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Mobile online social network (mOSN) is a burgeoning research area. However, most existing works referring to mOSNs deal with
static network structures and simply encode whether relationships among entities exist or not. In contrast, relationships in signed
mOSNs can be positive or negative and may be changed with time and locations. Applying certain global characteristics of social
balance, in this paper, we aim to infer the unknown relationships in dynamic signed mOSNs and formulate this sign inference
problem as a low-rank matrix estimation problem. Specifically, motivated by the Singular Value Thresholding (SVT) algorithm,
a compact dictionary is selected from the observed dataset. Based on this compact dictionary, the relationships in the dynamic
signed mOSNs are estimated via solving the formulated problem. Furthermore, the estimation accuracy is improved by employing
a dictionary self-updating mechanism.

1. Introduction

Over the past few years, a number of mobile applications
that allow users to enjoy networking have emerged. Corre-
spondingly, there has been a proliferation in mobile online
social networks (mOSNs). With the ubiquitous use of mobile
devices and a rapid shift of technology, it is worthy to
investigate the mOSNs from a privacy or security standpoint
[1, 2]. The related applications are also extensive such as
authentication and recommendation online. In this context,
researches about mobile online networks where two opposite
kinds of relationships can occur have become common;
people not only form links to indicate friendship, support, or
approval but signify disapproval or distrust of the opinions
of others. It is natural to model such networks as signed
networks, where the sign of a link weight can be either
positive or negative, representing the status of a relation-
ship. Analogous to traditional social networks analysis, the
relationships in signed mOSNs can be represented as a
graph, where nodes denote the objects (e.g., people or mobile
terminals) and signed edges denote the relationships or links
(e.g., a communication made between two people). The link
structure of the resulting graph can be exploited to detect

underlying groups of objects, predict missing links, and
handle many other tasks [3–17].

One of the most fundamental theories that are applicable
to signed social networks is social structural balance [5, 6, 16].
Structural balance corresponds to the possibility of exactly
dividing the signed graph into two adversary subcommu-
nities such that all edges within each subcommunity have
positive weights while all edges joining agents of different
communities have negative weights. Obviously, graphs of
nonnegative weights are a special case of structural balance,
in which one of the two subcommunities is empty. Since the
assumption that structural balance exists in a real signed net-
work might be too extreme, a concept called weak structural
balance further generalizes structural balance by discussing
the multiadversary-subcommunities partition of the signed
graph [7].

Structural balance and weak structural balance have been
shown to be valid to analyze signed networks. For instance,
the sign inference problem, which aims to infer the unknown
relationship between two objects, can be solved by mining
balance information of signed networks from local and global
perspectives [8–10, 12–17].With the help of the result inferred,
it is possible to predict the relationships so that legitimate
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participants can eliminate networking security vulnerabil-
ities. Nevertheless, most of these state-of-the-art methods
for sign inference problem are mainly considered from a
static point of view, and dynamic scenarios are rarely taken
into account. Therefore, it is necessary to establish a rational
dynamic network model to infer the sign of relationships.

Actually, there exist several inherent qualities of mOSNs
that are challenging to reliably sense the global states of
relationships for the large networks in practice [2]. First,
in contrast to traditional social networks, the observations
of relationships in mOSNs are closely associated with the
geographical environment, as well as the relative locations
and signal coverage of mobile terminals/network access
points. Due to these spatial constraints, such observations,
which seem linearly related to the global data of relationships
(i.e., linearly sampled from the global data), are bound to
miss a significant number of values. Consequently, they are
not sufficient to unambiguously infer the true status by the
traditional solutions of linear-inverse problem in general.
Second, in mOSNs different relations between entities may
appear at different times. Accordingly, observations of the
networks vary during a time period long enough. These
dynamic interactions over time essentially introduce time
dimension to the problem of mining, the potential rela-
tionship structures. Third, despite maintaining the dynamic
performance, the underlying relationships in reality always
display some “redundancy” attributed to the gradual/periodic
variation [3], the relative stability, and so forth. Owing
to the aforementioned characteristics of mOSNs, the mass
redundant data generated in variant scenarios will result in
resource challenge. Hence, although many observers collect
features for at least part of the networks, there are still serious
impediments to reliable large-scale or network-wide data
processing. After these aspects of mOSNs are learned, it is
reasonable to organize the entire relationship dataset in the
form of tensor coincident with its spatiotemporal structure.
Meanwhile, efficient relationship inference approaches asso-
ciated with the tensor model are required to overcome the
obstacles of this data processing.

The aim of this paper is to develop algorithms for the
sign inference in signedmOSNs in global and spatiotemporal
evolvement perspectives. In particular, we assume that the
signed mOSN possesses an underlying dynamic weakly
balanced complete network structure. Suppose that we are
given an incomplete networking observation tensor (or 3-
dimensional array), which consists of the adjacency matrices
corresponding to the snapshots of the underlying dynamic
weakly balanced complete network at times𝑇

0
, 𝑇
0
+1, . . . , 𝑇

0
+

𝑇 − 1, 𝑇
0
+ 𝑇. Then the sign inference task is to estimate the

sign patterns of all possible links in the dynamic complete
network at time 𝑇

0
+ 𝑇. Utilizing the low-rank property

of the weak structural balance and the features extracted
from the observation tensor, we consider the inference via
the incomplete relationship data as an underdetermined
linear-inverse problem and develop an approach via a low-
rank matrix reconstruction to solve this problem. Moreover,
we regard the observation tensor as the training data set
and choose a dictionary from it to improve the validity
and efficiency of our inference approach. The dictionary

selection method is designed by reducing the size of an
overcomplete feature set extracted from the training dataset.
Also, a dictionary self-updating mechanism is introduced to
improve accuracy of the inference.

Here are the key contributions we make in this paper.

(i) A dictionary selection approach based on group spar-
sity has been designed to generate a set containing
minimal sizes of features to increase computational
efficiency. Specifically, the observation tensor is con-
sidered to be the raw materials for feature extraction.

(ii) The sign inference problem referring to the weakly
balanced mOSNs is formulated as a low-rank matrix
reconstruction from the selected dictionary. Under
certain mild conditions, a low-rank matrix recon-
struction algorithm is applied to solve the sign infer-
ence problem, and it turns out to bemuchmore accu-
rate and efficient than other inference methods in the
literature. A dictionary self-updating mechanism is
also introduced to adjust the dynamic characteristics
of the network and improve the sensing accuracy.

The rest of this paper is organized as follows. In Section 2,
we build the model of the dynamic signed network. Some
basics of balance theory are also reviewed for the sake of
integrality. In Section 3, we first extract the initial candidate
feature pool from the observation tensor and propose a
dictionary selection approach.Thenwe propose our low-rank
matrix reconstruction method to solve the sign inference
problem. The implementation details of the dictionary self-
updating procedure are also proposed. In Section 4, we con-
duct numerical experiments which demonstrate the validity
of our network model for sign inference and justify the
performance of our methods as well. Finally, we present our
conclusions in Section 5.

2. Background and Preliminaries

2.1. Dynamic Signed Network Structure. Formally, a dynamic
undirected signed network is represented as a dynamic graph
G = (V,E), where V is the vertex set of size 𝑛 and E is the
edge set varying over time. A network snapshot denoted by
S
𝑡
= (V,E

𝑡
,A(𝑡)) presents the connections ofG observed at

time 𝑡. Here, E
𝑡
is the subset of E and A(𝑡) ∈ {−1, 0, 1}

𝑛×𝑛 is
the adjacency matrix of S

𝑡
with the signed weights

𝑎
(𝑡)

𝑖𝑗
=

{{

{{

{

1 if 𝑖 and 𝑗 have positive relationship,
−1 if 𝑖 and 𝑗 have negattive relationship,
0 if relationship between 𝑖 and 𝑗 is unknown.

(1)

Particularly, for each time 𝑡, a zero entry in A(𝑡) is
treated as an unknown relationship based on the acknowl-
edgement that some potential attitudes exist between any
two entities, even if the relationship itself is not observed.
From this viewpoint, we can assume that there exists
an underlying dynamics complete signed network G, in
which only some partial relationships are observed at times
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Figure 1: Illustration of the adjacency tensor, the cube units symbolize the data of relationships: (a) the adjacency tensor of the observed
network and (b) the adjacency tensor of the underlying complete network.

𝑇
0
, 𝑇
0
+ 1, . . . , 𝑇

0
+ 𝑇 − 1, respectively. Correspondingly, we

letA ∈ {−1, 1}
𝑛×𝑛×𝑇denote the three-dimensional tensor that

contains relationship information between all pairs of entities
inG. Thus, the observation tensorA consisting of a series of
network snapshots can be represented as

A
𝑖,𝑗,𝑡

= 𝑎
(𝑡)

𝑖𝑗
= {

A
𝑖,𝑗,𝑡

, (𝑖, 𝑗, 𝑡) ∈ Ω,

0, otherwise,
(2)

where Ω is the index set of the observed entries. Let P
Ω

be the orthogonal projection operator onto the span of
tensors vanishing outside Ω so that the (𝑖, 𝑗, 𝑡)th component
of P
Ω
(X) is equal to X

𝑖,𝑗,𝑡
when (𝑖, 𝑗, 𝑡) ∈ Ω and zero

otherwise. Then we have P
Ω
(A) = A (shown in Figure 1)

and P
Ω
𝑡

(A(𝑡)) = A(𝑡) for each time slice 𝑡, where ⋂
𝑡
Ω
𝑡
= 0

and⋃
𝑡
Ω
𝑡
= Ω.

While the above kind of signed networks is called homo-
geneous, that is, relationships of the networks are between
the same kinds of entities, a signed network can also be
heterogeneous. In a heterogeneous signed network, there can
be more than one kind of entities, and relationships between
same or different entities can be positive and negative, such as
YouTube with two kinds of entities—users and videos. More-
over, this three-dimensional network adjacency tensor can
increase dimensions (e.g., spatial dimension, etc.) to adapt
to a wider range of scenarios. In this paper, we mainly focus
our attention on three-dimensional homogeneous signed
networks.

2.2. Weak Structural Balance. Structural balance theory was
first formulated by Heider [18] in order to understand the
structure in a network of individuals whose mutual relation-
ships are characterized in terms of friendship and hostility.
Formally, a triad is considered balanced if the product of
the signs in the triad is positive; that is, it contains an
even number of negative edges. This is in agreement with
principles such as “a friend of my friend is more likely to be
my friend” and “an enemy ofmy friend ismore likely to bemy

enemy” [6]. The configurations of balanced and unbalanced
triads are shown in Figure 2. One possible weakness of this
theory is that the defined balance relationships might be
too strict. In this perspective, by extending the fundamental
beliefs in real networks, weak structural balance is proposed
as a way of eliminating the assumption that “the enemy of
my enemy is my friend” [7]. Equivalently, the case that “the
enemy of my enemy is my enemy” is permitted. Therefore,
the local structure of weak balance posits that only triads
with exactly two positive edges are implausible and that all
other kinds of triads should be permissible (also illustrated
in Figure 2).

The formal definition of weakly balanced networks is as
follows.

Definition 1 (weakly balanced networks [7]). A (possibly
incomplete) network is weakly balanced if and only if it is
possible to obtain a weakly balanced complete network by
filling themissing edges in its adjacencymatrix. Furthermore,
in terms of patterns of global structure, a complete network
is weakly balanced if and only if the vertex set can be
divided into 𝑟 clusters, 𝑟 ≥ 1, such that all the edges within
clusters are positive and all the edges between clusters are
negative.

There exists the literature discussing the approaches of
clustering and sign prediction with respect to signed net-
works. Ideas derived from local balance of signed networks
can be successfully used to yield algorithms for sign inference
[9, 10]. Meanwhile, several works analyze the social interrela-
tions from global perspective of structural balance [8, 13–15,
17]. In particular, it is shown in [8] that the adjacency matrix
of weakly balanced networks has a “low-rank” structure, and
the sign prediction methods based on low-rank modeling
were proposed as well.

Theorem 2 (low-rank structure of signed networks [8]). The
adjacency matrix A ∈ {1, −1}

𝑛×𝑛 of a complete 𝑟-weakly
balanced network has rank 1, if 𝑟 ≤ 2, and has rank 𝑟 for all
𝑟 > 2.
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Figure 2: Signed undirected connectivity configurations mentioned in Section 2.2: (i) (a) and (b) are balanced triads, (c) and (d) are
unbalanced triads, and (ii) (a), (b), and (d) are weakly balanced triads.

Actually, since the global viewpoint of weak balance
stated in Definition 1 obeys clustering characteristics pre-
sented in Theorem 2, for A, there exists an invertible matrix
P such that

PAP𝑇 = (

1
𝑛
1

1
𝑛
2

−1

1
𝑛
3

−1 d
1
𝑛
𝑟

), (3)

where 1
𝑛
𝑖

on the primary diagonal is an 𝑛
𝑖
-order square

matrix whose entries are all 1 (∑𝑟
𝑖=1

𝑛
𝑖
= 𝑛) and the other

entries of PAP𝑇 are all −1. The 𝑛
𝑖
-order square matrix

indicates the 𝑖th cluster.

Notation. For X ∈ 𝑅
𝑚×𝑛, let the mixed norm ‖X‖

2,1
=

∑
𝑚

𝑖=1
‖X
𝑖⋅
‖
2
; the soft-thresholding operator D

𝜏
(⋅) : X ∈

𝑅
𝑚×𝑛

→ Y ∈ 𝑅
𝑚×𝑛 is also defined obeying

Y
𝑖⋅
=

{{

{{

{

0 if X𝑖⋅
2 ≤ 𝜏,

(1 −
𝜏

X𝑖⋅
2

)X
𝑖⋅

otherwise, (4)

where X
𝑖⋅
and Y

𝑖⋅
denote the 𝑖th row of X and Y, respectively

[15]. The invertible vectorization is denoted by vec(⋅) :

𝑅
𝑚×𝑛

→ 𝑅
𝑚𝑛.

Let S1,1
𝜇,𝐿

(𝑅
𝑚×𝑛

) be the class of convex functions with
Lipschitz gradient [19]. A continuous differentiable function
𝑓(Y) belongs to S1,1

𝜇,𝐿
(𝑅
𝑚×𝑛

) for some 0 ≤ 𝜇 ≤ 𝐿 if for any
X,Y ∈ 𝑅

𝑚×𝑛 we have both of the following:
∇𝑓 (X) − ∇𝑓 (Y)𝐹 ≤ 𝐿‖X − Y‖𝐹,

⟨∇𝑓 (X) − ∇𝑓 (Y) ,X − Y⟩ ≥ 𝜇‖X − Y‖2
𝐹
.

(5)

3. Sign Inference via Dictionary Learning

In this section, we focus on a solution of the sign inference
to estimate connection statuses via dictionary learning. As
the preparation, we propose a large-scale dictionary selection
method to generate the dictionary for inferring. Assume that

we are given a (usually incomplete) network observation
tensor A sampled from an underlying dynamic weakly
balanced complete network G with the adjacency tensor A.
As the description in Section 1, it is reasonable to suppose that
most relationships between entities have their own stability in
a long period of time in practice and subsequently the change
in the scale of each subcommunity is limited. Apparently,
this implies the strong dependence retained among the
observed data. Combining these assumptions with the low-
rank characteristic of weakly balanced complete networks, we
extract an initial feature pool from the observation tensorA
and propose a dictionary selection method to compress the
scale of the feature pool in Section 3.1. The corresponding
algorithm is presented, respectively, in Section 3.2. With the
trained dictionary, we propose our sign inference approach
and dictionary updating mechanism in Section 3.3, which
are also inspired by the low-rank characteristic of weakly
balanced complete networks.

The method we propose to handle the dictionary selec-
tion is motivated by the Singular Value Thresholding (SVT)
algorithm, which is a simple and efficient algorithm for
nuclear norm minimization problems proposed by Cai et
al. [20]. Our basic idea is to obtain the optimal solution of
the trace norm minimization problem by solving its dual
problem whose objective function can be shown to be con-
tinuously differentiable with Lipschitz continuous gradient.
Specifically, we prove that the optimal solution of the primary
problem can be readily obtained from the optimal solution
of the dual problem. We first provide a brief review of the
standard SVT algorithm.

Considering the problem

min
X

𝜏‖X‖∗ +
1

2
‖X‖2
𝐹

subject to P
Ω
(X) = P

Ω
(M) ,

(6)

Cai et al. [20] give a theoretical analysis that, when 𝜏 → ∞,
the optimal solution of problem (6) converges to that of the
standard problem:

min
X

‖X‖∗

subject to P
Ω
(X) = P

Ω
(M) .

(7)
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Given that 𝜏 > 0, the SVT algorithm operates as a linear
Bregman iteration scheme. Furthermore, by defining the
Lagrangian function of problem (6) as

L (X,Y) = 𝜏‖X‖∗ +
1

2
‖X‖2
𝐹
+ ⟨Y,P

Ω
(M − X)⟩ , (8)

whereY is the Lagrangian dual variable, we can derive its dual
function as

𝑓 (Y) = inf
X
L (X,Y) . (9)

Cai et al. show that SVT indeed optimizes the dual function
𝑓(Y) via the gradient ascent method.

3.1. Large-Scale Dictionary Selection. We address how to
select the dictionary given an initial candidate feature pool
in this subsection. To this end, we first extract an initial
candidate feature pool from A, which is sampled from A.
SinceA consists of the adjacency matrices A(𝑡) (𝑡 = 𝑇

0
, 𝑇
0
+

1, . . . , 𝑇
0
+ 𝑇 − 1), the matrix A(𝑡) in A can retain the

information of A(𝑡) more or less. Thus, we reserve the group
of A(𝑡) with relatively higher sample rate to extract features.
We use singular value decomposition (SVD) to express each
A(𝑡) as a series of orthogonal bases in Hilbert space; that is,

A(𝑡) =
𝑟
𝑡

∑

𝑟=1

𝜎
(𝑡)

𝑟
u(𝑡)
𝑟
(k(𝑡)
𝑟
)
𝑇

=

𝑟
𝑡

∑

𝑟=1

𝜎
(𝑡)

𝑟
U(𝑡)
𝑟
, (10)

where u(𝑡)
𝑟
and k(𝑡)
𝑟

are singular vectors ofA(𝑡) with eigenvalue
𝜎
(𝑡)

𝑟
, 1 ≤ 𝑟 ≤ 𝑟

𝑡
.Without loss of generality, we sort𝜎(𝑡)

1
≥ 𝜎
(𝑡)

2
≥

⋅ ⋅ ⋅ ≥ 𝜎
(𝑡)

𝑟
𝑡

the singular values of A(𝑡) in descending order, and
set

𝐿
𝑡
= 𝑟
𝑡
− arg max
𝑟=1,...,𝑟

𝑡
−1

(𝜎
(𝑡)

𝑟
≥ 𝜎
(𝑡)

𝑟+1
) . (11)

Then, due to the low-rank property of the weakly balanced
complete adjacency matrix, we keep the group of U(𝑡)

𝑟
cor-

responding to the 𝐿
𝑡
largest 𝜎

(𝑡)

𝑟
as the features. By this

procedure, we extract an initial candidate feature pool as
{U(𝑡)
𝑟

: 𝑇
0
≤ 𝑡 ≤ 𝑇

0
+ 𝑇 − 1, 1 ≤ 𝑟 ≤ 𝐿

𝑡
}, where each matrix

U(𝑡)
𝑟

∈ 𝑅
𝑛×𝑛 denotes a feature. Equivalently, we can discuss

Q = {vec(U(𝑡)
𝑟
) : 𝑇
0
≤ 𝑡 ≤ 𝑇

0
+𝑇−1, 1 ≤ 𝑟 ≤ 𝐿

𝑡
} and form the

matrix Φ = [vec(U
1
), vec(U

2
), . . . , vec(U

𝑆
)] for convenience,

where vec(U
𝑠
) = vec(U(𝑡)

𝑟
), 1 ≤ 𝑟 ≤ 𝐿

𝑡
, 1 ≤ 𝑠 ≤ 𝑆 = ∑

𝑡
𝐿
𝑡
,

and 𝑇
0
≤ 𝑡 ≤ 𝑇

0
+ 𝑇 − 1.

Due to massive data of the initial feature pool Φ, we
hope to find an optimal subset to form the dictionary Ψ =

[vec(U
1
), vec(U

2
), . . . , vec(U

𝐾
)] such that the set Φ can be

well reconstructed by Ψ and the size of Ψ is as small as
possible. To achieve this goal, we select Ψ such that the
rest of the features in Φ can be well reconstructed using
it. Analogous to the optimization problem in [21], the basic
problem is formulated as follows:

min
X

‖X‖2,1

subject to ΦX = Φ,

(12)

where Φ ∈ 𝑅
𝑁×𝑆

(𝑁 = 𝑛
2
), X ∈ 𝑅

𝑆×𝑆, and ‖X‖
2,1

=

∑
𝑆

𝑖=1
‖X
𝑖⋅
‖
2
. Apparently, ‖X‖

2,1
enforces the group sparsity on

the variable X and the optimal solution usually contains zero
rows.This means that not all features inΦ are necessary to be
selected to reconstruct any data sample.

Motivated by SVT, we have the equivalent problem of (12)
as follows:

min
X

‖X‖2,1 +
1

2
‖X‖2
𝐹

subject to ΦX = Φ.

(13)

The Lagrangian function of problem (13) is defined as

L (X,Y) = 𝜏‖X‖2,1 +
1

2
‖X‖2
𝐹
+ ⟨Y, Φ − ΦX⟩ , (14)

and its dual function is

𝑓 (Y) = inf
X
L (X,Y) . (15)

We first examine the properties of the dual function𝑓(Y) and
then showhow to achieve the optimal solution of the problem
(13) from its dual optimumdirectly. As themixed norm ‖X‖

2,1

is not differentiable, it is difficult to optimize the dual function
𝑓(Y) directly. However, we can obtain a useful property of the
dual function𝑓(Y) as follows.

Theorem 3. For all 𝜏 ≥ 0, the dual function 𝑓(Y) is
continuously differentiable with Lipschitz continuous gradient
at most𝑀. Furthermore, the primal optimal X̂ of the problem
(13) is given by

X̂ = D
𝜏
(ΦŶ) , (16)

when the dual optimal Ŷ of the problem (13) is obtained.

The proof of Theorem 3 is based on the following results.

Lemma 4. For each 𝜏 ≥ 0 and Y ∈ 𝑅
𝑚×𝑛, one has

D
𝜏
(Y) = argmin

X
𝜏‖X‖2,1 +

1

2
‖X − Y‖2

𝐹
. (17)

As a matter of fact, considering the following optimiza-
tion problem:

min
𝑥∈𝑅

𝜏 |𝑥| +
1

2
(𝑥 − 𝑦)

2
, (18)

it is easy to show that the unique solution admits a closed
form called the soft-thresholding operator, following a termi-
nology introduced by Donoho and Johnstone [22]; it can be
written that

𝑦 =
{

{

{

0 if |𝑥| ≤ 𝜏,

(1 −
𝜏

|𝑥|
) 𝑥 otherwise.

(19)

Thus, from a generalized view, one has Lemma 4.
Also, the following result can be deduced based on the

properties of Moreau-Yosida regularization [23].
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Lemma 5. For any X,Y ∈ 𝑅
𝑚×𝑛, one has

D𝜏 (X) −D
𝜏
(Y)
2

𝐹
≤ ⟨D
𝜏
(X) −D

𝜏
(Y) ,X − Y⟩ . (20)

It follows that D
𝜏
(Y) is globally Lipschitz continuous with

modulus 1.

Proof of Theorem 3. Since

𝑓 (Y) = inf
X
L (X,Y)

= inf
X

(𝜏‖X‖2,1 +
1

2
‖X‖2
𝐹
+ ⟨Y, Φ − ΦX⟩)

= inf
X

(𝜏‖X‖2,1 +
1

2
‖X‖2
𝐹
+ ⟨Y, Φ⟩ − ⟨Φ

𝑇Y,X⟩)

= inf
X

(𝜏‖X‖2,1 +
1

2


X − Φ

𝑇Y
2

𝐹
)

+ ⟨Y, Φ⟩ −
1

2


Φ
𝑇Y
2

𝐹

= 𝑔 (Y) + ⟨Y, Φ⟩ −
1

2


Φ
𝑇Y
2

𝐹

(21)

and 𝑔(Y) is the Moreau-Yosida regularization of the mixed
norm ‖ ⋅ ‖

2,1
, using the well-known properties of Moreau-

Yosida regularization [23], we get the results that 𝑔(Y) is a
globally continuously differentiable convex function. More-
over,∇𝑔(Y) = Φ(Φ

𝑇Y−D
𝜏
(Φ
𝑇Y)) and∇𝑔(Y) is continuously

differentiablewith Lipschitz continuous gradient𝜌; that is, for
any Y

1
,Y
2
∈ 𝑅
𝑁×𝑆,

∇𝑔 (Y
1
) − ∇𝑔 (Y

2
)
𝐹 ≤


Φ
𝑇
(Y
1
− Y
2
)
𝐹

≤ 𝜌
(Y1 − Y

2
)
𝐹,

(22)

where𝜌 = sup
‖Z‖
𝐹
=1,Z∈𝑅𝑁×𝑆‖Φ

𝑇Z‖
𝐹
.Then the gradient of𝑓(Y)

can be obtained as follows:

∇𝑓 (Y) = ∇𝑔 (Y) + Φ − ΦΦ
𝑇Y

= Φ(Φ
𝑇Y −D

𝜏
(Φ
𝑇Y)) + Φ − ΦΦ

𝑇Y

= Φ − ΦD
𝜏
(Φ
𝑇Y) .

(23)

It follows that, for any Y
1
,Y
2
∈ 𝑅
𝑁×𝑆,

∇𝑓2 (Y1) − ∇𝑓
2
(Y
2
)
𝐹

=

Φ − ΦD

𝜏
(Φ
𝑇Y
1
) − Φ + ΦD

𝜏
(Φ
𝑇Y
2
)
𝐹

=

Φ (D

𝜏
(Φ
𝑇Y
1
) −D

𝜏
(Φ
𝑇Y
2
))
𝐹

≤

ΦΦ
𝑇
(Y
1
− Y
2
)
𝐹

≤ 𝑀
Y1 − Y

2

𝐹,

(24)

where the first inequality follows from (20) and 𝑀 =

sup
‖Z‖
𝐹
=1,Z∈𝑅𝑁×𝑆‖ΦΦ

𝑇Z‖
𝐹
. When the dual optimal Ŷ is

obtained, by using the result of (21), we can get

X̂ = argmin
X

L (X,Y)

= argmin
X

(𝜏‖X‖2,1 +
1

2


X − Φ

𝑇Y
2

𝐹
)

= D
𝜏
(ΦŶ) .

(25)

This concludes the proof.

Since 𝑓(Y) is the dual function of the objective function
(13), 𝑓(Y) is concave. Let

𝑞 (Y) = −𝑓 (Y)

= − (𝜏
D𝜏 (ΦY)2,1

+
1

2

D𝜏 (ΦY)
2

𝐹
+ ⟨Y, Φ − ΦD

𝜏
(ΦY)⟩) ,

(26)

which is convex. Thus, the following holds for any Y
1
,Y
2
∈

𝑅
𝑁×𝑆:

⟨𝑞 (Y
1
) − 𝑞 (Y

2
) ,Y
1
− Y
2
⟩ ≥ 0. (27)

It is also easy to show that 𝑞(Y) belongs to the class
S1,1
0,𝑀

(𝑅
𝑁×𝑆

) and

∇𝑞 (Y) = −Φ (I −D
𝜏
(Φ
𝑇Ŷ)) , (28)

where I ∈ 𝑅
𝑆×𝑆 is the identity matrix. Therefore, we can solve

problem (13) by minimizing the objective function 𝑞(Y); that
is,

min
Y

𝑞 (Y) . (29)

Therefore, the dictionaryΨ is selected by the optimal solution
Ŷ; that is, the 𝑖th column of Φ is chosen to be the atom of Ψ
if ‖Ŷ
𝑖⋅
‖
2

̸= 0. The optimization algorithm is presented in the
next subsection.

3.2. OptimizationMethods. In this subsection, we develop an
efficient optimization algorithm to solve the dual problem
(29). Because the objective function 𝑞(Y) is continuously
differentiable with Lipschitz continuous gradient, it is feasible
to utilize gradient-based optimization methods to achieve
the optimal solution for their simplicity and low complex-
ity within each iteration. However, classical gradient-based
methods for functions with Lipschitz continuous gradient
converge at a rate of 𝑂(1/𝑁), where 𝑁 is the number
of iterations during optimization [19]. In fact, this is too
slow especially when dealing with large-scale datasets. Note
that Nesterov showed in his work [24] that an accelerated
gradient algorithm can be constructed such that 𝑂(1/𝑁2),
the lower bound on the convergence rate for gradient-based
methods [25], is achieved when minimizing unconstrained
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smooth functions. With this consideration, in the following
we propose an accelerated thresholding algorithm to solve
these smooth convex optimization problems using Nesterov’s
method with an adaptive line search scheme [19, 26].

We recall Nesterov’s method with an adaptive line search
scheme as follows. Take the unconstrained smooth convex
minimization problem miny∈𝑅𝑛𝑞(y), for instance, where 𝑞(y)
belongs to S1,1

𝜇,𝐿
(𝑅
𝑛
), 𝜇 ≥ 0, and 𝐿 < +∞. Nesterov’s method

for this problem utilizes two sequences: {y
𝑙
} and {s

𝑙
}, y
𝑙
, s
𝑙
∈

𝑅
𝑛. The searching point s

𝑙
satisfies

s
𝑙
= y
𝑙
+ 𝛽
𝑙
(y
𝑙
− y
𝑙−1

) , (30)

where 𝛽
𝑙
is a tuning parameter.The approximate solution y

𝑙+1

can be computed as a gradient step of s
𝑙
as

y
𝑙+1

= s
𝑙
−

1

𝐿
𝑙

∇𝑞 (s
𝑙
) , (31)

where 1/𝐿
𝑙
is the step size. Starting from an initial point y

0
,

s
𝑙
and y

𝑙+1
can be computed recursively according to (30)

and (31) and can arrive at the optimal solution ŷ. Although
it has been shown that Nesterov’s method is a very powerful
optimization technique for classS1,1

𝜇,𝐿
(𝑅
𝑛
) [19], how to choose

𝛽
𝑙
and 1/𝐿

𝑙
in each iteration is a critical issue in Nesterov’s

method. When they are set properly, the sequence {y
𝑙
} can

converge to the optimal ŷ at a certain convergence rate.
As a well-known scheme for setting 𝛽

𝑙
and 𝐿

𝑙
, Nesterov’s

constant scheme assumes 𝛽
𝑙
and 𝐿

𝑙
to be constant [19], while

Nemirovski’s line search scheme requires 𝐿
𝑙
tomonotonically

increase, and 𝛽
𝑙
is independent of 𝐿

𝑙
[27]. Both of the settings

result in slow convergence.
To overcome this drawback, an adaptive line search

scheme for Nesterov’s method is proposed in [26]. Under the
assumption that 𝜇, the low bound of 𝜇, is known in advance,
this scheme is built upon the estimate sequence [19] defined
as follows.

Definition 6 (estimate sequence [19]). A pair of sequences
{𝜙
𝑙
(y)} and {𝜆

𝑙
≥ 0} is called an estimate sequence of function

𝑞(y) if lim
𝑘→∞

𝜆
𝑘
= 0 and 𝜙

𝑙
(y) ≤ (1 − 𝜆

𝑙
)𝑞(y) + 𝜆

𝑙
𝜙
𝑜
(y), for

all y ∈ 𝑅
𝑛.

The estimate sequence defined in Definition 6 has the
following important property.

Theorem 7 (see [19]). Let {𝜙
𝑙
(y)} and {𝜆

𝑘
≥ 0} be an estimate

sequence. For any sequence {y
𝑙
}, 𝑞(y

𝑙
)−𝑞 ≤ 𝜆

𝑘
(𝜙
0
(ŷ)−𝑞) → 0

if 𝑞(y
𝑙
) ≤ 𝜙
𝑘
≡ miny∈𝑅𝑛𝜙𝑘(y), where 𝑞 is the optimal objective

function value.

We further specify the estimation sequence in [19]:

𝜙
𝑙
(y) = 𝜙

𝑙
+
𝛾
𝑙

2

y − k
𝑙



2
, (32)

where the sequences {𝛾
𝑙
}, {k
𝑙
}, and {𝜙

𝑙
} satisfy

k
𝑙+1

=
1

𝛾
𝑙+1

((1 − 𝛼
𝑙
) 𝛾
𝑙
k
𝑙
+ 𝜇𝛼
𝑙
s
𝑙
− 𝛼
𝑙
∇𝑞 (s
𝑙
)) ,

𝛾
𝑙+1

= (1 − 𝛼
𝑙
) 𝛾
𝑙
+ 𝜇𝛼
𝑙,

𝜙
𝑙+1

= (1 − 𝛼
𝑙
) 𝜙
𝑙
+ 𝛼
𝑙
𝑞 (s
𝑙
)

−
𝛼
2

𝑙

2𝛾
𝑙+1

∇𝑞 (s𝑙)


2
+
𝛼
𝑙
(1 − 𝛼

𝑙
) 𝛾
𝑙

𝛾
𝑙+1

× (
𝜇

2

k𝑙 − s
𝑙



2
+ ⟨∇𝑞 (s

𝑙
) , k
𝑙
− s
𝑙
⟩) .

(33)

Then Algorithm 2 in [26] is proposed by modifying
Nemirovski’s line search schemewith the adaptive parameters
of this sequence, which satisfy Theorem 7.

Note thatTheorem 3 indicates that the objective function
𝑞(Y) satisfies the conditions of using Nesterov’s method with
an adaptive line search scheme. Therefore we directly extend
Algorithm 2 in [26] to the high-dimensional scenarios to
solve (29). The complete procedures are summarized in
Algorithm 1.

In Algorithm 1, the while loop from Step 4 to Step 13 is
designed to choose a proper step size to satisfy Step 8. As the
Lipschitz gradient of 𝑞(Y) is 𝑀, 𝐿

𝑙
is upper bounded by 2𝑀

since Step 8 always holds when 𝐿
𝑙
≥ 𝑀 [27]. In Step 14, we

initialize 𝐿
𝑙+1

= ℎ(𝜃)𝐿
𝑙
, where

ℎ (𝜃) = {
1, 1 ≤ 𝜃 ≤ 5,

0.8, 𝜃 > 5,
(34)

and 𝜃 > 1 due to the condition in Step 8 [26]. Apparently,
when 𝜃 is large, 𝐿

𝑙+1
can be adjusted to avoid the step size 1/𝐿

𝑙

becoming too small, which may slow down the convergence
rate.

3.3. Sign Inference and Dictionary Update Mechanism. This
subsection details how to use the dictionary to solve the sign
inference problem. Actually, this problem bears similarity to
the sign prediction problem in the static signed networks
or the unsigned networks varying periodically [3, 8, 11, 12].
In this paper, we intend to infer the unknown relationship
between a pair of entities 𝑖 and 𝑗 based on partial relationship
observations of the entire dynamic network at time𝑇

0
+𝑇.We

expect to accomplish this task with the help of the dictionary
constructed by the relationship data for times 𝑇

0
through

𝑇
0
+𝑇−1. As aforementioned, there exists strong dependence

between the connection status at time 𝑇
0
+ 𝑇 and the history

relationship dataset in the dynamic network. We formulate
the sign inference problem as follows:

x̂ = argminx
1

2

y − Ψx
2

2
+ ‖x‖1, (35)

where Ψ is the dictionary and y is the invertible
vectorization of the matrix A(𝑇0+𝑇) observed at
time 𝑇

0
+ 𝑇; that is, y = vec(A(𝑇0+𝑇)). Because

A(𝑇0+𝑇) = ∑
𝑟
𝜎
(𝑇
0
+𝑇)

𝑟
U(𝑇0+𝑇)
𝑟

by using SVD and subsequently
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(1) Input: 𝜇, 𝛼
−1

= 0.5, Y
−1

= Y
0
, 𝐿
−1

= 𝐿
0
, 𝛾
0
≥ 𝜇, 𝜆

0
= 1

(2)Output: Y
𝑁

(3) for 𝑙 = 1, 2, . . . , 𝑁 do
(4) while true do
(5) compute 𝛼

𝑘
∈ (0, 1) as the root of 𝐿

𝑙
𝛼
2

𝑙
= (1 − 𝛼

𝑙
) 𝛾
𝑙
+ 𝛼
𝑙
𝜇,

𝛾
𝑙+1

= (1 − 𝛼
𝑙
) 𝛾
𝑙
+ 𝛼
𝑙
𝜇, 𝛽
𝑙
=

(1 − 𝛼
𝑙−1

) 𝛾
𝑙

(𝛾
𝑙
+ 𝐿
𝑙
𝛼
𝑙
) 𝛼
𝑙−1

;

(6) compute S
𝑙
= Y
𝑙
+ 𝛽
𝑙
(Y
𝑙
− Y
𝑙−1

)

(7) compute Y
𝑙+1

= S
𝑙
− (1/𝐿

𝑙
) ∇𝑞 (S

𝑙
)

(8) if 𝑞 (Y
𝑙+1

) ≤ 𝑞 (S
𝑙
) − (1/2𝐿

𝑙
)
∇𝑞 (S𝑙)



2

𝐹
then

(9) goto Step 14

(10) else
(11) 𝐿

𝑙
= 2𝐿
𝑙

(12) end if
(13) end while

(14) set 𝜃 = 2𝐿
𝑙

𝑞 (S
𝑙
) − 𝑞 (Y

𝑙+1
)

∇𝑞 (S𝑙)


2

𝐹

, 𝐿
𝑙+1

= ℎ (𝜃) 𝐿
𝑙

(15) set 𝜆
𝑙+1

= (1 − 𝛼
𝑙
)𝜆
𝑙

(16) end for

Algorithm 1: Adaptive line search scheme for dictionary selection.

vec(A(𝑇0+𝑇)) = ∑
𝑟
𝜎
(𝑇
0
+𝑇)

𝑟
vec(U(𝑇0+𝑇)

𝑟
), we will estimate

A(𝑇0+𝑇) in the form of vector and transform the low-rank
matrix reconstruction problem into a traditional 𝑙

1
-norm

minimization problem in compressive sensing. We solve
(35) by applying backtracking-based adaptive orthogonal
matching pursuit (BAOMP) method, which incorporates
a simple backtracking technique to detect the previously
chosen atoms’ reliability and then deletes the unreliable
atoms at each iteration [28]. Then we force that 𝑎(𝑇0+𝑇)

𝑖𝑗
, the

element of the resulting matrix, is equal to 1 if 𝑎(𝑇0+𝑇)
𝑖𝑗

> 1 or
equal to −1 if 𝑎(𝑇0+𝑇)

𝑖𝑗
≤ 0, to ensure the elements coinciding

with the value setting of relationships.
Furthermore, assume that we are given a sequence input

samples Y = [y(𝑇0+𝑇), y(𝑇0+𝑇+1), . . . , y(�̃�)], where y(𝑡) =

vec(A(𝑡)), 𝑇
0
+ 𝑇 ≤ 𝑡 ≤ �̃�, the task of the sign inference

becomes to reconstruct the complete adjacency matrices
A(𝑡) one by one. Since the A(𝑡) may contain some features
which are not included in dictionary, it is necessary to add
these features into the dictionary to increase the accuracy
of the inference. However, the inferred matrix is not the
original matrix exactly and consequently the unobserved
relationships are not really known. In contrast, the observed
adjacency matrix A(𝑡) retains all existing relationships. For
this reason, we only use A(𝑡) to extract the features rather
than the optimal solution of (35). We apply the extracting
approach in Section 3.2 and add the complementary features
into the dictionary. Note that this operation will continuously
increase the scale of the dictionary while the samples keep
inputting for inference; the dictionary selection approach
proposed in Section 3.2 will be applied to compact the dictio-
nary once the size of the dictionary exceeds a predetermined
bound.

4. Numerical Experiment

In this section, we perform experiments on synthetic net-
works and show that our low-rank model and dictionary
learning method outperform other methods on the task of
the sign inference for dynamic signed networks. To ensure
that our results are reliable, we conduct all experiments 20
times and average out the results from all of the trials.

To construct synthetic networks, we first consider a
weakly balanced complete networkGwhose adjacency tensor
is A. The slide of A at time 𝑡 is an adjacency matrix A(𝑡)

in the form of (3). In addition, only a few patterns of A(𝑡)

exist in A. The observation tensor A is formed by sampling
some entries fromA. Concretely, we let the adjacency tensor
A of G consist of 50 250 × 250 matrices of complete 4-
weakly balanced structure. For the network G, four clusters
are generated randomly.The size of each cluster is larger than
20 and the sum of the sizes is 250. We further assume that
only a part of network relationships is observed by uniform
sampling with probability 𝑝 ∈ (0, 1). It results in 𝑛

2
𝑝 entries

being randomly sampled from A(𝑡), where 𝑝 is the fraction
of observed entries. We choose a set of matrices whose lost
rates are from 0.05 to 0.55 and apply the approach proposed
in Section 3.2 to select the dictionary Ψ.

With the dictionaryΨ and the given observedmatrixA(𝑡)
at time 𝑡 ≥ 𝑇

0
+ 𝑇, the task of the sign inference is achieved

by solving (35). We use BAOMP to estimate the complete
matrixA(𝑡) and compare the performance of our approach to
two state-of-the-art methods, alternating least square (ALS)
[29] and singular value projection (SVP) [30], for the sign
inference problem. Different from accuracy defined by the
relative error on the observed set in [8], we utilize the
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Figure 3: Accuracy of sign inference algorithms on synthetic datasets. In general, we can see that dictionary learning outperforms ALS and
SVP.

(a) (b)

Figure 4: An example of the sign inference. (a) illustrates the original matrix. Given the matrix with 98% lost-rate, (b) is the result inferred
by dictionary learning method. The similarity of inferred matrix is 0.9347.

similarity between the inferred matrix and the original one
to indicate the accuracy of estimation. The definition of the
similarity is |⟨A(𝑡), Â(𝑡)⟩|/‖A(𝑡)‖

𝐹
‖Â(𝑡)‖

𝐹
. We vary the lost-

rate of the original matrix A(𝑡) from 0.5 to 0.999 and plot
the inference accuracy in Figure 3 (lost-rate: 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, and 0.999). Apparently,
dictionary learning outperformsALS and SVP. To present our
result more clearly, we also use a visual expression in which
the white pixels represent 1 and the black pixels represent −1.
Figure 4 shows one example of the sign inference and we find
that relationships and the clusters can almost be accurately
estimated by our inference approach.

5. Conclusion

In this paper, we establish a low-rank tensor model for the
dynamic weakly balanced signed networks. With this model,
we first extract the feature pool and propose an approach to
extract the compact dictionary from pool. To improve the
performance of the selection approach, we derive the corre-
sponding dual problem and introduce an accelerated thresh-
olding algorithm to solve the dual problem. Consequently,
the optimal solution of the primary problem can be readily
obtained from optimizing the dual problem. In addition,
combined with the compact dictionary generation method,
the sign inference approach is provided for estimating
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missing relationships of the dynamic weakly balanced signed
networks at a certain time slice. Also, the approach is
endowed with the function of the dictionary updating if
relationship statuses change.
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