖; that is, 𝑥
†
= 𝑃Fix(𝑇)0.

𝑥
† is called theminimum norm fixed point of 𝑇.

Lemma 2 (see [17]). Let𝐻 be a real Hilbert space. Then there
holds the following well-known results:

(G1) ‖𝑥 − 𝑦‖
2
= ‖𝑥‖

2
− 2⟨𝑥, 𝑦⟩ + ‖𝑦‖

2 for all 𝑥, 𝑦 ∈ 𝐻;
(G2) ‖ 𝑥 + 𝑦‖

2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻.

We will give a definition in order to introduce the next
lemma.A set𝐶 ⊂ 𝐻 isweakly closed if for any sequence {𝑥

𝑛
} ⊂

𝐶 such that 𝑥
𝑛
⇀ 𝑥, there holds 𝑥 ∈ 𝐶.

Lemma 3 (see [18, 19]). If 𝐶 ⊂ 𝐻 is convex, then 𝐶 is weakly
closed if and only if 𝐶 is closed.

Assume 𝐶 ⊂ 𝐻 is weakly closed; a function 𝑓 : 𝐶 →

R1 is called weakly lower semicontinuous at 𝑥
0

∈ 𝐶 if for
any sequence {𝑥

𝑛
} ⊂ 𝐶 such that 𝑥

𝑛
⇀ 𝑥; then 𝑓(𝑥) ≤

lim inf
𝑛→∞

𝑓(𝑥
𝑛
) holds. Generally, we called 𝑓weakly lower

semi-continuous over 𝐶 if it is weakly lower semi-continuous
at each point in 𝐶.

Lemma4 (see [18, 19]). Let𝐶 be a subset of a realHilbert space
𝐻 and let 𝑓 : 𝐶 → R1 be a real function; then 𝑓 is weakly
lower semi-continuous over 𝐶 if and only if the set {𝑥 ∈

𝐶 | 𝑓(𝑥) ≤ 𝑎} is weakly closed subset of𝐻, for any 𝑎 ∈ R1.

Lemma 5 (see [20]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping such that Fix(𝑇) ̸= 0. If a sequence {𝑥

𝑛
} in 𝐶 is such

that 𝑥
𝑛
⇀ 𝑧 and ‖𝑥

𝑛
− 𝑇𝑥
𝑛
‖ → 0, then 𝑧 = 𝑇𝑧.

The following is a sufficient condition for a real sequence
to converge to zero.

Lemma 6 (see [21, 22]). Let {𝛼
𝑛
} be a nonnegative real

sequence satisfying

𝛼
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝛼
𝑛
+ 𝛾
𝑛
𝛿
𝑛
+ 𝜎
𝑛
, 𝑛 = 0, 1, 2 . . . . (6)

If {𝛾
𝑛
}
∞

𝑛=1
⊂ (0, 1), {𝛿

𝑛
}
∞

𝑛=1
and {𝜎

𝑛
}
∞

𝑛=1
satisfy the conditions:

(A1) ∑
∞

𝑛=1
𝛾
𝑛
= ∞;

(A2) either lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑∞

𝑛=1
|𝛾
𝑛
𝛿
𝑛
| < ∞;

(A3) ∑∞
𝑛=1

|𝜎
𝑛
| < ∞;

then lim
𝑛→∞

𝛼
𝑛
= 0.
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3. Iterative Algorithm

Let 𝐶 be a closed convex subset of a real Hilbert space 𝐻. In
order to give our main results, we first introduce a function
ℎ : 𝐶 → [0, 1] by the following definition:

ℎ (𝑥) = inf {𝜆 ∈ [0, 1] | 𝜆𝑥 ∈ 𝐶} , ∀𝑥 ∈ 𝐶. (7)

Since 𝐶 is closed and convex, it is easy to see that ℎ is well
defined. Obviously, ℎ(𝑥) = 0 for all 𝑥 ∈ 𝐶 in the case where
0 ∈ 𝐶. In the case where 0 ∉ 𝐶, it is also easy to see that
ℎ(𝑥)𝑥 ∈ 𝜕𝐶 and ℎ(𝑥) > 0 for every 𝑥 ∈ 𝐶 (otherwise, ℎ(𝑥) =
0; we have 0 ∈ 𝐶; this is a contradiction).

An important property of ℎ(𝑥) is given as follows.

Lemma 7. ℎ(𝑥) is weakly lower semi-continuous over 𝐶.

Proof. If 0 ∈ 𝐶, then ℎ(𝑥) = 0 for all 𝑥 ∈ 𝐶 and the conclusion
is clear. For the case 0 ∉ 𝐶, using Lemma 4, in order to show
that ℎ(𝑥) is weakly lower semi-continuous, it suffices to verify
that

𝐶
−

𝑎
= {𝑥 ∈ 𝐶 | ℎ (𝑥) ≤ 𝑎} (8)

is a weakly closed subset of 𝐻 for every 𝑎 ∈ R1; that is, if
{𝑥
𝑛
} ⊂ 𝐶

−

𝑎
such that 𝑥

𝑛
⇀ 𝑥, then 𝑥 ∈ 𝐶

−

𝑎
(i.e., ℎ(𝑥) ≤

𝑎). Without loss of generality, we assume that 0 < 𝑎 < 1

(otherwise, there hold 𝐶
−

𝑎
= 𝐶 for 𝑎 ≥ 1 and 𝐶

−

𝑎
= 0 for

𝑎 ≤ 0, resp., and the conclusion holds obviously). Noting 𝐶

is convex, we have from the definition of ℎ(𝑥) that for each
𝜆 ∈ [𝑎, 1], 𝜆𝑥

𝑛
∈ 𝐶 holds for all 𝑛 ≥ 1. Clearly, 𝜆𝑥

𝑛
⇀ 𝜆𝑥.

Using Lemma 3, then 𝜆𝑥 ∈ 𝐶. This implies that

[𝑎, 1] ⊂ {𝜆 ∈ (0, 1] | 𝜆𝑥 ∈ 𝐶} . (9)

Consequently,

ℎ (𝑥) = inf {𝜆 ∈ (0, 1] | 𝜆𝑥 ∈ 𝐶} ≤ 𝑎 (10)

and this completes the proof.

Since the function ℎ(𝑥) will be important for us to con-
struct the algorithm of this paper below, it is necessary to
explain how to calculate ℎ(𝑥) for any given 𝑥 ∈ 𝐶 in actual
computing programs. In fact, in practical problem, 𝐶 is often
a level set of a convex function 𝑐; that is, 𝐶 is of the form
𝐶 = {𝑥 ∈ 𝐻 | 𝑐(𝑥) ≤ 𝑟}, where 𝑟 is a real constant. Without
loss of generality, we assume that

𝐶 = {𝑥 ∈ 𝐻 | 𝑐 (𝑥) ≤ 0} (11)

and 0 ∉ 𝐶. Then it is easy to see that, for a given 𝑥 ∈ 𝐶, we
have

ℎ (𝑥) = inf {𝜆 ∈ (0, 1] | 𝑐 (𝜆𝑥) = 0} . (12)

Thus, in order to get the value ℎ(𝑥), we only need to solve
a algebraic equation with a single variable 𝜆, which can be
solved easily using many methods, for example, dichotomy
method on the interval [0, 1]. In general, solving a algebraic
equation above is quite easier than calculating the metric
projection 𝑃

𝐶
. To illustrate this viewpoint, we give the fol-

lowing simple example.

Example 8. Let 𝐴 : 𝐻 → 𝐻 be a strongly positive linear
bounded operatorwith coefficient 𝑟; that is, there is a constant
𝑟 > 0with the property ⟨𝐴𝑥, 𝑥⟩ ≥ 𝑟‖𝑥‖

2, for all 𝑥 ∈ 𝐻. Define
a convex function 𝜑 : 𝐻 → R1 by

𝜑 (𝑥) = ⟨𝐴𝑥, 𝑥⟩ − 3 ⟨𝑥, 𝑢⟩ + ⟨𝐴𝑥
∗
, 𝑥
∗
⟩ , ∀𝑥 ∈ 𝐻, (13)

where 𝑢 ̸= 0 is a given point in𝐻 and 𝑥∗ is the only solution of
the equation 𝐴𝑥 = 𝑢. (Notice that 𝐴 is a monogamy.) Setting
𝐶 = {𝑥 ∈ 𝐻 : 𝜑(𝑥) ≤ 0}, then it is easy to show that 𝐶 is a
nonempty convex closed subset of𝐻 such that 0 ∉ 𝐶. (Note
that 𝜑(𝑥∗) = −⟨𝐴𝑥

∗
, 𝑥
∗
⟩ < 0 and 𝜑(0) = ⟨𝐴𝑥

∗
, 𝑥
∗
⟩ > 0.)

For a given 𝑥 ∈ 𝐶, we have 𝜑(𝑥) ≤ 0. In order to get ℎ(𝑥), let
𝜑(𝜆𝑥) = 0, where 𝜆 ∈ (0, 1] is an unknown number. Thus we
obtain an algebraic equation

⟨𝐴𝑥, 𝑥⟩ 𝜆
2
− 3 ⟨𝑥, 𝑢⟩ 𝜆 + ⟨𝐴𝑥

∗
, 𝑥
∗
⟩ = 0. (14)

Consequently, we have

𝜆 =

3 ⟨𝑥, 𝑢⟩ − √9⟨𝑥, 𝑢⟩
2
− 4 ⟨𝐴𝑥, 𝑥⟩ ⟨𝐴𝑥

∗, 𝑥∗⟩

2 ⟨𝐴𝑥, 𝑥⟩

=
2 ⟨𝐴𝑥

∗
, 𝑥
∗
⟩

3 ⟨𝑥, 𝑢⟩ + √9⟨𝑥, 𝑢⟩
2
− 4 ⟨𝐴𝑥, 𝑥⟩ ⟨𝐴𝑥

∗, 𝑥∗⟩

,

(15)

that is,

ℎ (𝑥) =
2 ⟨𝐴𝑥

∗
, 𝑥
∗
⟩

3 ⟨𝑥, 𝑢⟩ + √9⟨𝑥, 𝑢⟩
2
− 4 ⟨𝐴𝑥, 𝑥⟩ ⟨𝐴𝑥

∗, 𝑥∗⟩

. (16)

Nowwe give a newmodifiedMann iteration by boundary
point method.

Algorithm 9. Define {𝑥
𝑛
} in the following way:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝜆
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
,

(17)

where {𝛼
𝑛
} ⊂ (0, 1) and 𝜆

𝑛
= max{𝜆

𝑛−1
, ℎ(𝑥
𝑛
)}, 𝑛 = 0, 1,

2, . . ..
Since𝐶 is closed and convex, we assert by the definition of

ℎ that, for any given 𝑥 ∈ 𝐶, 𝛽𝑥 ∈ 𝐶 holds for every 𝛽 ∈

[ℎ(𝑥)𝑥, 1], and then (𝑥
𝑛
) ⊂ 𝐶 is guaranteed, where (𝑥

𝑛
) is

generated by Algorithm 9. Obviously, 𝜆
𝑛
= 0 for all 𝑛 ≥ 0

if 0 ∈ 𝐶. If 0 ∉ 𝐶, calculating the value ℎ(𝑥
𝑛
) implies

determining ℎ(𝑥
𝑛
)𝑥
𝑛
, a boundary point of 𝐶, and thus our

algorithm is called boundary point method.

Theorem 10. Assume that {𝛼
𝑛
} and {𝜆

𝑛
} satisfy the following

conditions:

(D1) 𝛼
𝑛
/(1 − 𝜆

𝑛
) → 0;

(D2) ∑∞
𝑛=1

𝛼
𝑛
(1 − 𝜆

𝑛
) = ∞;

(D3) ∑∞
𝑛=1

|𝛼
𝑛
− 𝛼
𝑛−1

| < ∞.

Then {𝑥
𝑛
} generated by (17) converges strongly to 𝑥

†
=

𝑃Fix(𝑇)0.
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Proof. We first show that {𝑥
𝑛
} is bounded. Taking 𝑝 ∈ Fix(𝑇)

arbitrarily, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝜆
𝑛
(𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑝)

+(1 − 𝛼
𝑛
)
2
(𝑇𝑥
𝑛
− 𝑝) − 𝛼

𝑛
(1 − 𝜆

𝑛
) 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (𝛼
𝑛
𝜆
𝑛
+ 𝛼
𝑛
− 𝛼
2

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
)
2 󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛
(1 − 𝜆

𝑛
)]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩

≤ max {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩} .

(18)

By induction,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑥0 − 𝑝

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩} , 𝑛 ≥ 0. (19)

Thus, {𝑥
𝑛
} is bounded and so are {𝑇𝑥

𝑛
} and {𝑦

𝑛
}. As a result,

we obtain by condition (D1) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛼𝑛𝜆𝑛𝑥𝑛 + (1 − 𝛼

𝑛
) 𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩) 󳨀→ 0,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
− 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) 󳨀→ 0.

(20)

We next show that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (21)

It suffices to show that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (22)

Using (17), it follows from direct calculating that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛼𝑛𝜆𝑛𝑥𝑛 + (1 − 𝛼

𝑛
) 𝑦
𝑛

− [𝛼
𝑛−1

𝜆
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛼
𝑛−1

) 𝑦
𝑛−1

]
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑦
𝑛−1

) − (𝛼
𝑛
− 𝛼
𝑛−1

) 𝑦
𝑛−1

+ 𝛼
𝑛
𝜆
𝑛
(𝑥
𝑛
− 𝑥
𝑛−1

) + 𝜆
𝑛−1

(𝛼
𝑛
− 𝛼
𝑛−1

) 𝑥
𝑛−1

+𝛼
𝑛
(𝜆
𝑛
− 𝜆
𝑛−1

) 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩 + 𝛼
𝑛
𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑦𝑛−1

󵄩󵄩󵄩󵄩 + 𝜆
𝑛−1

󵄩󵄩󵄩󵄩𝑥𝑛−1
󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1
󵄩󵄩󵄩󵄩 ,

(23)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛼𝑛𝑥𝑛 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛

− [𝛼
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛼
𝑛−1

) 𝑇𝑥
𝑛−1

]
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑇𝑥
𝑛
− 𝑇𝑥
𝑛−1

) − (𝛼
𝑛
− 𝛼
𝑛−1

) 𝑇𝑥
𝑛−1

+𝛼
𝑛
(𝑥
𝑛
− 𝑥
𝑛−1

) + (𝛼
𝑛
− 𝛼
𝑛−1

) 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩) .

(24)

Substituting (24) into (23), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼
𝑛
(1 − 𝜆

𝑛
))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨

× {
󵄩󵄩󵄩󵄩𝑦𝑛−1

󵄩󵄩󵄩󵄩 + 𝜆
𝑛−1

󵄩󵄩󵄩󵄩𝑥𝑛−1
󵄩󵄩󵄩󵄩 + (1 − 𝛼

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩)}

+ 𝛼
𝑛

󵄨󵄨󵄨󵄨𝜆𝑛 − 𝜆
𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1
󵄩󵄩󵄩󵄩 .

(25)

Note the fact that ∑∞
𝑛=1

|𝜆
𝑛
− 𝜆
𝑛−1

| < ∞ (since (𝜆
𝑛
) ⊂

[0, 1] is monotone increasing) and conditions (D1)–(D3); it
concludes by using Lemma 6 that ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0. Noting

(20) and (25), we obtain
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(26)

Using Lemma 5, it derives that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Fix(𝑇).

Then we show that

lim sup
𝑛→∞

⟨−𝑥
†
, 𝑥
𝑛+1

− 𝑥
†
⟩ ≤ 0. (27)

Indeed take a subsequence {𝑥
𝑛
𝑘

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨−𝑥
†
, 𝑥
𝑛
− 𝑥
†
⟩ = lim
𝑘→∞

⟨−𝑥
†
, 𝑥
𝑛
𝑘

− 𝑥
†
⟩ . (28)
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Without loss of generality, we may assume that 𝑥
𝑛
𝑘

⇀ 𝑥.
Noticing 𝑥

†
= 𝑃Fix(𝑇)0, we obtain from 𝑥 ∈ Fix(𝑇) and

Lemma 1 that

lim sup
𝑛→∞

⟨−𝑥
†
, 𝑥
𝑛
− 𝑥
†
⟩

= lim
𝑘→∞

⟨−𝑥
†
, 𝑥
𝑛
𝑘

− 𝑥
†
⟩ = ⟨−𝑥

†
, 𝑥 − 𝑥

†
⟩ ≤ 0.

(29)

Finally, we show that ‖𝑥
𝑛
−𝑥
†
‖ → 0. Using Lemma 2 and

(17), it is easy to verify that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝜆
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
(𝜆
𝑛
𝑥
𝑛
− 𝑥
†
) + (1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑥
†
)
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
2󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝜆
𝑛
𝑥
𝑛
− 𝑥
†
, 𝑥
𝑛+1

− 𝑥
†
⟩

≤ (1 − 𝛼
𝑛
)
2󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝜆
𝑛
⟨𝑥
𝑛
− 𝑥
†
, 𝑥
𝑛+1

− 𝑥
†
⟩

+ 2𝛼
𝑛
(1 − 𝜆

𝑛
) ⟨−𝑥

†
, 𝑥
𝑛+1

− 𝑥
†
⟩

≤ (1 − 𝛼
𝑛
)
2󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
𝜆
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑥
†󵄩󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
(1 − 𝜆

𝑛
) ⟨−𝑥

†
, 𝑥
𝑛+1

− 𝑥
†
⟩ .

(30)

Hence,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
†󵄩󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛
𝜎
𝑛
, (31)

where

𝛾
𝑛
= 𝛼
𝑛

2 (1 − 𝜆
𝑛
) − 𝛼
𝑛

1 − 𝛼
𝑛
𝜆
𝑛

,

𝜎
𝑛
=

2 (1 − 𝜆
𝑛
)

2 (1 − 𝜆
𝑛
) − 𝛼
𝑛

⟨−𝑥
†
, 𝑥
𝑛+1

− 𝑥
†
⟩ .

(32)

It is not hard to prove that 𝛾
𝑛

→ 0, ∑∞
𝑛=0

𝛾
𝑛
= ∞ by con-

ditions (D1) and (D2), and lim sup
𝑛→∞

𝜎
𝑛
≤ 0 by (29). By

Lemma 6, we concludes that 𝑥
𝑛

→ 𝑥
†, and the proof is

finished.

Finally, we point out that amore general algorithm can be
given for calculating the fixed point 𝑃Fix(𝑇)𝑢 for any given 𝑢 ∈

𝐻. In fact, it suffices to modify the definition of the function
ℎ by the following form:

ℎ (𝑥) = inf {𝜆 ∈ [0, 1] | (1 − 𝜆) 𝑢 + 𝜆𝑥 ∈ 𝐶} , ∀𝑥 ∈ 𝐶.

(33)

Algorithm 11. Define {𝑥
𝑛
} in the following way:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
((1 − 𝜆

𝑛
) 𝑢 + 𝜆

𝑛
𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
,

(34)

where {𝛼
𝑛
} ⊂ (0, 1) and 𝜆

𝑛
= max{𝜆

𝑛−1
, ℎ(𝑥
𝑛
)} (𝑛 = 0, 1,

2, . . .), where ℎ is defined by (33).

By an argument similar to the proof of Theorem 10, it is
easy to obtain the result below.

Theorem 12. Assume that 𝑢 ∉ 𝐶, and {𝛼
𝑛
} and {𝜆

𝑛
} satisfy the

same conditions as in Theorem 10; then {𝑥
𝑛
} generated by (34)

converges strongly to 𝑥∗ = 𝑃Fix(𝑇)𝑢.
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