Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2013, Article ID 691650, 23 pages
http://dx.doi.org/10.1155/2013/691650

Research Article

On Exponential Stability for a Class of
Uncertain Neutral Markovian Jump Systems with

Mode-Dependent Delays

Xinghua Liu and Hongsheng Xi

Department of Auto, School of Information Science and Technology, University of Science and Technology of China,

Anhui 230027, China

Correspondence should be addressed to Xinghua Liu; salxkh@mail.ustc.edu.cn

Received 10 May 2013; Revised 10 July 2013; Accepted 10 July 2013

Academic Editor: Elena Braverman

Copyright © 2013 X. Liu and H. Xi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The exponential stability of neutral Markovian jump systems with interval mode-dependent time-varying delays, nonlinear
perturbations, and partially known transition rates is investigated. A novel augmented stochastic Lyapunov functional is
constructed, which employs the improved bounding technique and contains triple-integral terms to reduce conservativeness;
then the delay-range-dependent and rate-dependent exponential stability criteria are developed by Lyapunov stability theory,
reciprocally convex lemma, and free-weighting matrices. The corresponding results are extended to the uncertain case. Finally,
numerical examples are given to illustrate the effectiveness of the proposed methods.

1. Introduction

Delay differential equations or systems are assuming an
increasingly important role in many disciplines like mathe-
matics, science, and engineering. In particular, the stability
and stabilization problem for neutral delay differential
dynamic systems have received considerable attention during
the decades and neutral time-delay systems have been the
focus of the research community, which are often encoun-
tered in such practical situations as distributed networks,
population ecology, processes including steam or heat
exchanges [1], and robots in contact with rigid environments
[2]. Existing results can be roughly classified into two cate-
gories, delay-independent criteria and delay-dependent crite-
ria, where the latter is generally regarded as less conservative.
Moreover, since the derivative of the delayed state is involved,
it should be pointed out that the stability of neutral time-delay
systems is more difficult to tackle, which is identical with
singular systems [3, 4]. The stability problem of them is more
complicated than that for regular systems because more fac-
tors need to be considered. In the past decades, considerable
attention has been devoted to the robust delay-independent
stability and delay-dependent stability of linear neutral

systems, which are mainly obtained based on the Lyapunov-
Krasovskii (L-K) method [5-11], and references therein. It
should be noted that the delay-partitioning approach is used
in [6-8]. Furthermore, when nonlinear perturbations or
parameter uncertainties appear in neutral systems, some
results on stability analysis have been also presented [12-18].
Various techniques have been proposed in these papers, for
example, model transformation techniques, the improved
bounding techniques, and matrix decomposition approaches.
In particular, He et al. [18] propose a new method for deal-
ing with time-delay systems, which employs free weighting
matrices to express the relationships between the terms in
the Newton-Leibniz formula and has brought novel results.
However, these results have conservativeness to some extent,
which exist room for further improvement.

In another line, Markovian jump systems (M]Ss) have
attracted much attention during the past few decades since
its first introduction by Krasovskii and Lidskii in 1961, which
can be regarded as a special class of hybrid systems with finite
operation modes whose structures are subject to random
abrupt changes. The system parameters usually jump among
finite modes, and the mode switching is governed by a
Markov process. MJSs have many applications, such as failure



prone manufacturing systems, power systems, solar thermal
central receivers, robotic manipulator systems, aircraft con-
trol systems, and economic systems. A large number of results
on estimation and control problems related to such systems
have been reported in the literature; see, for example, [19-25]
and references therein for more details. However, these lines
of literature about the transition probabilities in the jumping
process have been assumed to be completely accessible. The
ideal assumption on the transition probabilities inevitably
limits the application of the traditional Markovian jump
system theory. Actually, the likelihood of obtaining such
avaijlable knowledge is questionable, and the cost may be very
expensive. Thus, it is really significant and meaningful, from
control perspectives, to further study more general jump
systems with partially known transition rates. Recently, many
results on the Markovian jump systems with partially known
transition rates are obtained [26-31]. Most of these improved
results just require some free matrices or the knowledge of
the known elements in transition rate matrix, such as the
structures of uncertainties, and some else of the unknown
elements need not be considered. It is a great progress on
the analysis of Markovian jump systems. However, few of
these results are concerned with neutral Markovian jump
systems with mode-dependent time-varying delays and per-
turbations. To the best of the authors’ knowledge, neu-
tral Markovian jump systems with mode-dependent time-
varying delays and partially known transition rates have not
been fully investigated, and it is very challenging, especially
when nonlinear perturbations exist. Besides, seeking and
proposing less conservative delay-range-dependent criterion
for uncertain neutral MJSs with nonlinear perturbations and
partially known transition rates to desired performance are
still open problems. These facts thus motivate our study.

In this paper, the investigated neutral Markovian jump
systems are more general than the neutral MJSs with com-
pletely known or completely unknown transition rates, which
can be viewed as two special cases of the ones tackled here.
Specifically, a new augmented stochastic Lyapunov functional
containing triple-integral terms is constructed by dividing
the delay interval into two subintervals, and then the delay-
range-dependent and rate-dependent exponential stability
criteria are obtained by reciprocally convex lemma and free
weighting matrices. We further extend the criteria to the
uncertain case. All the obtained results are presented in terms
of LMIs that can be solved numerically. The remainder of the
paper is organized as follows. Section 2 presents the problem
and preliminaries. Section 3 gives the main results, which are
then verified by numerical examples in Section 4. Section 5
concludes the paper.

Notations. The following notations are used throughout the
paper. R" denotes the n dimensional Euclidean space and
R"™" is the set of all m x n matrices. X < Y (X > Y), where
X and Y are both symmetric matrices, means that X — Y
is negative (positive) definite. I is the identity matrix with
proper dimensions. For a symmetric block matrix, we use
to denote the terms introduced by symmetry. & stands for
the mathematical expectation, |v| is the Euclidean norm of

vector v, ||v|| = (vTv)l/ 2 while || Al is spectral norm of matrix
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A, Al = [/\max(ATA)]l/z. A max(min) (A) is the eigenvalue of
matrix A with maximum(minimum) real part. Matrices, if
their dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. Problem Statement and Preliminaries

Given a probability space {Q, #, P} where Q is the sample
space, & is the algebra of events and P is the probability
measure defined on &. {r,,t > 0} is a homogeneous, finite-
state Markovian process with right continuous trajectories
taking values in a finite set S = {1, 2, 3, ..., N}, with the mode
transition probability matrix being

i#j)
i=j,

mAt + 0 (At),

)
1 +m;At +0(At),

P("t+At:j|Tt:i):{

where At > 0, lim,, _, , (o(At)/At) = 0, m;i 20 (i, €S,i+j)
is the transition rate from mode i to j and for any state or
mode i € §; it satisfies

N

i =~ Z TT;j- (2)

J=Lj#i

Since the transition rates of the Markov chain are partially
known in this paper, some elements in matrix IT = [77;;] yyn
are inaccessible. For instance, the system with five operation
modes, the jump rates matrix IT may be viewed as

T om, Tt s
My ¢ my, ¢
T oy, 2| 3)

? [ S

Ty
s, ¢ T T s

where ? represents the unknown element. For notation clarity,
we denote §* = &, U S, foralli € Sand

S;é{j:ﬂij is known forjES},

: (4)
S = {] : ;; is unknown for j € S}.
Irfs ;C # 0, it is further described as
= (kLK LKL, Tsm <N, (5)
where k;, (j=1,2,...,m)represent the jth known element of

the set cS’;c in the ith row of the transition rate matrix II.
Furthermore, let 77" and 7TlM be the lower and upper bound
for the diagonal elements of the jump rates matrix I1.

In this paper, the following uncertain neutral Markovian
jump systems with mode-dependent interval time-varying
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delays, nonlinear perturbations, and partially known transi-
tion rates over the space {Q), %, P} are considered:

x(t)=C(tr)x(t -7 (1))
=A(t,r,)x(t)+B(t,r,)x(t-d(t,1,))
+D(t,r) fi (x(),1) 6)
+E(tr) fo(x(t-d(t7,)).t)
+F(tr) f3(x(t=7(t7)), 1),

X (S) =9 (S) > s € [_C> 0] > (7)

Ty ="0

where x(t) € R”" is the system state and 7(t,r,) is mode-
dependent interval time-varying neutral delay which satisfies
0 < 7;(t) < 7;, 7;(t) < v;whenr, =i € S. The mode-dependent
interval time-varying retarded delay d(t, r,) is assumed that

0<dy; <d;(t) <dy, max {dy} < I?EISH {dzj} ,
(8)
d;(t)<p, ifr,=ies,

where 7, v; 2 0, dy;, dy;, p; = 0, and ¢ = max;g {T;, d,;} are
real constant scalars. The initial condition ¢(s) is a continu-
ously differentiable vector-valued function. f;(x(¢),t) € R”,
f(x(t = d(t,r,)),t) € R", and fy(x(t — 7(t,1,)),t) € R" are
unknown nonlinear perturbations which are, with respect to
the current state x(t), the delayed state x(t — d(t,r,)) and the
neutral delay state x(t — 7(¢,7,)), respectively. For all ¢ and
r, =i € §, they are assumed to be bounded in magnitude as

1fi @) 0] < allx O,
|z (e (e = di ®), )] < Bllx (t - di ®)], ©)
1/ =7 @) 1) < v |2 (1 =7 ()
where « > 0, 8 > 0, and y > 0 are given constants, for
simplicity, f; = fi(x(t),1), f, = fo(x(t — d;(t)),t), and f; =
J3(x(t = 7;(1)), £).

For notational simplicity further, where r, = i € S, the
parametric matrices A(t, r,) € R™", B(t,r,) € R™",C(t,r,) €
R™", D(t,r,) € R™" E(t,r,) € R™", and F(t,r,) € R™" are
denoted by A;(t), B;(t), C;(t), D;(t), E;(t), and F;(t), which
can be described as

A (1) =A;+AA; (1),

>

B;(t) = B; + AB; (1),

G ) =G, D;(t) = D; + AD; (1), (10)

E;(t) = E; + AE; (1), F;(t) = F, + AF, (t),

where A}, B;, C;, D;, E;, and F; are known constant matrices
with appropriate dimensions. AA;(t) € R™", AB;(t) € R™",
AD;(t) € R™", AE,(t) € R™", and AF,(t) € R™" are
uncertainties. The parametric matrix ||C;| < 1 and the admis-
sible parametric uncertainties satisfy the following condition:

[AA;(t) AB;(t) AD;(t) AE;(t) AF;(t)]

(1)
= L;H, (t) [Ny Np Np; N Ngl,

where L;, Ny4;, Ng;, Np;, Ng;, and Ng; are known mode-
dependent constant matrices with appropriate dimensions
and H;(t) is an unknown and time-varying matrix satisfying
H' (t)H;(t)<I, Vvt (12)
Particularly, the following nominal systems can be obtained
for H(t) = 0:
x(H) = Cix (t =7, (1)) = Aix (t) + Bx (t — d; (1))

+Difi +E f, + F fs.
Before proceeding with the main results, we present the
following assumptions, definitions, and lemmas.

Assumption 1. System matrices A, (for alli € S), are Hurwitz
and all the eigenvalues have negative real parts for each mode.
L;, (foralli € S), is full rank in row.

Assumption 2. The Markov process is irreducible and the
system mode 7, is available at time ¢.

Definition 3 (see [32]). Define operator ® : C([—¢, 0], R") —
R" as D(x,) = x(t) — Cx(t — 7). D is said to be stable if the
homogeneous difference equation

g(xt):O’
xo=v € {p € C([-50],R") : Dp = 0}

is uniformly asymptotically stable. In this paper, that s, |C; || +
y <1l

t>0,
(14)

Definition 4 (see [33]). The system in (6) is exponentially
stable with a decay rate e for all v, = i € S, if there exist scalars
e > 0and x > 1 such that for all x(t),

lx )]l < kexp {-e (t - to)} |x,,

where ¢ is the exponential decay rate, | * || denotes the
Euclidean norm, and

Jsul = s (s 0L

(15)

bl
G

% (ty + 9)”}

(16)
= swp {lo@LleGI}-

se[fc,tg]

Definition 5 (see [34]). Define the stochastic Lyapunov-
Krasovskii function of system (6) as V(x(t),r, = i,t > 0) =
V(x,,i,t), where its infinitesimal generator is defined as

TV (x (£),i,t)

. 1
= AltlgloA_t [E{V (x (t + At),rpynpt + AL) | x () = x,

re =i} =V (x(8),i,0)]

0 . 0 N
= aV(x(t),z,t)+ aV(x(t),z,t)x(t)

N
+ YV (x(t),j:t).
j=1
17)



Lemma 6 (see [35]). Given constant matrices )y, Q,, and Q,

where Q; = Q] and Q, = Q] >0.Q, + Q1 Q;'Q, < 0ifand
only if

Q, of -Q, of

[ . -0, <0, or . Q <0. (18)

Lemma 7. For any constant matrix Q = QT > 0, continuous
functions 0 < hy(t) < h,(t), constant scalars 0 < 7, < T,,
and constant € > 0 such that the following integrations are well

defined,
(a)

exp {2¢h, (t)} — exp {2¢h, (t)}
2¢e

t=h, (t)
X J exp {2e (s — t)} x! (s)Qx (s)ds 19)
t=hy(t)

t—h, (t) t=hy ()
Z[J xT(s)ds]Q[J x(s)ds].
t—h,(t) t=h,(t)
(b)

2 2

T J J;e exp {2e (s = )} ' (5) Qx () ds df

-7

f AT (s)ds de] (20)

+0

> exp {—2e1,} U

-7,

xQ [J.:l J:re x(s)ds d@] .

Proof. (a) Is directly obtained from [36]. In addition, from
-7, <0 < -1yandt +0 < s < t,itis held that -1, < 0 <
s—1t < 0. Then

J_TI Jt exp {2e (s — 1)} x! (s)Qx (s)dsdo
-1, Jt+0
(21)

> exp {—2e1,} J_TI r x7 () Qx (s) ds d6.

-1, Jt+0

(b) Is thus true by [37]. L]

Lemma 8 (see [38]). For functions A,(t), A,(t) € [0,1],
M)+ A,(t) = L, andn, = Owith A (t) = Oandn, =0

with A,(t) = 0, matrices P > 0, Q > 0, then there exists matrix
T such that
P Tl o (22)
T Q

and the following inequality holds:
1 T 1 T
——n Py + ——1,Q
L) mem 1 (t)’h 4P

T (23)
P T]|™M
> [m 1] [TT Q] [ T]~
P
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Lemma 9 (see [39]). For given matrices Q = Q' M, and N
with appropriate dimensions,

Q+MFON+NTFI (hyM" <0 (24)

for all F(t) satisfying FT (t)F(t) < I, if and only if there exists a
scalar § > 0, such that

Q+6 'MMT +SNNT <o. (25)

3. Main Results

This section will state the exponential stability analysis
for neutral Markovian jump systems with mode-dependent
interval time-varying delays, nonlinear perturbations, and
partially known transition rates. With creative Lyapunov
functional and novel matrix inequalities analysis, delay-
range-dependent and rate-dependent exponential stability
conditions are presented.

3.1. Exponential Stability for the Nominal Systems

Theorem 10. For given scalars ", i, a, B, y, & T, v;, dy;,
d,;, y; and constant scalar d,; satisfyingd,; < d,,,; < dz,, the
systems described by (13) with partially known transition rates

are exponentially stable with decay rate € and x = \/m if
IC;Il + v < 1 and there exist symmetric positive matrices P; >
0,Q; >0,Qy; >0, R; >0,Ty; >0,( €8), Q; >0
(j=34,R >0,T >0, (kl=234),U, >0V, >0,
W, > 0, (im,n,s = 1,2,3,4) and matrices M|, M,, N;, N,, N3,
N, for any scalars €, €,, &, any symmetric matrices X;, Y,;,
Y, Z1i» Z,, (i € S) and any matrices Ji, (k = 1,2, ...,24) with
appropriate dimensions, such that the following linear matrix
inequalities hold.

Wheni € 52
Y om(Qy - Yy) - Yy <0,
jest,j#i
Z Tjj (sz - YZi) — ;Y5 <0,
]eé’k]#:z
Z 7-[1] (le lz) TT; le < 0
]GcS’ SEL
Z T;j (le - Zzi) — 125 < 0,
jesi,j#i (26)
P,-X;<0, jeS,,
Qi -Y;<0, jeS,,
Q) — Yy <0, jeS,,
Rjj=Z;<0, jeSy,

T\j=25 <0, i€ Su
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When i € cS’Lk
RACTESETD S GRS
jeSt jest
Yoy (Ry=Zy) <0 Y my(Ty;- Zy) <0,
jest jest
P-X,<0, jeSy, j#i
P-X;20, jeSi, j=i
M
- Z (Qlj - Yli) - 'Yy <0,
]Gé”k]q&z
M
- Z TT; (sz - YZi) - 7Y 0,
jest Lj#i
M
- Z (le_Zli)_ﬂimZIi <0,
]66”,(]#1
M
- Y w1y - Zy)-n"Zy <0,
jeSt j#i
U, M, vV, M,
T T >0,
My U, M, W
, Us N Vi N,
(i) . , . >0,
NT U, S

(i) Qi +Qj <0,

Uy Ns
(iii) . >0,
NI U,

V4 N4
NI v,

(iv) Qf+Q5, <0,
where
Zem wer +Z (8)

B 2ed;
exp{2ed,;} - 1

( es) V, (elT - €5T)
—exp {-2¢7} (Tie; —ex)) W (‘lTielT - ele)
2ed,;} (dye, —en) W, (dh-elT - elTl)
—exp {-2ed,,;} (016, — €14) W; (glielT - elT4)

{
{-
—exp {-
{-
{-

— €xXp stzl} (QZzel 615) W, (inef - efs)

2¢T; [ex0 €1 — €]
exp {26] — 1 20 €21~ €
U M, eZTO
* Ml U T
1 ez1 €0

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

2¢eT;
[e

—_——_— _e p—
exp {23?1} @ 18 €18 @16]

T
Vi M, elg]

T b
M2 4 618—616

where £ is a linear operator on R™" by

Z(G)=G+Gl, VYGeR™,

E= _‘31]132 +e; (PB; + I1Bi)e§

24
+e, (PC)) 31T9 + Z € (AzT]r];l) e;

m=2

+e b (Diesz + Eiesz + FiezT4)

24
+e, (],B:) e: - Z € (]Z) 63;
m=3
24
Z (B])e +Zem( 1619
m=4
24
+ ) e (Cm)em
m=20
21
+ Z em]m (DieZZ + Eie;s * Fie§4)
m=1

24

T T

+enln (Eiez3 + Fie24) +
m=23

T T, T\ T

+ 53 (J3F;) eyy + €35 (Ei ]24) €4

Y, = AP +PA;+ Y 7
]6&’

; (P - X))

+2eP+Qp; +Q; + R+ T U, +di U,
+ LU + Uy + &1+ 1A + A] ],

Y, =Q;+Q,+ T, + ?l-ZVl + di.V2

4

—4
2 2 T dli
+oVa+ oV + TWI + Twz

+ o Ws + Wi~ T, - ]2T>

2 T, T
Y; = @ (& p4;) Ry + &1 + J3B; + B I,
Y, =@ (e u) Ty
Y5 = exp{-2¢ed;;} (R;; + Ry — R,),
Yo = exp {_ZSdmi} (R4 - R3) >

Y; = —exp{-2edy}R,,

(35)

T,T\ T
22 i’m)“m
Ze (D])e
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Y = exp {—2£d1~} (T1~ +T5 - Tz), 2¢e9y; e —e
' 1 exp {2ed,,;} — exp {2ed,;} 2 €1 = e
Y9 = €xp {—ZSdm,-} (T4 - T3) > [ U3 Nl 6?2 ]
X

T

Yy = —exp{-2edy} Ty, N Us 5 614 e1Tz
8911
2ed.. - [es —e; e5 —e]
— TR exp [2ed, ] - exp Pedy ) 2% 7
exp {25 li} -1 V. N el —el

3 2 573

Yig = —exp{-2e7;} Qs, NT I’A e6Tj| '

=
I

= —exp{-2e7} Q, e _ 25911

Q _ e Usel.
n = 14~3%14
B exp {2£dmi} — exp {2£d1i}

Y= —(1-v;)exp{-2e7} Q5

. 2e0y;
Y= - (1 - 1’z’) €xXp {_2571'} Qyi a exp {ngmi} - exp {stli}
2 T.T
+ &Y I+ ]19Ci + C g, X (es —eg) V3 (ez: - ez)
Yo, = —gl+],D; + DiszTz’ 2e0,;

le; €15 —ey3)

B exp {2edy;} — exp {2ed,,;}

Yo = &I+ E + EiT]2T3’
U, N el.
Yo, = — eyl + o, F, + FL T2, y [N; Ua] [ 13 T]
el —e
Y, =0, (m=12,13,14,15,20,21), e
28921
—e, e;—e
O = 280y; T  exp {2ed,;} — exp {2¢d,,;} les =7 e = es]
i1 =~ esUse;s
exp {2edy;} — exp {2ed,,;} V. N[l
4 4 37 %7
- 2£0y; N T:| ’
exp {26dy] — exp {26d.] N Valleo-e
(36)
T
x (e —e) Vs ( e7) wheree; {i = 1,2,...,24} are block entry matrices; that is,
=[001000000000000000000000],
@ (& ;) = (p; — 1) exp {-2ed;}  with p; > 1, (4 — 1) exp{-2edy}  with y; <1,
_ B - 4 4 4
A= max{ max (P)} M Z/Xmax (Q]) + Z max + Z/\max
ies 2 =3 k=2 =
1 —exp{-2¢&
+ % {max {/\max (le)} + max{ max (Q21)} + max {/\max (Rlz)} + max {Amax (Tll)}}
£ ieS ieS ieS (37)
exp{ 28c +2£c {iA (U)+i)t (V)]»
o) max m = max n
1 —exp {-2&¢} + 26%¢? — 2ec 4
+ 83 S:ZI/\max (Ws) >
1 1
A= nzlelsn {/\mm (Pz)} > 01i = dpi — d1i> 02 = dyi = Ay 03 = 5 (dfm - di) Q4i = 5 (dgi - drzm)
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Proof. Construct the following stochastic Lyapunov func-

tional:
7
V(x(t),it) = ) Vi (xpi), (38)
k=1
where
Vi (x,0) = x" () Px (1), (39)

t

V, (x,,1) = J exp {2¢ (s — D)} x” (s) Q,;x (s)ds

t=7;(t)

t
+ J exp {2e (s - 1)} i () Qux (s)ds
t=7(t)

t (40)
+ J _exp{2e(s-1)} Xl () Q;x(s)ds

+ Jt exp {2e (s — 1)} %7 (s) Qux (s)ds,
o

-7

—dy;
Vs, (xp,1) = j-:_d exp {2¢ (s — 1)} x" (s) Ry;x (s) ds

i(t

+ Jt exp {2e (s — t)} x! (s)Ryx (s)ds
t;ﬂ;; (41)
. I exp (26 (s — )} <7 (5) Ryx (5) dis

“Cmi

J‘tidmi T
+ exp {2e (s — 1)} x* (s) Ryx (s) ds,
t=dy;

t=dy;
V, (x,,1) = J_ o exp {2 (s — 1)} &7 () Ty;% (s) ds

i

+ Jt exp {2 (s — 1)} &7 (s) Ty% (s) ds
t=dy;

t=dy; (42)
+ J exp{2e (s — 1)} & (s) Ty (s) ds
t

“Ymi

t—d,,;
+ J exp {2e (s — 1)} % (s) T, (s) ds,

7d2i

Vs (x,,1) = J07 Jt T exp {2e (s — D)} x* (s) U, x (s) dsd@

-7; Jt+60

+ JO J;t d,exp{2e(s—1)} x

—d,; Jt+0

x (s) U,x (s) dsdO

—dy; ot
+ J J 01; exp {2e (s — 1)} x
0

d, t+

X (s) Uzx (s) dsdO
7dmi t
+ J J 0,; exp {2e (s — 1)} x!
—d,; Jt+6

x (s) Uyx (s) ds do,
(43)

0

Vi (x;,1) = J B J: e?l-exp {2e (s — D)} %7 (s) V, % (s) ds dO

0t
J d,; exp {2¢ (s—t)}xT
t+6

x (s) V,x (s)ds do

t
| ovexpizets-nps"
i Jt+0
t

x (s) V3x (s) ds dO

+
" J
dli
7dli
" J
—d,;
_drm
" J

J- 0y exp {2 (s — )} &7
—-dy Jt+0

x (s) V,x (s) dsdb,
(44)
0 0 (ot ?2 r
V, (x,,1) = J': L Lﬂ\ j exp{2e(s— 1)} x
x () Wyx (s)dsdA do
0 0t g2
+J J J lexp{Zs(s—t)}
—dy; Jo Jrn 2
x %7 () W,% (s) ds dA dO
—d; (0 (t
+ J J J 0s; €xp {2e (s — 1)}
-d,,; 16 Jt+a
x %" (s) Wy (s) ds dA dO
~d,; (0 rt
+J J J 04; €xp {2e (s — 1)}
—dy Jo Jeer
x X7 (s) W, (s) ds dA db.
(45)

Remark 11. It should be pointed out that the proposed
stochastic augmented Lyapunov functional (38) contains
some triple-integral terms, which has not been used in of the
existing literature in the same context before. Compared with
the existing ones, [37] has shown that such triple-integral
terms are very effective in the reduction of conservativeness.

Taking I'as its infinitesimal generator along the trajectory
of system (13), we obtain the following from Definition 5 and
(38)-(45):

7
IV (x (t),it) = Y TV, (x,0), (46)
k=1
I'V; (x,,1) can be easily obtained by the following equation:
IV, (xpi) =2 [x" (0) AT +x" (t—d, (1)) B
+x"(t—7,(t))Cl + fIDF
+ LB+ fE]

X Px (t) + x (t) { Y P+ Y ﬂl-ijjI x(t)
jeSk jeSt,
+2ex’ (t) Px (t) — 2eV, (x,4) .
(47)



With regard to I'V,(x,,i), the detailed procedures are
given as follows.

Define  V, (x;,1) =V, (x4,1) + Vi, (%,,1)

(48)
+ Vi (xt’ i) + Vo (xt’ i) >
where
! T
Voo = [ explae(s=0)2" (9 Qux (s
! T
Vi eoi) = [ e 2e(6- 04" () Quik ()
’ (49)

t
Vos (i) = | _exp 22 - 0147 () Qi (5) s,

t-7;
t
Vo, (x4,7) = J exp{2¢e (s — 1)} %" (s) Qux (s) ds.
-7
By the infinitesimal generator I', we obtain
IV, (x,,1) = exp {-2¢t}
t
xT (J exp {2es} X! () Qpix (s) ds) (50)
t-7;(t)
—2eVy, (x,,1),

where

r <Jt exp {2es} X (s) Qqx (s) ds)
t=7(t)

[
5
I

. 1 t+A .
A—0t A {% |:Jt+A_T(t+A,rt+A exp {255} X (S) Ql (rt+A)
xx(s)ds|x(t),r, = i]

_ Jt exp {2es} x! (5) Qp;x (s) ds]»

-7;(t)

j=1

1 . .
Jim {ZP (rea = j I 1, =1)
t+A
X [J exp {2es} x! () Qyjx (s) ds]
t+A—‘rj(t+A)

_ Jt exp {2es} x! (8) Qy;x (s) ds}
t )

1 1 N t+A T
= lim — A J exp {2es} x” (s
A—0t A z Y t+A-T;(t+A) pizesix’ (9

X Qq;x (s) ds

Abstract and Applied Analysis
t+A
+ J exp {2es} X () Qpx (s)ds
t+A-T;(t+A)

t
- J exp {2es} x! (5) Qux (s)ds
t=7;(f)

N t
2

+exp {2e (1)} x7 (£) Qyx (1)

- (1% (1) exp {2 (£ - 7, ()} T
x(t—1;(t) Qux (t - 7; (1)) .

exp {2es} X () Qyjx (5) ds

—Tj(t)

(51)

Following the same procedure, I'V,,(x,,i) is also
obtained:

TVy, (x,,i) = %7 (t) Qu (t) — (1 — 4, (£)) exp {2¢ (t — 7, (1))}

) &7 (t =7, () Qux (t - ; (1))

N t
- Z”ij L o exp {2es} %! (s) Q% (s)ds
= g

_jt

—2eVy, (x,,1).
(52)

Moreover, I'V,;(x,,1), ITV,,(x,,1) are easily calculated as
shown in the following:

IVy, (x,,i) = x7 (t) Qyx (£) — exp {—2¢T;}

xx' (£ -T) Qux (£ =) = 26V (%,01)
(53)
IV, (x,,i) = %7 (t) Q% (£) — exp {—2¢T;}
x i (t =7) Qux (t = 7;) — 2eVyy (x,1)-

According to (50), (51), (52), and (53), we can easily obtain
the following (54):

IV, (x,,1)
=x" (1) [Qy+ Q] x (1)
+ 17 (1) [Qy + Q] X () — 26V, (x47)
— (1 -1 (t)) exp {-2e7; O} x" (t — 7, (1)) Q);x
x (t—1,(t)) - (1 -1 (t)) exp {-2e7, (1)} %"
X (t = 1; () Qux (t —7; (1))
—exp {-2eT} x' (£ -T) Qux (£~ T)
—exp {27} & (1 - T) Qux (¢ - T;)

exp {2e (s — 1)}
jes t—‘l.’j(t)

x [x" () Qyjx () + &7 (5) Qi (5)] ds
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< x" (1) [Qu+ Q3] x (1)
+ x5 () [Qy + Qu] % () — 26V, (x,,1)
— (1= (t)) exp {~2e7; ()} x" (£ - 7; () Qux
x (t=7,(t)) = (1 - % () exp {-2e7; (1)}
X (t—1,(t) Qux (t —7;(t))
—exp {-2eT} ' (t-T) Qux (¢ - T))

—exp{-2e7} & (t-7) Qux (t-T)

+ Zn,] J exp {2e(s - t)}

j#i

X [xT () Qyx (s) + &' (5) Qy;% (s)] ds.
(54)

Then, in the same method, I'V5(x,,1), T'V,(x,,i) can be
calculated and the results are given by the following, respec-
tively:

IV, (x,1)
= x" () Ryx (t) + exp {—2¢ed;} x”
Ry x(t-dy;)
(t—d,) [Ry— Rs] x(t—d,;)

- €Xp {_ngzi} x" (t - d2i) Ryx (t - dZi)

x (t—dy;) [Ry; + Ry -

+exp {—2¢ed,,;} x"

26V, (x,0) - (1-d; (1))

x exp {-2¢ed, (t)} x” (t — d; (t)) Ryx (t - d; (1))

t=dy;
+ erij L_dm exp {2e (s - 1)} X! () Ryjx (s) ds

< x" (t) Ryx (t) + exp {-2ed,;} x" (t - dy;)
x [Ry; + Ry — R,] x (t —d;)
+exp {~2ed,,;} x" (t - d,;) [Ry - R x
d,,;) - exp{-2ed,;} x"
x (t —dy) Ryx (¢
—(1-d; () exp {-2¢d; (1)} x"
d; (1))

x (t -

- dzi) - 26V, (xt’ i)

x (t = d; (1)) Rypx (¢ -

+Z%J

j#i Tty

t—dy;
exp {2e (s — 1)} x! () Ryjx (s) ds,

(55)

9
TV, (x,.i)

= %7 () T,% (t) + exp {~2ed;} "
x(t=dy) [Ty + Ty - T] 2 (t - dyy)
+exp {—2ed,,;} %" (t-d,,;)
x [T, - T x(t-d,,;)
—exp {—2ed,;} %7 (t — dy;) T,% (t — dy;)
— 26V, (x,,1) — (1 - d; () exp {-2ed, (1)} x"
x (t—d; () Ty;x (t — d; (1))
Xy I_ PR OT, () ds

je

<% () T,x (t) + exp {~2ed,;} &" (t —d};)
X [Ty;+Ts - T,] x(t —dy;)
+exp {~2ed,,;} 5" (t - d,,) [Ty - Ts] % (t - d,,;)
—exp {—2ed,;} &7 (t — dy;) T,% (t — dyy;)
26V, (x,,1) - (1-d; (1))
x exp {~2ed; (1)} %" (t — d; (t)) Ty, % (t — d; ()
Il [ exp e s 0187 (T ().

i
(56)

Moreover, I'Vs(x,, i), I'Vg(x,, i), and 'V, (x,, i) can be directly
obtained as follows:

Vs (x4,1)
=xT () [T U, + th2 + leU3 + 921U4] x (t)

—2eVs (x,,1)

_Jt Texp {2¢ (s - )} x7 () U x (s) ds
=7;

t

dll exp {2e (s - 1)} X (s)U,x (s)ds

Qli exp {2e (s — 1)} x" () Usx (s)ds

I,
Jt dy;

Api
Jt o exp 26 (s =)} " (9 Upx (91 s,
t—dy;
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Vg (x;1)
=i (t) [?izvl +dyV, + gV + Qiiv‘l] x (1)

—2eVi (x,,1)

- Jt _Texp{2e(s—1)} %! (s)Vix(s)ds
dh exp{2e(s—t)} x (s) V,x (s)ds
Lexp{2e(s—t)}x (s) Vix (s)ds

I
Jt dy

t-d,,;
J i exp {2e (s — D)} X7 (s) V% (s) ds,

Abstract and Applied Analysis
IV, (x1)
T ?4 d4‘ 2 2
=x (f) [LW1 + le + 03 Ws + Wy | X (1)
(xp ’)

t
J —exp 126 (s — )} &7 (s) W, (5) ds dO
t+60

exp {2e(s - t)} %! (s)W,x (s)dsdo

7d11 t
J 0s; €xp {2e (s — 1)} X (s) W;x (s)ds do
—-d t+6

U owesiets- 01T Wk (9 dsdo.
57)

Define

f(t)=C01{x(t) x(t) x(t-d;(t) x(t-d; () x(t-dy;) x(t-d,) x(t-dy) x(t-dy;) x(t-d,) x(t-dy)

t—di(t)

t t—d,;
J x(s)ds J x(s)ds J-
t—d,; t—d;(t) t=dy;

x(t-1,() x(t-7(t) J

t=7(t)

Then, there exist matrices ] = col{J;, (k = 1,2,...,24)}
with appropriate dimensions, such that the following equality
holds according to (13):

26T (1) J [-x(t) + A;x (t) + Bix (£ — d; (1)

7, (t)) + D;fy + E; f, + Fi f5] = 0.
(59)

+Cx (t -

Dueto Y = 0, the following zero equations hold for

j=17hj
arbitrary matrices X; = XiT, Yy Yf:, Y, = Yg;, Zy; Z{l,
Zy =271, i € S;thatis,
T
-x (t) Z i X + Z mX; | x(t) =0,
jeSk jest,

- Jt _expf{2e(s-1)} X! (s)

i

X |: Z ;Y + Z rrinli] x(s)ds =0,

jEST jest,

t—dy;

x(s)ds J

t—d,,;

t_dmi
x(s)ds J. x(s)ds x(t-7) x(t-7)
—dy;

t
x(s)ds J;:x(s)ds fH b f3]>

(58)
t
—J exp {2¢ (s - D)} & (s)
]
x| YomYy+ Y mYy | x(s)ds =0,
Jj€S jest,
t=dy;
—[ exp {2e (s — )} x" (s)
t— 2j
X Z 20+ Z T2y
esi jeS
t=dy;
—J exp {2¢ (s — )} X7 (s)
t=d,;
x Z T Lo + Z ;i 2y | % (s)ds = 0.
j€Si €S
(60)

In view of (9), the following inequalities hold for any scalars
& >0,& >0,and & > 0:

& [cxsz ) x (t) - flT (x(t),t) fi (x(t) ,t)] =0,
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& [Bx" (t—d; (1) x (t - d; (1)
—f) (x(t=d;(),t) f, (x (£ - d; (1), 1)] 2 0,
& [YZ"CT (t=7;(1) % (t -7, ()

—f3 (E(E-7,0),8) f5 (£ (t-7,(8),8)] 2 0

(61)
From (46) and (61), we have
IV (x(t),i,t)
7
Z TV (x,,1)
e [ O x (0 - 1] (©2
v [BxT (1=, () x (1 =d, (1) - f; ]
ta [y (t-n @) x(t-7,(0)) - f3 f3]-
Since it is easy to see —(1 — 7;(¢)) exp {—2e7;(t)} < —(1 -

v;) exp {—2eT;}, then from (8) we also obtain that

- (1 - d, (t)) exp {-2ed; (1)} < @ (e, 1) » (63)

where @(e, ;) is defined in Theorem 10. Notice (a) of

Lemma 7, then

_ J " exp 26 (s— )} 27 (5) Uyx (5) ds
t—d

1i
2ed;

< mg (t)quzeuE(t)

_ J t dy;exp (2e (s — )} £ (s) Vot (s) ds
t=dy;

2ed

= Wf (1) (e1 —e5) V; (ef —e5) £ (0).

(64)

Notice (b) of Lemma 7, then

0 ,t =2
_ J J % exp {2¢ (s — 1)} %7 (s) Wy (s) ds dO
-7; Jt+6

< —exp {265} £ (1) (Tie, — ey))

x W, (T e; — eZI)E(t)

1

2
' exp {26 (s — 1)} %7 (s) W, (s) ds dO

_j(’ J dy;
—dy; Jtio 2

< —exp {-2ed);} ET (t) (dye, —eyy)
x W, (dlielT - elTl) &,

—dy [t
J—d ; L+6

mi

05 exp {2¢ (s — 1)} %7 (s) Wy (s) ds d

< —exp{-2&d,,} 0! (0161 —ews)

x Ws (QuelT - 51T4) &,
it
- _[ J 04; €xp {2e (s — 1)} %" (s) W,x (s) dsdf
—d,; Jt+6

< —exp {-2edy;} 0 (0261 — €15)

x W, (inel 515) &@.
(65)

For d,(t) € [d,;»d,,;], the following is held from (a) of
Lemma 7:

t=dy;
- J 01; €xp {26 (s — )} &7 (5) V3 (s) ds
-d,,;

t—dy; t—d;(t)
=—{J +j }Qliexp{Zs(s—t)}
t-d,(t)  Jt-d,,

x %7 (s) Vy% (s) ds

_ 2e0y;
exp {2ed; ()} — exp {2ed,;}

t=dy; t=dy;
X [J x7 (s)ds] Vs [J X(s)ds:|
t—d;(t) t=d;(t)
_ 2e0,;
exp {2¢ed,,;} — exp {2ed (t)}

t-d,(t) t—d,(t)
X [I xT(s)ds] Vs [J X(s)ds]
t_dmi t_dmi
_ 2e0y;
exp {2ed,,;} — exp {2ed,;}

es—e;)V; (eg - esT)

(66)

£ (t)

1
* |:/11i () (
1
+ m (es _es)V3( _es)] (1),
where
exp {2ed; ()} — exp {2ed;}
exp {2ed,,;} — exp {2ed,;}

Ay (t) =

(67)
exp {2ed,,;} — exp {2&d; (1)}

exp {2ed,,;} — exp {2ed;;}

Ay (t) =
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By Lemma 8, there exists matrix N, with appropriate
dimensions such that

t=dy;
[ owew et 01T (9 Ve (9 ds

2e0y; T
- t
exp {2ed,,;} — exp {2£dli}£ ®
Vi N, e? ?
xles—es es—eg] | &)
N, V3 eZ g
Vi N,
T > 0.
N, V3

(68)

Similarly, considering — J‘::;“: 0,; exp {2e(s — )}x" (s)U,x
(s)ds and following the same procedure, there exists matrix
N, with appropriate dimensions such that

dli
- Jt 01; €xp {2e (s — 1)} x! (s)Usx (s)ds

_ 2e0,;
exp {2ed,,;} — exp {2¢ed,;}
U; N,
NT U,

U; N,
T > 0.
Nl U3

£ (1)

(69)

]E(t)

X [y €14 —ep] [

e

el4 12

For 7,(t) € [0,7;], with the same matrix inequalities
technique, we obtain the following:

t
- J T; exp {2e (s — 1)} x! (s)Uyx (s)ds
-7
2eT;
Wf (t) [ex0 €21 — €]
U M, eT
[ . ® T]E OF
My U 921 €0
U M
M| U,

>0,

_ r Texp {2e (s - )} &7 () Vy % (s) ds
t=7;

2eT;

_— t)|e €ig €1g — €
exp{Zsr}—l ()[1 18 €18 16]
Vi My][ef —ejg
T e o,
M Vi e18 616
Vi M,
T > 0.
M, V,

(70)

Abstract and Applied Analysis

Consider —_[:;f"i 0,; €xp {2&(s — t)}xT(s)U4x(s)ds and

- '[tt__::'i 0,; €xp {2&(s — t)}xT(s)V43’c(s)ds, which are directly
estimated by (a) of Lemma 7; that is,

t-d,,;
- j 0, exp {2e (s — )} x" (s) U,x (s)ds
t

420
2e0y;
exp {2edy;} — exp {2ed,,;}

t-d,,
- J (&)
t=dy;
_ 280y
exp {2edy;} — exp {2ed,,,;}

x (e —e;) V, (e;r - e;) E@).

& (t) ey5Uye € (1) s
cexp {2e (s — D)} X7 (s) V% (s) ds

£ (1)

(71)

Substituting (47), (54)-(60), and (63)-(71) into (62) we
obtain

TV (x (t),i,t) + 26V (x (1) ,i,1)
(72)
<E (1) (Q5 + Q) EM + T,

where

0= L_ exp {2e (s — t)} b (s) {Zn,JQU Z 7Yy,

j#i jest

- Z rt,-lei} x(s)ds

jeSt,

t
+ J; _exp{2e(s—-1)}x (5) { ZT[UQZJ Z ne

j#i jest

- Z ninZi]» X (s)ds

JE€S

t-dy;
+ L exp {2e (s — 1)} x' (s) ‘|Z7Tin1j - Z Uy

s j#i jest

- Z nijZI,-} x(s)ds

€Sk

t=dy;
+ L exp {2e (s — 1)} %" (s) ‘| Z”ijle - Z ”ijZZi

—2j jEi jEcS’;;

- Z nijZZi} x(s)ds

JES i

+xT(t)<[ D rrl-j(Pj—Xi)} x(t).

jest,
(73)
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On the other hand, for d;(t) € [d,,;,d,], the integral
terms

tidmi
[ evew e 01 U 0 ds,
—dy;
t (74)

t-d,,;
[ ewempizets- 0147 O Vi (s
t

—dyi
are disposed and estimated by Lemma 8, and
t=dy;
- J 0y, exp {2 (s — £)} x" () Usx (s) ds,
t

“Ymi

(75)

~dy
- Jt 0,; exp {2e (s — 1)} x7 () V3x (s)ds

mi

are directly estimated by (a) of Lemma 7. Therefore,

TV (x (£),i,£) + 26V (x (£) i, £)
. (76)
<& M)(Q,+Q,)E@) +0.

With (72) and (76), the following inequality (77) is held
for d,(t) € [dy;, d,;] if (26)-(34) are satisfied

IV (x(t),i,t) +2eV (x (t),i,t) < 0. (77)

From the stochastic Lyapunov functional (38) and (77), it
is held that

V(x(@),it) > min Amin (B} Ix@OI

= Mx @),
(78)
V(x(t),i,t) <exp{-2e(t—t,)}

xV(xto,rto,tO).

Moreover, we have

6 —
V (x 10 to) = D Vi (%01, ) < Ay, ||j (79)
k=1

Then from (78) and (79), it is readily seen that

lx (®)] < \j% exp {—& (t —to)} | x|

(80)

bl
I3

where x = \/X/A > 1.
Therefore, by Definition 4, the system (13) is exponen-
tially stable with a decay rate €. This completes the proof. [

13

Remark 12. Tt is noted that the integral intervals in (79) are
enlarged as follows:

6
ZVk (xto T, )

k=1

< Jto exp {2e (s —t,)} x" (s)

4
X 1Qy; + Qs+ Ry; + ZRk} x(s)ds

k=2

+ Jto exp {2e (s — 1))} %" (s)

4
X1Qy +Qu+ Ty + ZTI} x(s)ds

1=2

T [ eeebebearo

0 (0 (fy 2 .
J J; N 5 exp {2e(s—ty)} X" (s)

4
x (Zm>x(s)d5dwe
s=1

+x" (to) Px (to)
(81)

(79) can be obtained by letting A be defined as previously
mentioned.

Remark 13. In Theorem 10, the factors
exp {2edy;} — exp {2&d; (1)}
2¢e ’
exp {2ed; (t)} — exp {2¢ed,;}
2¢e

(82)

may be enlarged as (exp {2ed,;} — exp {2ed,;})/2e. This will
lead conservative results due to the fact that d,(t) cannot
achieve dy; and d,; at the same time. While we apply Lemma 7
to these terms, the method by using reciprocally convex
lemma [38] can achieve less conservative results. Moreover,
for ¢ > 0, the factor (d,(t) — 1) exp {-2&d,(t)} that appeared
in the derivative of Lyapunov functional may be directly
enlarged as y; exp {—2ed,;} — exp {—2ed,;}. In this paper, we
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enlarge it as @(e, y;) to reduce the conservativeness of the
obtained criteria. In the literature [36, 45, 46], this factor is
enlarged as (y; — 1) exp {—2ed,;}, which only holds for y; < 1.

Remark 14. The information on the lower bound of the delay
is sufficiently used in the Lyapunov functional by intro-

ducing the terms such as Lt__;“: exp {2e(s—1)}x” (s)Ryx(s)ds,

t=d,,; " t=d;
Jt_dz;‘ exp {2&(s — t)}x" (s)R,x(s)ds, and iy
t)}xT(s)Rux(s)dS, which is equivalent to the improved
bounding technique.

 €Xp {2e(s —

Remark 15. 1t should be also mentioned that the result
obtained in Theorem 10 is delay-range-dependent and decay
rate-dependent stability condition for (13), which is less
conservative than the previous ones and will be verified in
Section 4. Although the large number of introduced free
weighting matrices may increase the complexity of computa-
tion, utilizing the technique of free weighting matrices would
reduce the conservativeness. In addition, the given results can
be extended to more general systems with neutral delay ;(¢).
That is, 7;; < 7;(t) < 7,;. The corresponding results can be
obtained by using the similar methods.

In Theorem 10, it is assumed that e#0. For ¢ = 0, by
L'Hospital rule, the following asymptotic stability criterion
can be obtained.

Corollary 16. For given scalars ", ', o, B, v, T, v;, dy;,
d,;, p; and constant scalar d,,; satisfying dy; < d,,; < dy;,
the systems described by (13) with partially known transition
rates are asymptotically stable if |C;| + y < 1 and there exist
symmetric positive matrices P, > 0, Q;; > 0, Q5 > 0, Ry; > 0,
T, > 0, (i €8), Q; >0, (j = 3,4),R. > 0,T, >0,
(k1 =2,3,4),U, >0,V, >0, W, >0, (mmn,s = 1,2,3,4)
and matrices M, M,, N, N,, N5, N, for any scalars €,, &,, &,
any symmetric matrices X;, Yy;, Yy, Zy;, Z,;, (i € S) and any
matrices Ji, (k = 1,2,...,24) with appropriate dimensions,
such that (26)-(32) and the following linear matrix inequalities

hold:
Us N, Vi N,
(i) , >0, . >0,
NI U, NI v,
(i) Q+Q; <0,
U, N; V, N, (83)
(iii) ’ >0, ’ >0,
N; U, N, V,
(iv) Q;0+Q; <0,
where

24

v T =

QiO = ZemYmem +Z (‘:)
m=1

~(e;—e5)V, (e1T - eg)
—(Tie; —e3) Wy (‘?ief - e;)

—(dye, —e) W, (dlie1T - elTl)
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— (0161 —e1) W; (Qlie1T - 31T4)
~ (0z€1 —€15) W, (ine1T - elTs)

- [620 €1~ 620] |: UIT . Te:zro T ]
My U] ley —ey
Vi M, [el -l
—[e1 —eig €5 eyl MzT v, e1T3 B 8{6:| >
Y, = AP +PA; + Y (P - X;)

jes
+Q;;+Q;+ R, + ?izU1 + dfiU2
+ inU3 + Q;U4 +e 0’ T+ A, + AzT]1T’
Y, =—(1- @) Ry + &, T+ 3B+ B3,
Y, = -(1-w) Ty

Ys =Ry + Ry — Ry, Ys =R, —Rs,

Y, = -R,, Y, =T, +T, - T,
Y9 =T,-T; Y10 =T, Y11 =-U,,
Y16 =-Qs, Y17 =-Qy YlS =-(1-7)Qy;

Y19 =—(1-7)Qy+ 53)’2[ +J19C; + CiT]1T9'
(84)

Other Ym =Y, (m=2,12,13,14,15,20,...,24), which have
been defined in Theorem 10,

T T T
Oy = —esUsers — (es —e;) V, (66 - e7)

[ ] U; N, e,
—le,, e —e
12 €14 ~ €12 T r T
Ny Us ] ey, —ep,
T T
[e o o e] Vi N, e; — e
- 5763 37 66 T T T
N, V; e; —eg
(85)
_ T T T
Q;, = —eUseyy — (es—e5) Vs (es - es)
T
[ ] U, N; e
— €13 €15~ €3
T T T
Ny U] [ejs—ey;
T T
[e o o e] V, N, e; —e;
- 37 ¢7 6 ©3 T T T
N, V, es — €3

and the remaining notations are the same as Theorem 10.

Further, the information on the transition rates may be
completely unknown in some circumstances, which viewed
the systems as switched systems with arbitrary switching.
The following corollary is therefore given to guarantee the
exponential stability for this case.

Corollary 17. For given scalars ", m™, a, B, y, & T, v;, dy;
d,;, p;, and constant scalar d,,,; satisfying d,; < d,,; < d;, the
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systems described by (13) with completely unknown transition

rates are exponentially stable with decay rate € and k = \[A/A

if |IC;ll + y < 1 and there exist symmetric positive matrices
P>0,Q>0,R >0T,>0U, >0V, >0 W >0,
(. k,Im,n,s = 1,2,3,4) and matrices M;, M,, N;, N,, N3,
N, forany scalars g, €,, €5, any symmetric matrices Y, Y,, Z;,

Z,, and any matrices J, (k = 1,2,...

,24) with appropriate

dimensions, such that the following linear matrix inequalities

hold:

where

- Z ”zM(Ql‘Yl)_”imYlﬁ();

jEé’;k,j#:i
- z ”?A(Qz—Yz)—”imyzﬁa
jest i#i
M m
- Z (R, =Zy) -m"Zy < 0;
]ecﬁ”k]:#z
- Z m (T, = Zy) = ' Z, <0,
]eé”k]#:z
. [U, N, V, N,
o [w oo (s ile

(i) Q+Q; <0,

U4 N3 V4 N4

(iii) [N3T U4] > 0, [N4T v, > 0,
(iv) Qy+Qj <0,

24
Q5 = Y e, Ve, + £ (B
m=1

- ﬁ( 1—es)V, (elT_eg)
—exp {—2¢7;} (Te, —ey) W, (?ie? - ele)
—exp {—2ed;} (dye; —e) W, (dlielT - elTl)
—exp {-2ed,,,;} (016, — €14) W5 (Qlie1T - 61T4)
{-

- exp {—2edy;} (0y€ — €15) W, (in‘fzw - efs)

26T
- ;T_l [ezo €~ ezo]
exp {2e7;} - 1
<L 0]
My U, 621 €0
26T
- ;‘E [61 — €13 €13~ 616]
exp {2e7;} - 1
Lo VeI ]
M Vi e18 €l

Y, =ATP+PA; +2:P+Q, + Q,
+ Ry + "TiZU1 + d%iUZ + inUs

+ g;U4 + sloczl + 1A+ A?]lT,

(86)

(87)

(88)

(89)

Y,=Q,+Q,+ T, + ?izvl + dfin

4 4
+ leV3 + QZ:V +

+ QgiW3 + Qiint -5~ ]2T>

Y, =@ (eu) R, + &P 1+ ;B + B} J;,

Y, =@ (e, ) Ty,
Y; = exp {-2ed,;} (R, + Ry - R,),
Y, = exp{-2ed,,;} (R, - R;),
Y, = —exp {-2ed,;} R,,
Y, = exp {-2ed,;} (T, + T; - T),
Y, = exp {-2¢d,,;} (T, - T;),
Yio = - exp {~2ed} T,,
Y, = _#Ur
Y6 = —exp {~2¢7} Qs,
Y, = —exp {-2¢7} Qy,
Yig = - (1 - ;) exp{-2e7;} Qy,
Y, =
Yy, = —&, 1+ J,,D; + D} I,
Yo3 = —&1 + JsE; + EiszTy
Y, = —& + J,,F + F' ],
Y, =0

where

0,=0;,  0,=0p,

il1>
— exp {—2¢&¢}

A=LA__(P
max ( )+ >

d11
W + W2

(m = 12,13,14,15,20,21),

4 4 4
Zlmax (Q]) + ZAmax (Rk + ZAm (Tl
j=1 k=1 I=1

exp {—2&¢} +2e¢ -1
+
4¢?

y { > ha U2)

1- —2ect+26°¢2 -2 -
N exp {—2&6} + 2e°¢” — 2¢¢ {tha
8¢3 X

) Fhom )]

s=1

)

and the remaining notations are the same as Theorem 10.
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—(1-)exp{-2e7;} Q, + 83)’2[ +J19C; + Cinf;,

(90)

(o1
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Proof. Since the elements of transition rates are entirely
unknown, we choose the Lyapunov functional as follows:

7
V(x(®),it)=x" () Px () + Y Vi (xpi),  (92)
k=2

where

t

exp {2e (s — t)} x! (s)Q;x(s)ds

V, (xp,1) = I

t-7(t)

. jt exp (26 (s — 1)} &7 (5) Qyt (5) ds
t=7;(f)

, (93)
+ J _exp{2e(s—-1)} x! (5) Qsx (s)ds
t
+ J _exp{2e(s-1)} %! (5) Qux (s)ds,
t=dy;
Vs (xp,1) = J;_d.(t) exp {2e (s — 1)} x" (s) Ryx (s) ds
+ r exp {2e (s — 1)} x! (s)Ryx (s)ds
t_;_ (94)
+ j , exp {2e (s — t)} x! () Ryx (s)ds
t—d,;
+ J exp {2e (s — 1)} x! (s) Ryx (s) ds,
t—dy;
t=dy;
V, (xp,1) = J;_d.(t) exp {2¢ (s — 1)} & (s) T, % (s) ds
t
. j exp (26 (s — )} &7 (5) Ty (s) ds
t=dy;
(95)

t=dy;
+ I exp {2¢e (s — 1)} &7 (s) Ty (s) ds

t=d,,;
+ J exp {2 (s — 1)} &7 (s) Ty (s) ds
t—dy;

and Vi(x,, 1), Vg(x,, 1), V;(x,, 1) are the same as (43), (44), and
(45).

Then, we follow a similar line as in proof of Theorem 10
and obtain the result. O

3.2. Extension to the Uncertain Case. In this subsection, the
uncertain neutral Markovian jump systems described by
(6) with partially unknown transition rates are considered.
The delay-range-dependent and rate-dependent exponential
stability conditions are presented in the following theorems
and corollaries.

Theorem 18. For given scalars ", nIM, o By & T v diy
d,;, y; and constant scalar d,; satisfyingd,; < d,,; < d;, the
systems described by (6) with partially known transition rates

Abstract and Applied Analysis

are exponentially stable with decay rate € and k = \[A/) if
IC;Il + y < 1 and there exist scalars §, > 0, &, > 0, symmetric
positive matrices P, > 0, Q;; > 0, Qy; > 0, R;; > 0, T}; > 0,
(i€, Q; >0, (j =3,4,R. >0,7T, >0, (k]I = 2,3,4),
U, >0,V,>0,W,>0, (m,n,s =1,2,3,4) and matrices M,
M,, Ny, N,, N5, N, for any scalars €, €,, €5, any symmetric
matrices X;, Yy Yo Z1jy Zy (i € S), and any matrices Ji,
(k =1,2,...,24) with appropriate dimensions, such that (26)-
(32) and the following inequalities hold:

) Us N; Vi N,
(1) . >0, T >0,
NT U, NI v,
(96)
- 20T T
(i) 8,05 +6,05 + MM N ] <0,
| % -1
(U N Vy, N,
(iii) NT U , NT v >0,
LN3 Uy 4 V4
(97)
- 20T T
(iv) 8,05 + 6,05 + MM N ] <0,
| % -1
where
M = elNZ‘:i + eaN;' + eZZN]gi + 623N}];i + 624N17;i’
(98)

24
TpT T,T
N:Lipi e+ ZLi]mem

m=1
and other notations are the same as Theorem 10.

Proof. Defining E = col{e,,,(m = 1,2,...,24)} and J =
col{P;+ ], ], (m =2,...,24)}, we replace A;, B;, D;, E;, and
F, with A; + AA;(t), B; + AB;(t), D; + AD;(¢), E; + AE,(t), and
F; + AF;(t) on the basis of Theorem 10. That is,

U3 Nl
N U,

Vi N,

(i)
Ny Vs

>0,

(i) Qf+Qf + Z[e,AA] () J'E +e;AB] (1) J'E
+ e AD (£) JTE + ey3AE! (£) JE

+ e AF (1) JTE] <0,
(99)
U, N,

NI U,

Vi Ny

(iif)
NI v,

> 0,

(iv) Qf+ Q5+ Z[e,AA] (DI E+e;AB] (1) J'E
+ e AD] (£) JTE + ey3AE] (£) JTE

+ ey AF (0 J'E] <.
(100)
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Considering (ii) of (99) and combining the uncertainties
condition (11), we have

Q+Q;+ &
N T
N
x 1[e; €5 ey e eyu] | NL | H ) LIIJTE L <0.
N
| N7 |
(101)
By the definition of Z, we obtain
Q5 +Qf + MH] ()N +NH; () M" < 0. (102)

According to (12), by Lemmas 9 and 6, with (102) we obtain
(ii) of (96). Following the same procedure, (iv) of (100) is
considered and (iv) of (97) can be obtained. Finally, following
the proof of Theorem 10, the systems described by (6) are
exponentially stable with a decay rate €. This completes the
proof. O

Considering the uncertain case, the following corollaries
are given, for ¢ = 0 and entirely unknown transition rates,
respectively.

Corollary 19. For given scalars n", ©™, a, B, v, T, v, dyy,
d,;, w; and constant scalar d,,; satisfying d,; < d,,; < d,;,
the systems described by (6) with partially known transition
rates are asymptotically stable if |C;|| + y < 1 and there exist
scalars 8; > 0, 8, > 0, symmetric positive matrices P, > 0,
Q;; >0,Qy >0, R; >0,Ty; >0,(i €85),Q; >0, (j=3,4),
R, >0,T; >0, (k1=23,4),U, >0V, >0 and W, > 0,
(m,n,s = 1,2,3,4) and matrices M;, M,, N;, N,, N5, N,
for any scalars €, €,, &, any symmetric matrices X;, Yy;, Yy
Zy1i» Zy;, (i € S) and any matrices Ji, (k = 1,2,...,24) with
appropriate dimensions, such that (26)-(32), and the following
inequalities hold:

) Us N Vi N,
(1) . > 0, T > 0,
Ny U N, V3
r T T
(i) 8,Q; +61(i“ +82M™M E] <o,
i (103)
Uy N; V, Ny
(iii) T , T >0,
N3 U, Ny 'V,
r 20 4T T
(iv) 8,0 + 6,0, + MM N ] <0,
| * -1
where
M = elNz;i + e3N1§i + eZZN[T)i + 623N§i + 624N17;i’
(104)

24
N=LiPle,+ Y Lil e,
m=1

and other notations are the same as Corollary 16.
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Corollary 20. For given scalars n", m, o, B, y, & T, v, dyy,
d,;, w; and constant scalar d,; satisfying d,; < d,,; < d,;, the
systems described by (6) with completely unknown transition

rates are exponentially stable with decay rate e and k = \/m if
IC;I + y < 1 and there exist scalars &, > 0, §, > 0, symmetric
positive matrices P > 0,Q; > 0, R, > 0,T; > 0,U,, >0, V, >
0, W, >0, (j,k,l,mn,s =1,2,3,4) and matrices M,, M,, N,
N,, N5, N, for any scalars €, €,, &, any symmetric matrices
Y., Y, Z,, Z,, and any matrices J, (k = 1,2,...,24) with
appropriate dimensions, such that (86), (87), and the following
inequalities hold:

Us; N, Vi N,
(i) T >0, T > 0,
Ny U, N, V;
S e ~e 2a nT T
(i) 8,05, +81£3:.1 + MM E] <0,
i (105)
U, Nj V, N,
(iii) , >0, . >0,
-N3 U4 N4 V4
S e ~e 2a T T
(iv) 8,05, +82(ii2 + MM @[] <0,
where
M =e,NL +e;NL + e, N + ey No + ey, NE,
(106)

24
T T T T
N=L;P e + ZLi]mem

m=1

and other notations are the same as Corollary 17.

4. Numerical Examples

In this section, numerical examples are given to demonstrate
that the proposed theoretical results in this paper are effec-
tiveness. In particular, when i € S = {1}, d,(t), dy;, d,,,;, and
d,; are expressed into d(t), d,, d,,,, and d,.

Example 1. We consider an interval mode-dependent time-
varying delay system in the form of (6) with three modes and
nonlinear perturbations:

If; @), 0 1< 0.1] x ®)],
If2 et =d @), l< 020 x(t-d @),
Ifs Gt =), )< 01 2t -7 @)]5

thatis, « = 0.1, f = 0.2, y = 0.1. The parametric matrices of
the system are given as follows:

(107)

-0.75 -0.75 -0.15 -0.09
A= [ 1.50 —1.50]’ Ay = [ 1.50 —0.10]’
A - [0:30 015 5 _[ 011 023
371050 -0.50]" 171052 -037]°
5 _ [059 0.02 5. _ [051 024
27 1-0.06 —0.61]" 371002 —0.44)°
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Neutral time-varing delay

C; =

D, =

030 0 0.10 0
Cl‘[ 0 0.20]’ CZ‘[ 0 0.20]’
020 0 D _ [070 ~0.34
0 040] 17050 -0.65]
[~0.67 —0.50] D. . [023 016
| 039 023 ] 371002 -057)
_[-030 —0.44] £ = [040 —0.35]
| 050 —0.65]" 271039 028"
_[-024 0.19] £ [~0-50 ~0.36]
| 0.12 -0.38]° 171026 -0.75]"
_ [-0.48 —0.33] £ [045 023]
| 027 022 ) 37012 -035)°

Abstract and Applied Analysis

w

Neutral time-varing delay

I
N

1.5

Neutral time-varing delay

Time, t

FIGURE 1: Neutral time-varying delay 7;(¢) at Mode 1, Mode 2, and Mode 3.

L,=L,=L,;=[01 02],

NAl

Np; = Np, = Np3 =

Np; = Np, =Np; = [

Np = Ny = Ngz =

Npy = Np; = Npz =

Ny =Nps =

(=]
—

o
b

OO

>

|
)
3
g
|

o O

>

OO

B
o

(_p,_.

(108)

The partially known transition rates matrix is described by

where 7"

= —l.l,nlM
The interval mode-dependent time-varying neutral

-08 ¢
¢ =09
0.7 04

=-0.8.

delays are assumed to be

7, (8) =

0.3 (1 + cost),
73 (f) =

?
¢

7, (t) =

V2 +sint + cost.

-1.1

0.8 (1 +sint),

(109)

(110)

The interval mode-dependent time-varying retarded
delays are assumed to be

dy () =04(1+sin>(31)),  dy(t) = 0.5(1+cos’ (41)),

d, (t) = 0.6sin’ .

(111)

They are governed by the Markov process {r,,t > 0} and
shown in Figures 1 and 2. It can be readily obtain that

7,=06  T,=16  T,=2V2
=03, 7,=08  v,=V2
dy, =04, dy =08  d,=05  dy=1
di3=0,  dy =06
93
th =12, My =2, W= >0

(112)

Providing that decay rate ¢ = 0.5, we choose qualified
values of d,,;, d,5, d,;3, for example, d,,;, = 0.5,4d,, =
0.7, d,; = 0.3, and then we solve (26)-(32), (96), and (97)
in Theorem 18. Thus, it is facile to establish the exponential
stability of this uncertain neutral system described by (6),
which shows that the approach presented in this paper is
effectiveness.

Example 2. Consider the nominal system (13) with four

operation modes S = {1,2,3,4}, « = 3 = y = 0, and the
following parameters:
-1.15 -0.75 -1.20 0.12
A= [ 1.50 —1.50]’ B, = [ 0.24 —0.25]’
. _ [-015 006 A [215 049
171050 -0.50]’ 271150 -210)°
5 _ [-145 096 o _[025 035
271047 -157)° 2710.05 -0.65]’
A - [130 015 5. _ [ 058 —068
371150 -1.80)° 37 1-0.13 0.96
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0.9 1 0.7
>~ P~ >~
5 08 5 09 g 06
207 208 %05
g S g 04
T 06 T 07 i
E g £ 03
z 0.5 = 0.6 = 02
<! < <
E 0.4 5 0.5 E 0.1
L Q L
& 03 K 0.4 &0
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 2 10
Time, t Time, t
FIGURE 2: Retarded time-varying delay d;(t) at Mode 1, Mode 2, and Mode 3.
TABLE 1: Maximum upper bound of d, with IT, and different parameter p.
Methods u 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25
Xiong et al. [40] d, 0.4489 0.3317 0.2242 0.1814 0.1486 0.1220 0.0983 0.0781
Corollary 16 d, 0.4771 0.3664 0.2583 0.2165 0.1897 0.1473 0.1144 0.0956
_ (033 0.07 _[~1.90 -0.34 than that of [40]. So it can be seen that our proposed method
G = > Ay = > . . . . .
0.19 -0.36 1.50 -1.65 is less conservative than the result in [40]. Besides, according
0.6 0 023 0.16 to the data in Tables 1 and 2, we know that the maximum
B, = [_1 67 _11'25 ] , C, = [_ '2 : 7] ) upper bound of delay to guarantee stability is dependent on
39 1.23 0.2 -0.5 transition rates knowledge.
(113)

The partially known transition rate matrix is considered as
the following two cases:

21302 7 7]
7 03 03
=106 2 -15 2 |’
04 7 7 2
] ) (114)
~13 02 04 07
7 03 03
=106 2 -15 2 |’
04 7 7 2

where 77" = ~1.8 and 7 = ~1.3.

Providing that ¢ = 0 and 7;(t) = d;(t) = d(t),i € S =
{1,2,3,4}, we have d; = 0,7 = d,,v = p. Setd,, = d,/2
and employ Corollary 16; the maximum upper bound of the
time delay d, which satisfies LMIs (26)-(32), and (83), can be
calculated by solving a quasi-convex optimization problem.
This neutral Markovian jump system with partially unknown
transition rates was also considered in [40]. The results on the
maximum upper bound of d, are compared in Tables 1 and 2.

From Tables 1 and 2, we consider the previous system
with IT;, IT, and obtain the maximum upper bound of delay
d, = 04771, d, = 12.4394, respectively, in this paper by
setting 4 = 0.18, while the maximum upper bound of delay
d, = 0.4489, d, = 12.0750, respectively, for [40]. The results
are also given by setting ¢ = 0.19, p = 0.20, ¢ = 0.21,
p =022, 4 =023, u =024, and y = 0.25, and it is found
that the maximum upper bound of delay in this paper is larger

Example 3. To show the reduced conservativeness of the
exponential stability condition in Theorem 10, consider the
time-delay system in the form of (13) with C; = 0 and « =
B=y=0,d,(t) =dand

) -0.5 0.1 .
Ai=[1 0], Bi:[a3 0], ieS={1}. (115)

For given d, the maximum exponential decay rate &,
which satisfies the LMIs (32), (33), and (34) in Theorem 10,
can be calculated by solving a quasi-convex optimization
problem. The results are presented in Table 3.

From Table 3, we know that the maximum exponential
decay rate ¢ = 0.9569 in this paper by setting d = 0.8, while
the maximum exponential decay rate ¢ = 0.7344 for [41], € =
0.9367 for [42], and € = 0.9366 for [43]. The results are also
given by settingd = 1.0,d = 1.2,d = 14,d = 1.6,d = 1.8,
and d = 2.0, and it is found that the maximum exponential
decay rate in this paper is larger than those in [41-43]. So it
can be demonstrated that Theorem 10 in this paper yields less
conservative results than [41-43].

Consider the previous system again, but with parametric
matrices and parameter uncertainties as follows:

Ai:[_(;l _14] Biz[oj Of’l], ies={1} (e

and the uncertain matrices AA;(¢) and AB(t) satisfy

L;=02I, N, =Ng=1I |H(®)|<1,
117)

ieS={1}.
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TABLE 2: Maximum upper bound of d, with IT, and different parameter .
Methods u 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25
Xiong et al. [40] d, 12.0750 0.9924 0.5147 0.3749 0.2742 0.2139 0.1737 0.1433
Corollary 16 d, 12.4394 1.2587 0.6263 0.4037 0.3003 0.2485 0.2018 0.1796
TABLE 3: Maximum upper bound of ¢ with different parameter d.
Methods d 0.8 1 12 1.4 1.6 1.8 2.0
Mondié and Kharitonov [41] 3 0.7344 0.6715 0.6145 0.5642 0.5202 0.4818 0.4481
Liu [42] £ 0.9367 0.5903 0.3400 0.1813 0.0752 0.0014 0
Xu et al. [43] € 0.9366 0.9192 0.8991 0.8115 0.6990 0.6148 0.5494
Theorem 10 £ 0.9569 0.9407 0.9218 0.9024 0.8154 0.7394 0.6933
TABLE 4: Maximum upper bound of ¢ with different parameter d.
Methods d 0.3 0.5 0.7 0.9 11 1.3 1.5
Mondié and Kharitonov [41] € 0.6255 0.4760 0.3825 0.3191 0.2735 0.2392 0.2125
Xu et al. [43] > 1.0108 0.8366 0.7103 0.6156 0.5425 0.4845 0.4375
Theorem 18 £ 1.0419 0.9207 0.8035 0.7048 0.6234 0.5876 0.5043

For given d, the maximum exponential decay rate &,
which satisfies the LMIs in (32), (96), and (97) in Theorem 18,
can be calculated by solving a quasi-convex optimization
problem. The results are presented in Table 4 and it also can
be seen that the delay-range-dependent and rate-dependent
exponential stability conditions in this paper are less conser-
vative than previous results in [41, 43].

Example 4. Consider the system (6) with 7,(t) = d,(t) = d(t)
and the parameters are listed in the following:

e[ 8w el )
D;=E,=F =1, ieS={1},
«=005  B=01  y=0,
d, =0, d,=T1, p=m.

(118)

For given ¢ and g, choose d,, = d,/2 and utilize Theorem 10,
the maximum upper bound of d,, which satisfies the LMIs in
(32), (33), and (34), can be obtained by solving a quasi-convex
optimization problem. The results are presented in Tables 5,
6,and 7.

From Tables 5, 6, and 7, we consider 4 = 0, u = 0.5,
and g = 0.9 and obtain the maximum upper bound of delay
d, = 15167, d, = 1.0643, and d, = 0.7136, respectively,
in this paper by setting ¢ = 0.1, while the maximum upper
bound of delay d, = 1.2999, d, = 0.9442, and d, = 0.5471,
respectively, for [44], the maximum upper bound of delay
d, = 14008, d, = 1.0120, and d, = 0.6438, respectively,
for [13]. The results are also given by setting € = 0.3, ¢ = 0.5,
€ =0.7,and € = 0.9, and it is found that the maximum upper
bound of delay in this paper is larger than those in [13, 44].

According to the comparative result, it can be seen that our
proposed method is less conservative than those in [13, 44].

Example 5. Partial element equivalent circuit (PEEC) model
can be represented as a stochastic jump system as in (6)
with the abrupt variation in structures and parameters [47].
Consider the practical PEEC system described by (6) with
a = f3 =y = 0 and completely unknown transition rates

n=[§ :] ieS={1,2), (119)

where 7" = ~1.0 and 7} = -0.6.
The parametric matrices of the system are given as

follows:
-4 0 -2 0
S DI B P
-1 0 -1 0
B, = [—1 —1]’ B, = [—0.9 —1.2]’
C, =051, C,=03I, (120)
0.2 0
Li= [0.2]’ L,= [—0.3]’
Ny =[02 0], N,=[002],
Np, =[-0.3 03], Ny =[02 02].

Given the decay rate ¢ = 0.4, the bound of mode-dependent
time-varying neutral delay 0 < 7,(t) < 0.5, 0 < 7,(t) < 0.6,
and the bound of mode-dependent time-varying retarded
delay 0.1 < dy(t) < 02,03 < d,(t) < 0.4. Without loss
of generality, we choose d,,,; = 0.12 and d,,, = 0.33. Since
the information on the delay derivative is not available, by
setting Q, = Q, = 0, R; = 0, T, = 0 in the Lyapunov
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TABLE 5: Maximum upper bound of d, with different ¢ and parameter y = 0.
Methods € 0.1 0.3 0.5 0.7 0.9
Chen et al. [44] d, 1.2999 0.8781 0.6917 0.5792 0.5015
Qiu and Cui [13] d, 1.4008 1.0199 0.8457 0.7395 0.6667
Theorem 10 d, 1.5167 1.1365 1.0674 0.9677 0.7558
TABLE 6: Maximum upper bound of d, with different & and parameter ¢ = 0.5.
Methods € 0.1 0.3 0.5 0.7 0.9
Chen et al. [44] d, 0.9442 0.7275 0.6096 0.5321 0.4761
Qiu and Cui [13] d, 1.0120 0.8324 0.7311 0.6941 0.6063
Theorem 10 d, 1.0643 0.9156 0.7985 0.7368 0.6849
TABLE 7: Maximum upper bound of d, with different € and parameter ¢ = 0.9.
Methods € 0.1 0.3 0.5 0.7 0.9
Chen et al. [44] d, 0.5471 0.5015 0.4650 0.4350 0.4089
Qiu and Cui [13] d, 0.6438 0.5789 0.5214 0.4954 0.4231
Theorem 10 d, 0.7136 0.6344 0.5987 0.5473 0.4963
functional (92), we follow the same procedure as in the proof ~ Acknowledgment

of Theorem 10 and obtain the corresponding result. Thus,
the exponential stability of the practical PEEC system can
be readily established, which shows the effectiveness of the
approach presented in this paper.

5. Conclusions

The problem of exponential stability for neutral Markovian
jumping systems with interval mode-dependent time-
varying delays, nonlinear perturbations, and partially
unknown transition rates is investigated in this paper. A
novel augmented stochastic Lyapunov-Krasovskii functional
is constructed, which contains some triple-integral terms
and sufficiently takes advantage of the delay bound. Then,
less conservative delay-range-dependent and rate-dependent
exponential stability criteria are obtained by novel technique
of matrix inequalities and free weighting matrices. These
theoretical results are successfully verified through some
numerical examples. Finally, the main contributions of this
paper can be summarized as follows: (1) the constructed
stochastic Lyapunov functional contains some triple-
integral terms which are very effective in the reduction
of conservativeness and has not appeared in the context
of neutral Markovian jump systems with partially known
transition rates and nonlinear perturbations before; (2)
the bound of the delay is fully utilized in this paper;
that is, improved bounding technique is used to reduce
the conservativeness; (3) the reciprocally convex lemma
is used to derive the delay-range-dependent and rate-
dependent stability conditions, which can well reduce the
conservativeness of the investigated systems; and (4) the
proposed results are applicable to the partially known
transition rates and expressed in a new representation, which
are proved to be less conservative than some existing ones.
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