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We investigate the problem of coordinated formation control for multiple surface vessels in the presence of unknown external
disturbances. In order to realize the leaderless coordinated formation and achieve the robustness against unknown external
disturbances, a new robust coordinated formation control algorithm based on backstepping sliding mode control is proposed.
The proposed coordinated control algorithm is achieved by defining a new switched function using the combination of position
tracking error and cross-coupling error. Particularly, the cross-coupling error is defined using velocity tracking error and velocity
synchronization error so as to be applicable for sliding mode controller design. Furthermore, the adaptive control law is proposed
to estimate unknown disturbances for each vessel. The globally asymptotically stability is proved using the Lyapunov direct method.
Finally, the effectiveness of the proposed coordinated formation control algorithm is demonstrated by corresponding simulations.

1. Introduction

Recently, coordination and consensus of multiagent systems
have received much attention, and the network-induced con-
straints are discussed [1]. Many studies on coordination con-
trol issues have been widely reported in the existing literature
due to the widespread applications, such as multiple mobile
robots, spacecraft formation, networked sensors, vehicles
coordination [2]. Particulary, the applications of formation
control at sea are increasing, which can be found within both
civil and military operations. For example, a group of surface
vessels travel in formation structures to perform the seabed
mapping operations, the collective range of sensor equipment
can be maximized, ensuring that larger areas can be covered
in shorter time compared with a single vessel. And another
example is underway replenishment of vessels which is typ-
ically performed by one or more supply vessels lining up at
the side of the receiving vessel, after which all vessels strive to
maintain equal and constant forward speed and bearing while
supplies are being transferred across messenger lines [3]. The
complicated operations often cannot be carried out through
only one vessel.

In a word, multiple vessels work together to improve
performance and reduce fatigue and difficulty for the people
involved. What is more, compared with a single vessel, mul-
tiple vessels perform the complicated tasks with less time and
cost in practical maritime. So this paper will focus on the
coordinated formation of multiple surface vessels; And the
formation control in this paper aims at the surface vessels,
then the robustness to environmental disturbances is highly
important when considering the marine and offshore appli-
cations. So the study on the robust coordination control
algorithm for multiple surface vessels is significative.

With respect to the coordination control issues of mul-
tiple surface vessels, abundant studies have been widely
reported in the existing literature. There are several typical
approaches used to design the coordination formation con-
troller. For example, Lagrangian formation method [4], null-
space-based behavioral control [5], nonlinear model predic-
tive control [6], and graph theory [7]. Meanwhile the problem
of coordinated path following for multiple vessels also has
been discussed in the following references [8-10]. In recent
years, the formation control of multiple vessels is researched
using the passivity-based control method included in the



synchronization control approach [11-13]. A common trait in
the aforementioned results is that the coordinated tracking
controller is designed by assuming that motions of vessels are
disturbance-free. However, surface vessels often encounter
external disturbances such as wind, wave, and current. The
external environment disturbances are difficult to model well
and truly because of the disturbances varying with weather
conditions and depth of water area change. So the coordi-
nated formation algorithm for multiple surface vessels should
be robust to unknown disturbances. The adaptive control is
helptul for solving this problem [14, 15].

This paper develops a coordinated formation control
algorithm based on backstepping sliding mode control
approach. The sliding mode control possesses the robustness
to system uncertainty and external disturbance as a result of
the definition of the switched function [16]. And the stabi-
lization for the switched systems are discussed in [17, 18]. For
a single surface vessel, the sliding mode control method can
achieve robustness to the environment disturbances [19, 20].
Furthermore, the sliding mode control is also used to design
the coordinated formation controller as in reference [21, 22].
And the backstepping method can determine the appropriate
Lyapunov function systematically and simply, which makes
the distributed robust and adaptive redesign implementable.
The integration of backstepping and sliding mode control will
centralize both the advantages of the two control schemes
[23]. Backstepping sliding mode control is used to solve the
coordinated formation problem for multi-agent systems in
[24, 25]. The aforementioned studies on sliding mode for-
mation control are all based on the leader-follower strat-
egy. However, the leaderless strategy is applicable widely
because of most practical task without emphasizing which
vessel is important [26]. The cross-coupling synchronization
approach is propitious to the leaderless formation controller
design. In addition, the synchronization control approach has
a simple control structure and convenient implementation
capability compared to existing formation control approach.
The cross-coupling synchronization error can be convenient
for defining switched function in the sliding mode controller
design [27]. However, the cross-coupling error of [27] is
composed of position tracking error and integral of synchro-
nization error, which cannot be applicable to design sliding
mode controller. This motivates that the cross-coupling
error is redefined to be applicable to the whole coordinated
controller design.

In this paper, a robust coordinated formation controller
based on backstepping sliding mode control is proposed for
multiple surface vessels. And a new switched function is
defined using a new cross-coupling error to achieve leaderless
coordination between these vessels. And the cross-coupling
error is defined using the velocity error and the synchroniza-
tion velocity error. This will be applicable to the sliding mode
controller design. Furthermore, with respect to the unknown
disturbances, the adaptive control law is proposed to improve
the robust coordinated formation control algorithm. The rest
of this paper is organized as follows. Section 2 introduces the
basic notations for the graph theory and establishes the vessel
model. Section 3 describes the proposed coordination control
algorithm in detail. Section 4 describes robust coordinated
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tracking controller. The simulation of the proposed coordina-
tion algorithm for five vessels is carried out, and the validity of
the proposed coordinated control algorithm is demonstrated
in Section 5. At last, we draw conclusions in Section 6.

2. Preliminaries

2.1. Notations. In this section, several basic concepts about
the directed connected graph are given. A directed graph G
consists of the pair (v,¢€). v is a set of vertices; € € ¥ isa
set of edges. (i, j) € e if information flows from vertex j to
vertex i. If any two distinct vertices of a directed graph can be
connected through a directed path, then the directed graph is
called strongly connected. The adjacent matrix of the directed
graph is denoted as A € R™”, which is defined as diagonal
entries 0 and oft-diagonal entries a; =1 it (1, j) € eand 0

otherwise. And the degree matrix D € R™” is defined with
off-diagonal entries 0 and diagonal entries d; = ) j#i ije
Then the Laplacian matrix is obtained as L = D — A € R™".
ThatisL = [I;] € R"",and[; = ¥, 4, 1;; = —a;.

In this paper, the communication topology between
these vessels is described by a strongly connected graph.
Each vertex in the graph represents a vessel in the group.
The edges represent information exchange links by available
communication.

Define the Kronecker product of two matrices A €
and B € RP a5

Rmxn

a;B---a,B

n
A®B=| : . - (1)
a,;B---a,,B
Theorem 1 (see [28]). Let x = 0 be an equilibrium point for
x = f(t,x), and let D c R" be a domain containing x = 0. Let
V:[0,00) x D — R be a continuously differentiable function
such that

W, (x) <V (tx) < W, (x),

oV v )
> + gf(t,x) < W5 (x)

forallt > 0 and for all x c D, where W;(x), W,(x), and
W;(x) are continuous positive definite functions on D. Then,
x = 0 is uniformly asymptotically stable. If D = R" and
W, (x) is radially unbounded, then x = 0 is globally uniformly
asymptotically stable.

Lemma 2 (Barbalats lemma [28]). Let ¢ R —- R
be a uniformly continuous function on [0, 00). Suppose that
lim, _, o, JZ d(r)dt exists and is finite. Then, ¢(t) — 0 as
t — oo.

2.2. Mathematical Vessel Model. The vessel model can be
divided into two parts: the kinematics and nonlinear dynam-
ics. Generally, only the motion in the horizontal plane is
considered for the surface vessel. The elements corresponding
to heave, roll, and pitch are neglected. The dynamic model for
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the ith surface vessel can be represented by the following 3
degrees of freedom (DOF) [29]:

i = R; () vio 3)
MyV; + C; (v;) Vi + D; (Vi) v; = 7, + 7455 (4)
where 7, = [n,e,y;]" denotes the north position, east

position, and orientation which are decomposed in the earth-
fixed reference frame, and v; = [u;,v;,7;]” denotes the linear
surge velocity, sway velocity and angular velocity, which are
decomposed in the body-fixed reference frame. R;(y;) is the
transformations matrix from the body-fixed reference frame
to the earth-fixed reference frame, the form of which is as
follows:

cos (y;) —sin(y;) 0
0]. ©
1

R, (v;) = [sin (w;) cos(v;)
0 0

Then we can know that the transformations matrix satisfies
the following properties as R; ' (y;) = RiT(I,I/l-), for all y;.
M, denotes the system inertia mass matrix including added
mass which is positive definite. C;(v;) and D;(v;) denote the
Corioliscentripetal matrix and damping matrix, respectively.
The detailed representation of the previous three-system

matrix can be found in [29]. 7; = [1,; T, Tm-]T is the vector
of forces and torques input from the thruster system. 7; is
the vector of external environment forces and torques input
which are generating by wind, wave and current.

In order to design the backstepping sliding mode con-
troller, we transform the vessel model as following. Equation
(3) can be transformed as

vi =R (¥) 7 (6)
By differentiating R;(y;), we have R;(y;) = R;(y;)S, where
0 -, 0
S=|r, 0 of=-5, ?)
0 0 0

where 1; is the angular velocity in the body-fixed reference
frame. Take the derivative of (6), we can obtain that:

Vi =R () i+ R (90) 7
=R () R (v) R (v) 7 + R (v3) e
Taking (6) and (8) into the vessel dynamic model (4) can yield
MiRi_l () i - MiRi_l (W) R (W) R ()
+C; (v;) Ri_l (v:) 7 + D; (v;) Ri_l (¥i) 7y = 7 + 4.
The above equation can be written as

M,; (n;) #i; + Cypi (13> 1) 7 + Dy (i 1) 715 = 73 + 7455 (10)

where

(8)

)

M,; (1) = MR} ;)
Cpi (o) = [C; (v) - MR () R, (v) | R ()5 (1)

D,; (n;,%;) = D; (v;) Ri_l (v)-

3. Coordinated Formation Controller Design

In this section, we will design the coordinated trajectory
tracking controller for multiple surface vessels based on back-
stepping sliding mode control method. And we assume that
all the vessels are disturbance-free. The detailed procedure of
controller design is as follows.

3.1. Formation Setup. This paper considers a fleet of n vessels
to perform the desired coordination formation task. And
each vessel in the formation is identified by the index set I =
[1,2,...,n]. As in [12], the desired formation is established
by defining the formation reference vector for each vessel,
which is denoted as 1; = [x;, ¥y;» 1//0i]T, where x;, yo;» Yo are
constant, respectively, and - < y,; < 7. Then the formation
reference point for each vessel is given by: x; = #; + R;(y; —
Wo)l;. If we assume the desired trajectory of the formation
point is denoted as 77;, where 1, = [n,(t), e, (t), v (1)]%,
ny(t), ey(t) are sufficiently smooth functions, and y,(t) =
arctan(é,(t)/n,(t)). That means that the vessel direction is
chosen as the tangential vector of the respective desired
trajectory. We can know that the coordinated formation is
achieved if all the formation reference points of the group of
vessels are synchronized; thatisx; =--- =x; = -+ =X, = 7,;.

3.2. Formation Controller Design. The proposed coordinated
formation controller for multiple surface vessels is designed
using the backstepping sliding mode control approach, and
a new switched function is defined to accomplish the sliding
mode controller.

Define the position tracking error of the formation refer-
ence point for each vessel as

2y =%~ 1y =1+ R (v, = wo:) L = 7y (12)

If we define the new variable f; as f; = R;(y; — y,)1;, take the
derivative of z,;, we can obtain that

iy = 1+ £ = g (13)
Define the following stabilizing function for each vessel as
a = Ay, (14)

where A; € R¥ is a diagonal positive definite matrix.
Define the velocity error as z,;; the form of which is

Zy; =2yt =2y + Az, (15)
Then we can obtain
Zy =1 + fi =g+ Ajzy;. (16)
With the form of vessel model, then we have
M,; (1;) 2o = M,,; (1;) (’71 +1; 7y + /lizli)
=7+ 74 = Cpi (1> 1) 1 = Dy (1:271:) 7

+M,; (1,) fz -M,,; (17,) fiq + M,; (;) Az
(17)



In light of (16), we can obtain that
Hi =g — fz +2y — Aizy;. (18)
Then (17) can be calculated as follows
M,; (;) 2y = 7, + 74 = (C, (> 1) + D,, (- 7;)) (ﬁd - fz)
= (Coi (11> 7:) + Dy (m:271:)) (22 = Aizy;)

-M,,; (1;) (ﬁd - f) + M, (11;) Aizy-

(19)
For representing conveniently, we define z, = [z, z, ---
252 = (2 2 0 g =l e )G =
L A A S S G AR AR T LA
)3 =g g e nal's

A =diag(A; A, -+ A,),
M, (11) = dlag (Mnl (rll) o My, (ﬂn)) >
(20)

Cn (’7’ I’]) = diag (Cnl (711’ 711) e Cnn (”n’ nn)) >
Dn (’7’ ’7) = diag (Dnl (’71’ ’11) Tt Dnn (ﬂn’ ’7n)) :

So the error dynamics of multiple surface vessels can be
written in terms of matrix and vector:

i, =1z, - Mz, (21)
2, =M, (1) [ +75 - M, () (iip - )

- (C,(1.7) + D, (1.7)) (7ip ~ f)

= (C,(m:7) + D, (1:7)) (2, - Azy)

+M, (1) Az, ] .

Define the synchronization velocity error vector for these
vessels as

e=(LeL)z, (23)

where L € R™" is the Laplacian matrix of the communication
topology graph for these vessels.

Define the cross-coupling error using the velocity error
and the synchronization velocity error; the form of which is

e=z+ye=12,+y(LoL)z, = (I, +y(LoL))z,
(24)

where y € R is a diagonal positive definite matrix.

The switched function is defined using the position
tracking error and the cross-coupling error. The detailed form
is as follows

s=kz, +e

25
“kay + (I, 47 (L)) 2, 2

R3n><3n

where k € is a diagonal positive definite matrix.
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If we assume these vessels are disturbance-free; that is
T, = 0, then the control input can be chosen as follows

T = Tog + Ty (26)

where 7, is the equivalent control input, and 7, is the switch
control part of the backstepping sliding mode control input.
The detailed expressions are as follows:

Teq = Mn (’7) (VID - f) - Mn (’1) Ail

+(C, (1.7) + D, (1:7)) (71p - f)
+(C, (1,7) + D, (n,7)) (25 — Az,) 27)
-M, (1) (I, +y (Lo L)) k(z, - Az,),

Tsw = _Mn(I3n + Y (L ® 13))711) (S + ﬁSign (S)) >

where P € R™ B ¢ R are a diagonal positive

definite matrix, respectively. And sign(-) is sign function. And
T

sign(s) = [sign(slT) sign(szT) e sign(s,Tl)] .

Remark 3. The control input vector for each vessel which is

disturbance-free can be written as

T; = Té + T;W. (28)

q
Define

Y=(L,+y(Lel)) " = {Yij c R3X3} € R
y=diag(y1 1, =" Yu)>
k = diag(k; k, -+ k,), (29)
P = diag(P, P, --- P,),
B=diag(B; B, - B.)-

The detailed expressions of the control input for each vessel
are as follows:

Téq =M, () (’7d - fz) -M,; (1;) Azy;
+(Cyi (135 1) + Do (135 1:)) (ﬁd - fz)
+(Ci (:7;) + Dy (1 71:)) (225 — Mizy;)

n (30)
=My (1) X [V (K () = A21)))]
=1
T = My (1) X, [ VP (s + By sign ()]
=1
where the switched function is defined as
8 = Ky 2,49, 5 (2~ 257) (31)
i=1
where A = {a;} € R"" is the adjacency matrix for the
communication topology graph. @; = 0 and a; = 1 if

information flow from vessel i to vessel j and 0 otherwise,
forall j#i.
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Theorem 4. Consider a group of n vessels to perform the coor-
dination formation task; the vessel model is described as (3)
and (4), and we assume that these vessels are disturbance-free.
With the distributed coordinated formation control law (26)
and (27), the following conditions are satisfied;

(i) all the matrices A, P, and k are diagonal positive defi-
nite;
(i) (ATT + K)PT — (1/4)L,, > 0, whereT = I, + p(L®L,);

(iil) the matrix vy is diagonal positive definite and small
enough.

Then the position tracking errot, the velocity error and their
synchronization error, approach zero asymptoticallyl; that is,
these vessels can realize the coordination formation asymptoti-
cally.

Proof. Define the first Lyapunov function as

1
V, = -2, (32)
2
Differentiating V; with respect to time, then we have
vV, = —le/\z1 + lezz. (33)
Define the second Lyapunov function as
1
V,=V, + EsTs. (34)
Take the time derivative of the above equation as
V,=V, +s'$
Yo Ty LT .
=Vi+s ki, +s (I, +y(LeL))z,
=2z, -7, Az, +5 k(z, - \z))
T -1
+s (L, +y(LoL)) M, (1) (35)

X [T -M, (’1) ip+M, (’1) f+ M, (’7) )til
- (C, (1) + D, (1.7)) (71p - )

—(C,i (1.77) + D, (1.7)) (22— A2,) |
With the control input (26) and (27), we can obtain that
V, = -z Az, +z,2, —s P (s+ Bsign(s))

T T T o o
=-2,Az, +2,2, —s Ps—s Pfsign(s) (36)

3n
T T T
=z /\zl t2)7, =5 Ps - Zprﬁr |57| >
r=1
where |s,| denotes the absolute value of the variable of s,..
If we define I' = I, + y(L ® I3), then we choose matrix Q
as

1
A+k'Pk  k'PI--1,,
Q= ToT 1 T 2 . (37)
I'p’k--1,, TI'PI
2

If we define z = [le, zZT]T, then we can obtain that

1
A+K'Pk KTPT - 5L [zl]

1
I’Pk - L r’pr L

= [(z1A+szTPk+z21" Pk - z2 3n>

Ty T T TT z
xszI‘——zI +zFPF)][1]
<1 5 173n 2 z, (38)

1
= le/\z1 + lekTsz1 - EZZZI
+2)T"Pkz, + 2 k' PI'z,
1
- Ezfzz + ZZI‘TPI‘Z2

= zl/lz1 z221 +5s'Ps.

Then (36) can be written as

3n
V,=-2'Qz- ) p,B, |5, <0. (39)
r=1

If we choose the matrix y as small enough, then T will be
positive definite. All the matrices A, P, and k are diagonal
positive definite, if they are chosen to satisfy (AT + k)PT —
(1/4)I;, > 0; then we can guarantee that the matrix Q is
positive definite. If we define W(t) = z'Qz + Zr L DBl
it is obvious that the bounded limit of W(¢) exists. From the
front definition, we can know that z,, z,, and s are bounded.
With (16), we can know that z, is bounded. In terms of (22),
(26), and (27), z, is bounded. Then z and z are bounded. Due
to the definition of s, s and § are bounded. Then we can get that
W(¢) is also bounded; then W () is uniformly continuous.
With Barbalats lemma, W(t) — 0ast — oco.Thenz, — 0,
z, —» 0,s = Oast — oo. With (23), we can gete — 0.
Then the synchronization error for each vessel is

n
= Zaij (ZZJ‘ - zZi) — 0. (40)
=

Because a;; is constant, then we can obtain that z,,(t) -
zzj(t) — 0.
Though the following calculation

2y (1) — 25 (t) = 2y; + A;zy; —
= (Xi_’/ld)"'/\i( i =)

- (Xj - ’7d) -\ (Xj - ’7d> (41)
= (x - x) + A (xi - xj)

=¢; + e

i~ Az

where ¢;; = x; — x;. From the above equation, we can
know that it is a linear exponential system with the input as
2,,(t) - zzj(t), and z,,(t) - zzj(t) — 0, and e is bounded;
then we can obtain that lim, _, . [le;;|| = 0; thatis x; —x; — 0.
According to z;;(t) — 0, thenx; —#,; — 0. Finally, we can

know thatx;, = --- = x; = --- = X, = #,. So the group
of vessels achieve the coordinated tracking while holding the
desired formation. O



4. Robust Formation Controller Design

In this section, we will design the robust coordinated con-
troller for multiple vessels in the presence of external distur-
bances. This section will be divided into two parts. The first
part is that the upper bounded of the disturbance is known
in advance. The second part is that the upper bounded is
unknown. For the second part, the adaptive control law is
designed to estimate the external disturbances. In this sec-
tion, for a vector x € R™!, the absolute value of the vector is
denoted as |x| = [|x;1,..., |x,[]".

If the external disturbance for each vessel is bounded and
the upper bounded satisfy |7;| < F;, where F, € R**! is a
positive constant vector, and for multiple vessels, the vector
form is |7,] < F. If we choose the control input as

T= Teq T Tow T Ten> (42)

where 7 and 7, are the same with the definition in the front
section and 7, is the control input to compensate for the
external disturbances, the detailed representation is

— - T
Top = —[Flsign (s1) -+ Fs,sign (S3n)] =-F. (43)

For each vessel, the control input to compensate the external
disturbance is as follows

7. =-F e R\ (44)

Theorem 5. Consider n vessels to perform the coordination
formation task, the vessel model is described as (3) and (4). with
the distributed coordinated formation control law (42), (27),
and (43), and the conditions in Theorem 4 are satisfied, then
the position tracking error, the velocity tracking error and their
synchronization error, are asymptotically stable; that is, these
vessels can realize the coordination formation asymptotically.

Proof. The proof procedure in this section is similar to
the front section. The main difference is that the external
disturbances are considered in this section.

Define the same Lyapunov function with the front section
as

1
V,=V, + EsTs. (45)
Taking the time derivative of the above equation as
V, =V, + sT

o Ty o T .
=Vi+s ki, +s (I;,+y(Lel))z,
=212, — 2 Az, + 5 k(z, - \z,)

T -1
ts (L, +y(Lel)) M, (7)

X [T+Tﬂl_Mn(rl)ﬁD"'Mn(ﬂ)f"'Mn(q)Ail
- (C, (n.7) + D, (n,7)) (1p - )

= (C, (1) + D, (1:77)) (2, = Azy) |
(46)
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with the control input (42), (27), and (43) yield:
V, = —2i Az, + 2,2, —s' P (s + Bsign (s))
+s' (I, +y (Lo L)) M, () (r; — F)

3n
< —le)Lzl + lez2 ~s'Ps— Zp“Br Is,|

r=1

18l (I, +y (Lo L) M, () (|7a] - F)

(47)

3n
<-z\z,+12.2, - s Ps— B s
r=1

From the above inequality, we can see that the same results
with the front section are achieved; then we can prove that
the position tracking error, velocity tracking error, and their
synchronization error are asymptotically stable according to
the proof procedure in the front section. O

If the external disturbances are unknown in advance, and
we assume that the external disturbances vary slowly; that
is 7; = 0, then we adopt the adaptive control to estimate
the disturbances. Then control law also includes three parts,
which is written as

T= Teq T Tow T Ten> (48)
where
Ten = _:Ed’ (49)

and 7, is the estimate value of the external disturbances. The
adaptive control law is chosen as follows

7= oM, (I, +y(L® L)) s, (50)
where o is a positive real number.

Theorem 6. Consider a group of n vessels to perform the
coordination formation task, the vessel model is described as (3)
and (4). With the coordinated formation control law (42), (27),
and (49), and the adaptive control law (50) and the conditions
in the Theorem 4 are satisfied, then the position tracking error,
the velocity tracking error, and their synchronization error
are asymptotically stable; that is these vessels can realize the
coordination formation asymptotically.

Proof. Define the new Lyapunov function as
1
Vy=V, + ﬁ;@,, (51)

where the definition of V, is same as the front one, and 7,

is defined as the estimated error, the form of which is 7; =

T; — T4, where T is the estimated value of the disturbances.
Take the time derivative of the previous equation as

: : o lore
V=V, + sTs+ —T;Td
o

T T Ty .
2,2, -2, Az, +s ki,

1 -
+s' (L, +y(Lel))z, - ;fj{?d
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T T T
=2,2, -2, Mz, + s k(z, - \z,)

+s" (I, +y (Lo L) M, ()
X [T+Td_Mn(rl)i/}d"'Mn(rl)f"'Mn(q)Ail
—(C, (1) + D, (1,7)) (74 — )

- (Cn (’1’ ’1) + Dn (’1’ ’7)) (ZZ - /\Zl)]

1~T"\
- —T,7
O_d d

=2l Az, +2 2, — s P (s + Bsign (s))

- 220 (14— oM, (1) (I, + y (Lo 1)) 's)

=2 Az, +2,2, — s P (s + Bsign(s))

3n
T T T
=-2;Az, +2;2, - Ps— ) p.B,|s,].
r=1
(52)

From the above equality, we can see that the same results
with the front section are achieved; then we can prove that
the position tracking error, velocity tracking error and their
synchronization error, are asymptotically stable according to
the proof procedure in the front section. O

5. Simulation Results

In this section, experimental simulations are carried out to
evaluate the effectiveness of the proposed coordinated forma-
tion control algorithm. Five marine vessels are considered to
perform the coordinated tracking task. Detailed parameters
of these vessels are presented in [12]. The proposed algorithm
has achieved the leaderless coordination based on the graph
theory. In this experiment, the topology graph of communi-
cation among these five vessels is chosen as Figure 1.

And the Laplacian matrix of the communication topology
graph is as follows

1 0 0 0 -1
-1 3 0

L=|0 -11 0 0]. (53)

The initial positions of the five vessels are r7; = [-80
800 —77/30]", 1, = [-30 800 —m/3]", 4, = [-100 780
-n/4]", n, = [20 830 —7/2]", and 5 = [-100 800
—m/4]7, respectively. In order to evaluate the performance
of the coordinated tracking, the desired formation pattern
of the coordinated formation controller is described by 1, =

[0 0 0]",1,=[0 50 0]",1, =[0 —50 0]%,1, = [0 100 0],
and I; = [0 —100 0]. The desired trajectory for all the
formation points is chosen as 17,(t) = [1; ey wd]T, and the
detailed forms are n; = t, e; = 800 — 800 sin(t/400), and
Y, = arctan(é;/ny).

FIGURE 1: The communication topology graph of these vessels.
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FIGURE 2: The formation trajectories in horizontal plane.

Although the proposed coordination algorithm is robust
to unknown external disturbance, the disturbance model in
the simulation can be chosen as a fixed term instead of the
unknown disturbance. We assume that the vessels encounter
the wind, wave, and current. And the wind is assumed to
be fixed direction and fixed velocity; then the disturbance of
wind is a constant; the wave and current is assumed to be the
sine wave with a fixed frequency at one time. So the external
disturbances can be chosen as

t t
7, =10% [0.05 sin (”—) +0.02, 0.03sin ("—)
100 100
T
0.01 sin <”—t> + 0.01] (N).
100

The control parameters of the coordinated formation
controller are chosen as A; = diag(0.05, 0.05, 0.2),
y; = diag(1, 1, 1), P; = diag(0.3, 0.3, 0.15), and 3; =
diag (1, 1, 0.5).

The simulation results are shown from Figure2 to
Figure 9. Figure 2 shows the movements for these vessels in
the plane. The heading change curve of each vessel is shown in
Figure 3. Figures 4, 5, and 6 show the surge velocity, the sway
velocity, and the angular velocity of each vessel during the
coordinated control process, respectively. Figures 7, 8, and 9
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FIGURE 4: The surge velocity curve of each vessel.

show the surge force, sway forces, and the heave torques
applied to the vessels, respectively.

We can see that these vessels realized the coordinated
tracking task from Figures 2 and 3. From Figures 4, 5, and
6, the velocities of these vessels achieve consensus as a
whole, and the velocities cannot achieve consensus when the
vessels move to the inflexion of the respective path curve.
The phenomenon of the surge velocity is obvious in the
experimental simulations due to the vessels move along the
tangent directions of the desired trajectory. This phenomenon
appears as a result of vessel speed regulated to maintain
the desired formation pattern at the inflexion of the respective
path curve. From Figures 7, 8, and 9, we know that the forces
and torques for the group of n vessels approach consensus, in
a way. This is the result of that these vessels are uniform in
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these experimental simulations. With the analysis of the sim-
ulation results, we can conclude that these vessels can accom-
plish coordinated trajectory tracking task while keeping the
desired formation. It means that the proposed coordination
control algorithm is effective.

6. Conclusion

This paper has proposed a new backstepping sliding mode
coordinated formation control algorithm for multiple surface
vessels in the presence of external environmental distur-
bances. The proposed coordinated formation controller for
these vessels is designed by defining a new switched function.
And a new cross-coupling error is defined using the velocity
error and velocity synchronization error to be applicable
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%107 for the backstepping sliding mode controller. In addition,

' ' ' ' ' ' ' the adaptive control law is also designed to compensate for
10 2><106 i the external disturbances and then achieve the robustness.
Finally, the effectiveness of the proposed coordination control
0 algorithm is demonstrated by experimental simulations.
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