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The delay-dependent exponential 𝐿
2
-𝐿
∞
performance analysis and filter design are investigated for stochastic systems with mixed

delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-
dependent sufficient condition for the existence of the 𝐿

2
-𝐿
∞
filter is established, by choosing an appropriate Lyapunov-Krasovskii

functional and constructing a new integral inequality.The full-order filter design approaches are obtained in terms of linear matrix
inequalities (LMIs). By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure
that the filter error system is exponentially stable with a prescribed 𝐿

2
-𝐿
∞

performance 𝛾. Numerical examples are provided to
illustrate the effectiveness and significant improvement of the proposed method.

1. Introduction

Time delays are quite often encountered in various practical
engineering systems, and they are regarded as one of themain
sources causing instability and degrading performance of
control systems [1–3]. Over the past decades, numerous re-
sults and various approaches on delay systems have been re-
ported in the literatures. Many researchers have focused on
the stability analysis, stabilization, and filtering for time-delay
systems; see [4–9] and the references therein. Time delays are
usually classified into discrete delays and distributed delays.
In the existing literatures, discrete time-delay system [10–12],
distributed time-delay system [13, 14], and mixed (including
both discrete and distributed time delays) system [15–17] are
considered.

Since certain unavoidable stochastic perturbations are
widely existing in many engineering systems, stochastic sys-
tems have gained considerable research attention over the
past few years [18–20]. Stochastic dynamic modeling has
come to play an important role in many fields of science and

engineering. In the past years, many researchers have focused
on the problems of stability and stabilization of stochastic
time-delay systems. For instance, robust stabilization for a
class of large-scale stochastic systems was investigated in [21],
delay-dependent stability results for stochastic systems were
presented in [22–26], and𝐻

∞
state feedback control and𝐻

∞

dynamic output feedback control for uncertain stochastic
time-delay systems were investigated in [27, 28], respectively.

In the field of stochastic dynamic systemwith time delays,
the filtering problem, which is to estimate the unavailable
state of variables of a given control system, is also an import-
ant issue. Kalman filtering scheme is a well-known effective
way to deal with the filtering problem. However, it has some
limitations in practical applications due to the fact that it assu-
mes that the system and its disturbances are exactly known,
that is, stationary Gaussian noised with known statistics.
Under this view, recently,𝐻

∞
filtering, mixed𝐻

2
/𝐻
∞

filter-
ing and 𝐿

2
-𝐿
∞

filtering for stochastic time-delay systems
have been widely studied [8, 9, 29–38]. In 𝐻

2
/𝐻
∞

filtering,
and 𝐿

2
-𝐿
∞

filtering problems, the external disturbances are



2 Journal of Applied Mathematics

assumed to be bounded. In 𝐻
2
/𝐻
∞

filtering problem, it re-
quires that the filtering error systems satisfy not only a pre-
scribed𝐻

∞
disturbance attenuation level but also the𝐻

2
per-

formance (minimum of the 𝐻
2
norm of transfer function of

the filter error systems), while in 𝐿
2
-𝐿
∞

filtering problem, it
requires that the filtering error systems satisfy a prescribed
𝐿
2
-𝐿
∞
disturbance attenuation level.𝐻

∞
filtering andmixed

𝐻
2
/𝐻
∞
filtering problems of nonlinear stochastic systems are

investigated in [30, 31]. In [32], a delay-independent robust
𝐿
2
-𝐿
∞

filtering design approach for uncertain stochastic
time-delay system is investigated. It is well known that the
delay-independent results are generally more conservative
than the delay-dependent ones. Authors in [33–35] developed
delay-dependent filtering for stochastic time-delay systems.
Authors in [36] proposed a delay-dependent 𝐿

2
-𝐿
∞

filter
design approach for stochastic time-delay systems, based on
a delay partitioning technique presented in [37]. As the results
showed, delay-partitioning can reduce conservatism to some
extent. Authors in [38] investigated the problem of robust
𝐿
2
-𝐿
∞
filtering for stochastic systems with both discrete and

distributed delays. Although the filtering problems for
stochastic systems with time delays have been well investi-
gated in the aforementioned literatures, most of them are
dealing with linear stochastic time-delay systems. To the
authors’ knowledge, the 𝐿

2
-𝐿
∞
filtering problems of stochas-

tic time-delay systems with nonlinear perturbation are still
insufficient. This motivates the authors to deal with the
𝐿
2
-𝐿
∞

filtering problem of a class of nonlinear stochastic
time-delay systems.

This paper focuses on the problems of delay-dependent
𝐿
2
-𝐿
∞
filtering for stochastic systems with mixed delays and

nonlinear perturbations. By Lyapunov-Krasovskii approach
based on the delay partitioning and integral partitioning tech-
nique, we first develop a delay-dependent sufficient condition
for 𝐿
2
-𝐿
∞

performance analysis. And then, an improved
delay-dependent sufficient condition is obtained for the exist-
ence of desired filter in the form of linear matrix inequalities
(LMIs). The 𝐿

2
-𝐿
∞
performance analysis and filter design of

linear stochastic system with mixed delays are also investi-
gated. Finally, numerical examples are provided to show that
the proposed method is effective and less conservative than
some existing literatures.

Notations. Throughout this paper, 𝑋 > 0 (𝑋 < 0)means that
the matrix 𝑋 is positive definite (negative definite). R𝑛 de-
notes the 𝑛-dimensional Euclidean space; R𝑚×𝑛 is the set of
all 𝑚 × 𝑛 real matrices; L

2
[0,∞) is the space of square-inte-

grable vector functions over [0,∞). The superscript “𝑇” re-
presents the transpose; “∗” denotes the symmetric terms in a
matrix; diag( ) denotes a block-diagonal matrix; 𝜆max( ) and
𝜆min( ) denote the maximum eigenvalue and minimum eig-
envalue, respectively. sym(𝑋) = 𝑋 + 𝑋

𝑇; | ⋅ | denotes the
Euclidean vector norm; ‖ ⋅ ‖

2
stands for the usual L

2
[0,∞)

norm. (Ω, F,P) is a probability spacewithΩ the sample space,
F the 𝜎-algebra of subsets of Ω, and P the probability mea-
sure on F. E{⋅} denotes the expectation operator with respect
to some probability measure P. 0 and I represent zero matrix
and identity matrix with appropriate dimensions, respec-
tively, unless we say otherwise.

2. Problem Formulation

Consider the following stochastic systems with mixed delays
and nonlinear perturbations:

𝑑𝑥 (𝑡)

= [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ)

+𝐴
2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐴
3
𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡) + 𝐴VV (𝑡)] 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡) 𝑑𝜔 (𝑡) ,

𝑑𝑦 (𝑡)=[𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − ℎ) + 𝐶

2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐶VV (𝑡)] 𝑑𝑡,

𝑧 (𝑡) = 𝐿𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑦(𝑡) ∈ R𝑚 is the measured out-
put; 𝑧(𝑡) ∈ R𝑝 is the signal to be estimated; V(𝑡) ∈ R𝑞 is
the disturbance input which belongs to L

2
[0,∞), which is the

space of square-integrable vector functions; 𝜔(𝑡) is a one-
dimensional Brownian motion defined on a complete proba-
bility space (Ω, F,P) satisfying E{𝑑𝜔(𝑡)} = 0 and E{𝑑𝜔2(𝑡)} =
𝑑𝑡;𝜑(𝑡) is an initial function that is continuous on [−𝜏, 0]with
𝜏 = max{ℎ, 𝑑}. ℎ and 𝑑 are discrete and distributed constant
delays, respectively. 𝑓(⋅, ⋅, ⋅):R𝑛 ×R𝑛 ×R → R𝑛 is a nonlinear
function, which satisfies

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑡)
󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝐹1𝑥

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐹2𝑦

󵄨󵄨󵄨󵄨

2

, 𝑓 (0, 0, 0) = 0, (2)

where 𝐹
1
∈ R𝑛×𝑛 and 𝐹

2
∈ R𝑛×𝑛 are known constant matrices;

𝑔(⋅, ⋅, ⋅): R𝑛 × R𝑛 × R → R𝑛 is a nonlinear perturbance input
function, satisfying

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑦, 𝑡)
󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨𝐺1𝑥

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐺2𝑦

󵄨󵄨󵄨󵄨

2

, 𝑔 (0, 0, 0) = 0, (3)

where𝐺
1
∈ R𝑛×𝑛 and𝐺

2
∈ R𝑛×𝑛 are known constantmatrices.

For system (1), we are interested in constructing the fol-
lowing full-order linear filter:

𝑑𝑥
𝑓
(𝑡) = 𝐴

𝑓
𝑥
𝑓
(𝑡) 𝑑𝑡 + 𝐵

𝑓
𝑑𝑦 (𝑡) ,

𝑧
𝑓
(𝑡) = 𝐶

𝑓
𝑥
𝑓
(𝑡) ,

(4)

where 𝑥
𝑓
(𝑡) ∈ R𝑛 is the filter state; 𝐴

𝑓
, 𝐵
𝑓
, and 𝐶

𝑓
are filter

matrices to be determined.
Define

𝜉
𝑇
(𝑡) = [𝑥

𝑇
(𝑡) , 𝑥

𝑇

𝑓
(𝑡)]
𝑇

, 𝑒 (𝑡) = 𝑧 (𝑡) − 𝑧
𝑓
(𝑡) . (5)
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Then, the filtering error system can be written as

𝑑𝜉 (𝑡) = [𝐴𝜉 (𝑡) + 𝐴
1
𝐻𝜉 (𝑡 − ℎ) + 𝐴

2
𝐻∫

𝑡

𝑡−𝑑

𝜉 (𝑠) 𝑑𝑠

+𝐴
3
𝑓 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) + 𝐴VV (𝑡) ] 𝑑𝑡

+ 𝑔 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) 𝑑𝜔 (𝑡)

𝑒 (𝑡) = 𝐿𝜉 (𝑡) ,

(6)

where

𝐴 = [
𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐴
1
= [

𝐴
1

𝐵
𝑓
𝐶
1

] ,

𝐴
2
= [

𝐴
2

𝐵
𝑓
𝐶
2

] , 𝐴
3
= [

𝐴
3
0

0 0
] ,

𝐴V = [
𝐴V
𝐵
𝑓
𝐶V
] , 𝐻 = [𝐼𝑛 0

𝑛] ,

𝑓 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) = [
𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡)

0
] ,

𝑔 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) = [
𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ) , 𝑡)

0
] ,

𝐿 = [𝐿 −𝐶
𝑓] .

(7)

The objective of this paper is to design full-order 𝐿
2
-𝐿
∞

filter (4) for the stochastic time-delay system (1) such that the
filtering error system (6) satisfies the following two require-
ments:

(i) the filtering error system (6) with V(𝑡) = 0 is expo-
nentially stable [39];

(ii) under the zero initial condition, the filtering error sys-
tem (6) is stochastically asymptotically stable and
achieves a prescribed 𝐿

2
-𝐿
∞

attenuation level 𝛾. The
filtering error 𝑒(𝑡) satisfies

‖𝑒 (𝑡)‖𝐸
∞

< 𝛾‖V (𝑡)‖2, (8)

with ‖𝑒(𝑡)‖
𝐸
∞

= sup
𝑡
√E{|𝑒(𝑡)|2}, ‖V(𝑡)‖

2
= √∫

∞

0
V𝑇(𝑡)V(𝑡)𝑑𝑡

for any nonzero V(𝑡) ∈ L
2
[0,∞].

Before presenting the main results of this paper, we intro-
duce the following lemmas, which will be essential to our
derivation.

Lemma 1 (see [40]). For a given symmetrical matrix 𝑆 =

(
𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

), where 𝑆
11
= 𝑆
𝑇

11
, and 𝑆

22
= 𝑆
𝑇

22
, the linear matrix ine-

quality 𝑆 < 0 is equivalent to

𝑆
11
< 0, 𝑆

22
− 𝑆
12
𝑆
−1

11
𝑆
𝑇

12
< 0,

or

𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

(9)

Lemma 2 (see [1]). For any positive symmetric matrix 𝑊 ∈

R𝑛×𝑛, scalars 𝛿
1
and 𝛿

2
satisfying 𝛿

1
< 𝛿
2
, a vector function

𝑥 : [𝛿
1
, 𝛿
2
] → R𝑛, one has

∫

𝛿
2

𝛿
1

𝑥
𝑇
(𝑠)𝑊𝑥 (𝑠) 𝑑𝑠

≥
1

(𝛿
2
− 𝛿
1
)
(∫

𝛿
2

𝛿
1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

𝛿
2

𝛿
1

𝑥 (𝑠) 𝑑𝑠) .

(10)

Lemma 3 (see [14]). For any positive symmetric matrix 𝑊 ∈

R𝑛×𝑛, scalars 𝑎 and 𝑏 satisfying 𝑎 < 𝑏 ≤ 0, a vector function
𝑥 : [𝑎, 𝑏] → R𝑛, one has

∫

𝑏

𝑎

∫

𝑡

𝑡+𝜆

𝑥
𝑇
(𝑠)𝑊𝑥 (𝑠) 𝑑𝑠 𝑑𝜆

≥
2

𝑎
2
− 𝑏
2
(∫

𝑏

𝑎

∫

𝑡

𝑡+𝜆

𝑥 (𝑠) 𝑑𝑠 𝑑𝜆)

𝑇

𝑊(∫

𝑏

𝑎

∫

𝑡

𝑡+𝜆

𝑥 (𝑠) 𝑑𝑠 𝑑𝜆) .

(11)

3. Filtering Performance Analysis

In this section, a new delay-dependent condition of the
𝐿
2
-𝐿
∞

filtering performance analysis for system (1) will be
presented. A Lyapunov-Krasovskii functional is constructed;
based on the idea of delay partitioning and integral partition-
ing, the conservatism will be reduced. For the convenience of
expression, assume that the filter matrices (𝐴

𝑓
, 𝐵
𝑓
, and 𝐶

𝑓
)

are known.

Theorem 4. Consider the stochastic time-delay system (1). For
given scalars 𝛾 > 0, ℎ > 0, 𝑑 > 0, 𝜌 > 0, and 𝜀 > 0 and integers
𝑟
1
≥ 1 and 𝑟

2
≥ 1, there exists a linear filter (4) such that the

filtering error system (6) is stochastically asymptotically stable
with a guaranteed 𝐿

2
-𝐿
∞

performance 𝛾, if there exist sym-
metrical positive definite matrices 𝑃 ∈ R2n×2n, 𝑄

𝑖
∈ Rn×n,

𝑅
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟

1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrix𝑀 ∈ R𝑛×𝑛 satisfying

Φ =

[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

𝑃𝐴
3
𝑃𝐴V 𝐴

𝑇

𝐻
𝑇
𝑀

∗ Φ
22

0 0 0 Φ
26

∗ ∗ Φ
33

0 0 Φ
36

∗ ∗ ∗ −𝜀𝐼 0 𝐴
𝑇

3
𝐻
𝑇
𝑀

∗ ∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝐻
𝑇
𝑀

∗ ∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]
]
]

]

< 0, (12)

𝑃 ≤ 𝜌𝐼, (13)

Γ = [
𝑃 𝐿
𝑇

∗ 𝛾
2
𝐼
] > 0, (14)
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where

Φ
11
= 𝑃𝐴 + 𝐴

𝑇

𝑃 + 𝐻
𝑇
𝑄
1
𝐻 −𝐻

𝑇
𝑅
1
𝐻

−

𝑟
2

∑

𝑗=1

𝐻
𝑇
(

2

2𝑗 − 1
𝑍
𝑗
)𝐻

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

𝐻
𝑇
𝑊
𝑗
𝐻 + 𝜌𝐻

𝑇
𝐺
𝑇

1
𝐺
1
𝐻 + 𝜀𝐻

𝑇
𝐹
𝑇

1
𝐹
1
𝐻,

Φ
12
= 𝐻
𝑇
𝑅
1
𝐾 + 𝑃𝐴

1
𝐾
𝑟
1

,

Φ
13
= 𝑃𝐴
2
𝐾
𝑟
2

+ 𝐻
𝑇
Ζ,

𝑍 =
2𝑚

𝑑
[𝑍1

1

3
𝑍
2
⋅ ⋅ ⋅

1

2𝑟
2
− 1

𝑍
𝑟
2

] ,

Φ
22
=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
2
− 𝑄
1

−𝑅
2
− 𝑅
1

𝑅
2

⋅ ⋅ ⋅ 0 0

∗
𝑄
3
− 𝑄
2

−𝑅
3
− 𝑅
2

⋅ ⋅ ⋅ 0 0

...
... d

...
...

∗ ∗ ⋅ ⋅ ⋅
𝑄
𝑟
1

− 𝑄
𝑟
1
−1

−𝑅
𝑟
1

− 𝑅
𝑟
1
−1

𝑅
𝑟
1

∗ ∗ ⋅ ⋅ ⋅ ∗ Φ
22

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
22
= −𝑄
𝑟
1

− 𝑅
𝑟
1

+ 𝜌𝐺
𝑇

2
𝐺
2
+ 𝜀𝐹
𝑇

2
𝐹
2
,

Φ
26
= 𝐾
𝑇

𝑟
1

𝐴
𝑇

1
𝐻
𝑇
𝑀,

Φ
33
= diag(−𝑊

1
−
2𝑚
2

𝑑
2
𝑍
1
, −𝑊
2
−
2𝑚
2

3𝑑
2
𝑍
2
, . . . , −𝑊

𝑟
2

−
2𝑚
2

(2𝑟
2
− 1) 𝑑

2
𝑍
𝑟
2

) ,

Φ
36
= 𝐾
𝑇

𝑟
2

𝐴
𝑇

2
𝐻
𝑇
𝑀,

Φ
66
= (

ℎ

𝑟
1

)

2 𝑟1

∑

𝑖=1

𝑅
𝑖
+ (

𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

2𝑗 − 1

2
𝑍
𝑗
−𝑀 −𝑀

𝑇
,

𝐾 = [𝐼𝑛 0
𝑛×(𝑟
1
−1)𝑛] ,

𝐾
𝑟
1

= [0𝑛×(𝑟
1
−1)𝑛

𝐼
𝑛] ,

𝐾
𝑟
2

= [𝐼 𝐼 ⋅ ⋅ ⋅ 𝐼]
𝑛×𝑟
2
𝑛
.

(15)
Proof. First, show the asymptotic stability of system (6) with
V(𝑡) = 0. For simplicity of notations, rewrite the filtering error
system (6) as

𝑑𝜉 (𝑡) = 𝑢 (𝑡) 𝑑𝑡 + 𝜋 (𝑡) 𝑑𝜔 (𝑡) , (16)
where

𝑢 (𝑡) := 𝐴𝜉 (𝑡) + 𝐴
1
𝐻𝜉 (𝑡 − ℎ) + 𝐴

2
𝐻∫

𝑡

𝑡−𝑑

𝜉 (𝑠) 𝑑𝑠

+ 𝐴
3
𝑓 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) + 𝐴VV (𝑡) ,

𝜋 (𝑡) := 𝑔 (𝜉 (𝑡) , 𝜉 (𝑡 − ℎ) , 𝑡) .

(17)

Next, denote 𝜂(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), and choose the following
Lyapunov-Krasovskii functional:

𝑉 (𝜉
𝑡
, 𝑡)

= 𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) +

𝑟
1

∑

𝑖=1

∫

𝑡−((𝑖−1)/𝑟
1
)ℎ

𝑡−(𝑖/𝑟
1
)ℎ

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑄
𝑖
𝐻𝜉 (𝑠) 𝑑𝑠

+

𝑟
1

∑

𝑖=1

ℎ

𝑟
1

∫

−((𝑖−1)/𝑟
1
)ℎ

−(𝑖/𝑟
1
)ℎ

∫

𝑡

𝑡+𝜃

𝜂
𝑇
(𝑠)𝐻
𝑇
𝑅
𝑖
𝐻𝜂 (𝑠) 𝑑𝑠 𝑑𝜃

+

𝑟
2

∑

𝑗=1

𝑑

𝑟
2

∫

−((𝑗−1)/𝑟
2
)𝑑

−(𝑗/𝑟
2
)𝑑

∫

𝑡

𝑡+𝜃

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑊
𝑗
𝐻𝜉 (𝑠) 𝑑𝑠 𝑑𝜃

+

𝑟
2

∑

𝑗=1

∫

−((𝑗−1)/𝑟
2
)𝑑

−(𝑗/𝑟
2
)𝑑

∫

0

𝜃

∫

𝑡

𝑡+𝛽

𝜂
𝑇
(𝑠)𝐻
𝑇
𝑍
𝑗
𝐻𝜂 (𝑠) 𝑑𝑠𝑑𝛽 𝑑𝜃.

(18)

Then, by Itô differential formula, the stochastic differential
along the trajectories of system (6) is

𝑑𝑉 (𝜉
𝑡
, 𝑡) = L𝑉 (𝜉

𝑡
) 𝑑𝑡 + 2𝜉 (𝑡) 𝑃𝜋 (𝑡) 𝑑𝜔 (𝑡) , (19)

where

L𝑉 (𝜉
𝑡
, 𝑡) = 2𝜉

𝑇
(𝑡) 𝑃𝑢 (𝑡) + trace (𝜋𝑇 (𝑡) 𝑃𝜋 (𝑡))

+

𝑟
1

∑

𝑖=1

𝜉
𝑇
(𝑡 −

𝑖 − 1

𝑟
1

ℎ)𝐻
𝑇
𝑄
𝑖
𝐻𝜉(𝑡 −

𝑖 − 1

𝑟
1

ℎ)

−

𝑟
1

∑

𝑖=1

𝜉
𝑇
(𝑡 −

𝑖

𝑟
1

ℎ)𝐻
𝑇
𝑄
𝑖
𝐻𝜉(𝑡 −

𝑖

𝑟
1

ℎ)

+ (
ℎ

𝑟
1

)

2 𝑟1

∑

𝑖=1

𝜂
𝑇
(𝑡)𝐻
𝑇
𝑅
𝑖
𝐻𝜂 (𝑡)

−

𝑟
1

∑

𝑖=1

ℎ

𝑟
1

∫

𝑡−((𝑖−1)/𝑟
1
)ℎ

𝑡−(𝑖/𝑟
1
)ℎ

𝜂
𝑇
(𝑠)𝐻
𝑇
𝑅
𝑖
𝐻𝜂 (𝑠) 𝑑𝑠

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

𝜉
𝑇
(𝑡)𝐻
𝑇
𝑊
𝑖
𝐻𝜉 (𝑡)

−

𝑟
2

∑

𝑗=1

𝑑

𝑟
2

∫

𝑡−((𝑗−1)/𝑟
2
)𝑑

𝑡−(𝑗/𝑟
2
)𝑑

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑊
𝑗
𝐻𝜉 (𝑠) 𝑑𝑠

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

2𝑗 − 1

2
𝜂
𝑇
(𝑡)𝐻
𝑇
𝑍
𝑗
𝐻𝜂 (𝑡)

−

𝑟
2

∑

𝑗=1

∫

−((𝑗−1)/𝑟
2
)𝑑

−(𝑗/𝑟
2
)𝑑

∫

𝑡

𝑡+𝜃

𝜂
𝑇
(𝑡)𝐻
𝑇
𝑍
𝑗
𝐻𝜂 (𝑡) 𝑑𝑠 𝑑𝜃.

(20)
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By Lemma 2, we have

−

𝑟
1

∑

𝑖=1

ℎ

𝑟
1

∫

𝑡−((𝑖−1)/𝑟
1
)ℎ

𝑡−(𝑖/𝑟
1
)ℎ

𝜂
𝑇
(𝑠)𝐻
𝑇
𝑅
𝑖
𝐻𝜂 (𝑠) 𝑑𝑠

≤ −

𝑟
1

∑

𝑖=1

(∫

𝑡−((𝑖−1)/𝑟
1
)ℎ

𝑡−(𝑖/𝑟
1
)ℎ

𝜂 (𝑠) 𝑑𝑠)

𝑇

× 𝐻
𝑇
𝑅
𝑖
𝐻(∫

𝑡−((𝑖−1)/𝑟
1
)ℎ

𝑡−(𝑖/𝑟
1
)ℎ

𝜂 (𝑠) 𝑑𝑠)

= −

𝑟
1

∑

𝑖=1

(𝜉(𝑡 −
𝑖 − 1

𝑟
1

ℎ) − 𝜉(𝑡 −
𝑖

𝑟
1

ℎ))

𝑇

× 𝐻
𝑇
𝑅
𝑖
𝐻(𝜉(𝑡 −

𝑖 − 1

𝑟
1

ℎ) − 𝜉(𝑡 −
𝑖

𝑟
1

ℎ)) ,

(21)

−

𝑟
2

∑

𝑗=1

𝑑

𝑟
2

∫

𝑡−((𝑗−1)/𝑟
2
)𝑑

𝑡−(𝑗/𝑟
2
)𝑑

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑊
𝑗
𝐻𝜉 (𝑠) 𝑑𝑠

≤ −

𝑟
2

∑

𝑗=1

(∫

𝑡−((𝑗−1)/𝑟
2
)𝑑

𝑡−(𝑗/𝑟
2
)𝑑

𝜉 (𝑠) 𝑑𝑠)

𝑇

× 𝐻
𝑇
𝑊
𝑗
𝐻(∫

𝑡−((𝑗−1)/𝑟
2
)𝑑

𝑡−(𝑗/𝑟
2
)𝑑

𝜉 (𝑠) 𝑑𝑠) .

(22)

By Lemma 3, we have

−

𝑟
2

∑

𝑗=1

∫

−((𝑗−1)/𝑟
2
)𝑑

−(𝑗/𝑟
2
)𝑑

∫

𝑡

𝑡+𝜃

𝜂
𝑇
(𝑡)𝐻
𝑇
𝑍
𝑗
𝐻𝜂 (𝑡) 𝑑𝑠 𝑑𝜃

≤ −

𝑟
2

∑

𝑗=1

2

2𝑗 − 1
(
𝑟
2

𝑑
)

2

(∫

−((𝑗−1)/𝑟
2
)𝑑

−(𝑗/𝑟
2
)𝑑

∫

𝑡

𝑡+𝜃

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃)

𝑇

× 𝐻
𝑇
𝑍
𝑗
𝐻(∫

−((𝑗−1)/𝑟
2
)𝑑

−(𝑗/𝑟
2
)𝑑

∫

𝑡

𝑡+𝜃

𝜂 (𝑠) 𝑑𝑠 𝑑𝜃)

= −

𝑟
2

∑

𝑗=1

2

2𝑗 − 1
(
𝑟
2

𝑑
)

2

(
𝑑

𝑟
2

𝜉 (𝑡) − ∫

𝑡−((𝑗−1)/𝑟
2
)𝑑

𝑡−(𝑗/𝑟
2
)𝑑

𝜉 (𝑠) 𝑑𝑠)

𝑇

× 𝐻
𝑇
𝑍
𝑗
𝐻(

𝑑

𝑟
2

𝜉 (𝑡) − ∫

𝑡−((𝑗−1)/𝑟
2
)𝑑

𝑡−(𝑗/𝑟
2
)𝑑

𝜉 (𝑠) 𝑑𝑠) .

(23)

From (16), for any appropriately dimensioned matrix 𝑀, we
have

2𝜂
𝑇
(𝑡)𝐻
𝑇
𝑀
𝑇
𝐻[𝑢 (𝑡) 𝑑𝑡 + 𝜋 (𝑡) 𝑑𝜔 (𝑡) − 𝜂 (𝑡) 𝑑𝑡] = 0.

(24)

On the other hand, (2) implies that there exists 𝜀 > 0 such
that

𝜉
𝑇
(𝑡) 𝜀𝐻

𝑇
𝐹
𝑇

1
𝐹
1
𝐻𝜉 (𝑡)

+ 𝜉
𝑇
(𝑡 − ℎ) 𝜀𝐻

𝑇
𝐹
𝑇

2
𝐹
2
𝐻𝜉 (𝑡 − ℎ) − 𝜀𝑓

𝑇

𝑓 ≥ 0,

(25)

where we take 𝑓 for 𝑓(𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑡), for simplicity of
notation.

Notice the fact of (3), and from (13), we have

trace (𝜋𝑇 (𝑡) 𝑃𝜋 (𝑡))

≤ 𝜉
𝑇
(𝑡) 𝜌𝐻

𝑇
𝐺
𝑇

1
𝐺
1
𝐻𝜉 (𝑡) + 𝜉

𝑇
(𝑡 − ℎ) 𝜌𝐻

𝑇
𝐺
𝑇

2
𝐺
2
𝐻𝜉 (𝑡 − ℎ) .

(26)

Combine (20)–(26); then

L𝑉 (𝑥
𝑡
, 𝑡) ≤ 𝜁

𝑇
(𝑡) Φ𝜁 (𝑡) + 2𝜂

𝑇
(𝑡)𝐻
𝑇
𝑀
𝑇
𝐻𝜋 (𝑡) 𝑑𝜔 (𝑡) ,

(27)

where

𝜁
𝑇
(𝑡) = [𝜉

𝑇

𝑝1
(𝑡) 𝜉
𝑇

𝑝2
(𝑡) 𝑓 (𝑡) 𝜂

𝑇
(𝑡)𝐻
𝑇
] ,

𝜉
𝑇

𝑝1
= [𝜉
𝑇
(𝑡) 𝜉
𝑇
(𝑡 −

1

𝑟
1

ℎ)𝐻
𝑇

𝜉
𝑇
(𝑡 −

2

𝑟
1

ℎ)𝐻
𝑇

⋅ ⋅ ⋅ 𝜉
𝑇
(𝑡 − ℎ)𝐻

𝑇
] ,

𝜉
𝑇

𝑝2
(𝑡) = [∫

𝑡

𝑡−(1/𝑟
2
)𝑑

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑑𝑠 ∫

𝑡−(1/𝑟
2
)𝑑

𝑡−(2/𝑟
2
)𝑑

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑑𝑠 ⋅ ⋅ ⋅ ∫

𝑡−((𝑟
2
−1)/𝑟
2
)𝑑

𝑡−𝑑

𝜉
𝑇
(𝑠)𝐻
𝑇
𝑑𝑠] ,

Φ =

[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

𝑃𝐴
3
𝐴
𝑇

𝐻
𝑇
𝑀

∗ Φ
22

0 0 Φ
26

∗ ∗ Φ
33

0 Φ
36

∗ ∗ ∗ −𝜀𝐼 𝐴
𝑇

3
𝐻
𝑇
𝑀

∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]

]

.

(28)

Thus,

E {L𝑉 (𝜉
𝑡
, 𝑡)} ≤ E {𝜁𝑇 (𝑡) Φ𝜁 (𝑡)} . (29)

By Schur complement lemma, it is easy to show thatΦ < 0

impliesΦ < 0. Combined with (29), these imply that, for any
𝜁(𝑡) ̸= 0, we have E{L𝑉(𝜉

𝑡
, 𝑡)} < 0.
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By Dynkin’s formula, there exists 𝛽 > 0, such that

𝑒
𝛽𝑡E𝑉 (𝜉

𝑡
, 𝑡) ≤ E𝑉 (𝜉

0
, 0) . (30)

Recalling the Lyapunov-Krasovskii functional in (18), notice
the fact that there always exists 𝜅 > 0 satisfying

󵄨󵄨󵄨󵄨
𝜂 (𝑡)

󵄨󵄨󵄨󵄨

2

≤ 𝜅
󵄨󵄨󵄨󵄨
𝜉 (𝑡)

󵄨󵄨󵄨󵄨

2 (31)

for any −𝜏 ≤ 𝑡 ≤ 0 such that

E𝑉 (𝜉
0
, 0) ≤

5

∑

𝑖=1

𝛼
𝑖
sup
−𝜏≤𝑠≤0

E󵄨󵄨󵄨󵄨𝜉 (𝑠)
󵄨󵄨󵄨󵄨

2

, (32)

where 𝛼
1

= 𝜆max(𝑃), 𝛼
2

= ℎmax
𝑖
{‖𝑄
𝑖
‖}, 𝛼
3

=

(𝜅ℎ
3
/2𝑟
1
)max
𝑖
{‖𝑅
𝑖
‖}, 𝛼
4
= (𝑑
3
/2𝑟
2
)max
𝑗
{‖𝑊
𝑗
‖}, and 𝛼

5
=

(𝜅𝑑
3
/6)max

𝑗
{‖𝑍
𝑗
‖}.

On the other hand, from (18)

E𝑉 (𝜉
𝑡
, 𝑡) ≥ 𝜆min (𝑃)E

󵄨󵄨󵄨󵄨𝜉 (𝑡)
󵄨󵄨󵄨󵄨

2

. (33)

From (32) and (33), it can be easily obtained that

E󵄨󵄨󵄨󵄨𝜉 (𝑡; 𝜑)
󵄨󵄨󵄨󵄨

2

≤ 𝛼𝑒
−𝛽𝑡 sup
−𝜏≤𝑠≤0

E󵄨󵄨󵄨󵄨𝜉 (𝑠)
󵄨󵄨󵄨󵄨

2

, (34)

where 𝛼 = ∑
5

𝑖=1
𝛼
𝑖
/𝜆min(𝑃) and 𝜑 is the initial condition of

filtering error system (6).Thenby exponential stability defini-
tion of stochastic systems [39], the filtering error system (6)
with V(𝑡) = 0 is exponentially stable in the sense of mean
square.

Now, we will establish the 𝐿
2
-𝐿
∞
performance for the fil-

tering error system (6). To this end, we assume the zero initial
condition 𝜁(𝑡) = 0 for 𝑡 ∈ [−𝜏, 0]. Under the initial condition,
it is easy to see that, for any 𝑡 > 0,

E {𝑉 (𝜉
𝑡
, 𝑡)} = E{∫

𝑡

0

L𝑉 (𝜉
𝑠
, 𝑠) 𝑑𝑠} . (35)

Define

𝐽 (𝑡) = E {𝑉 (𝜉
𝑡
, 𝑡)} − ∫

𝑡

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠. (36)

Then, for any nonzero V(𝑡) ∈ L
2
[0,∞) and 𝑡 > 0, combined

with (29), (35)-(36), we have

𝐽 (𝑡) = E{∫
𝑡

0

[L𝑉 (𝜉
𝑠
, 𝑠) − V𝑇 (𝑠) V (𝑠)] 𝑑𝑠}

≤ E{∫
𝑡

0

𝜗
𝑇
(𝑠) Φ𝜗 (𝑠) 𝑑𝑠} ,

(37)

where 𝜗𝑇(𝑡) = [𝜉
𝑇

𝑝1
(𝑡) 𝜉
𝑇

𝑝2
(𝑡) 𝑓

𝑇

V𝑇(𝑡) 𝜂
𝑇
(𝑡)𝐻
𝑇
]. Φ < 0

ensuring that 𝐽(𝑡) ≤ 0. Thus,

E {𝜉𝑇 (𝑡) 𝑃𝜉 (𝑡)} ≤ E {𝑉 (𝜉
𝑡
, 𝑡)} ≤ ∫

𝑡

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠. (38)

Moreover, by Schur complement, (14) holds if and only if

𝐿
𝑇

𝐿 < 𝛾
2
𝑃. (39)

It follows from (38) and (39) that

E {|𝑒 (𝑡)|2} = E {𝜉𝑇 (𝑡) 𝐿𝑇𝐿𝜉 (𝑡)} < 𝛾
2E {𝜉𝑇 (𝑡) 𝑃𝜉 (𝑡)}

≤ 𝛾
2E {𝑉 (𝜉

𝑡
, 𝑡)} ≤ 𝛾

2
∫

𝑡

0

V𝑇 (𝑠) V (𝑠) 𝑑𝑠.
(40)

Therefore, if (12)–(14) hold, the filtering error system (6)
is mean-square exponentially stable with a prescribed 𝐿

2
-𝐿
∞

performance 𝛾 under zero initial condition. This completes
the proof.

In system (1), if 𝐴
3
= 0 and 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑡) = 𝐵𝑥(𝑡) +

𝐵
1
𝑥(𝑡 − ℎ) + 𝐵

2
∫
𝑡

𝑡−𝑑
𝑥(𝑠)𝑑𝑠 + 𝐵VV(𝑡), then the linear stochastic

system with mixed delays can be written as

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ)

+𝐴
2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐴VV (𝑡)] 𝑑𝑡

+ [𝐵𝑥 (𝑡) + 𝐵
1
𝑥 (𝑡 − ℎ)

+𝐵
2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐵VV (𝑡)] 𝑑𝜔 (𝑡) ,

𝑑𝑦 (𝑡)=[𝐶𝑥 (𝑡) + 𝐶
1
𝑥 (𝑡 − ℎ) + 𝐶

2
∫

𝑡

𝑡−𝑑

𝑥 (𝑠) 𝑑𝑠 + 𝐶VV (𝑡)] 𝑑𝑡,

𝑧 (𝑡) = 𝐿𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝜏, 0]

(41)

which is the same as the system in [38] with constant delays.
Thus, following the similar lines in Theorem 4, a sufficient
condition can be obtained guaranteeing that there exists a lin-
ear filter (4) such that the filtering error system is exponen-
tially stable and achieves a prescribed 𝐿

2
-𝐿
∞
performance 𝛾.

Corollary 5. Consider the stochastic time-delay system (41).
For given scalars 𝛾 > 0, ℎ > 0, and 𝑑 > 0 and integers 𝑟

1
≥ 1

and 𝑟
2
≥ 1, there exists a linear filter (4) such that the corre-

sponding filtering error system is exponentially stable with a
guaranteed 𝐿

2
-𝐿
∞

performance 𝛾, if there exist symmetrical
positive definite matrices 𝑃 ∈ R2𝑛×2𝑛, 𝑄

𝑖
∈ R𝑛×𝑛, 𝑅𝑇

𝑖
∈

R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟
1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrix𝑀 ∈ R𝑛×𝑛 satisfying (14) and

Φ̃ =

[
[
[
[
[
[

[

Φ̃
11

Φ
12

Φ
13

𝑃𝐴V 𝐴
𝑇

𝐻
𝑇
𝑀

∗ Φ̃
22

0 0 Φ
26

∗ ∗ Φ
33

0 Φ
36

∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝐻
𝑇
𝑀

∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]

]

+ 𝐵
𝑇

𝜉
𝑃𝐵
𝜉
< 0, (42)

where Φ̃
11

= Φ
11
− 𝜌𝐻
𝑇
𝐺
𝑇

1
𝐺
1
𝐻 − 𝜀𝐻

𝑇
𝐹
𝑇

1
𝐹
1
𝐻, Φ̃
22

= Φ
22
−

𝐾
𝑇

𝑟
1

(𝜌𝐺
𝑇

2
𝐺
2
+ 𝜀𝐹
𝑇

2
𝐹
2
)𝐾
𝑟
1

, and 𝐵
𝜉
= [𝐵 𝐵

1
𝐾
𝑟
1

𝐵
2
𝐾
𝑟
2

𝐵V].
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4. Filter Design

In this section, we will focus on the design of 𝐿
2
-𝐿
∞
filter for

stochastic system (1). Based onTheorem 4, a delay-dependent
sufficient condition will be obtained in the forms of LMI,
which ensures that the filtering error system (6) is stochas-
tically asymptotically stable and achieves a prescribed 𝐿

2
-𝐿
∞

performance 𝛾.

Theorem 6. Consider the stochastic time-delay system (1). For
given scalars 𝛾 > 0, ℎ > 0, 𝑑 > 0, 𝜌 > 0, and 𝜀 > 0 and integers
𝑟
1
≥ 1 and 𝑟

2
≥ 1, there exists a linear filter (4) such that the

filtering error system (6) is stochastically asymptotically stable
with a prescribed 𝐿

2
-𝐿
∞
performance 𝛾, if there exist symmet-

rical positive definite matrices𝑋 ∈ R𝑛×𝑛, 𝑌 ∈ R𝑛×𝑛, 𝑄
𝑖
∈ R𝑛×𝑛,

𝑅
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟

1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrices 𝑀 ∈ R𝑛×𝑛, 𝐴

𝑓
∈ R𝑛×𝑚, 𝐵

𝑓
∈ R𝑛×𝑛,

and 𝐶
𝑓
∈ R𝑛×𝑝 satisfying

Υ =

[
[
[
[
[
[
[

[

Υ
11

Υ
12

Υ
13

Υ
14

Υ
15

Υ
16

∗ Φ
22

0 0 0 Υ
26

∗ ∗ Φ
33

0 0 Υ
36

∗ ∗ ∗ −𝜀𝐼 0 𝐴
𝑇

3
𝑀

∗ ∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝑀

∗ ∗ ∗ ∗ ∗ Φ
66

]
]
]
]
]
]
]

]

< 0, (43)

[
𝑋 − 𝜌𝐼 𝑌

𝑌 (1 − 𝜌)𝑌
] < 0, (44)

Π
2
≤ 𝐼, (45)

Λ =
[
[

[

𝑋 𝑌 𝐿
𝑇

∗ 𝑌 −𝐶
𝑇

𝑓

∗ ∗ 𝛾
2
𝐼

]
]

]

> 0, (46)

where

Υ
11
= [

Υ
1

11
𝐴
𝑓
+ 𝐴
𝑇
𝑌 + 𝐶

𝑇
𝐵
𝑇

𝑓

∗ 𝐴
𝑓
+ 𝐴
𝑇

𝑓

] ,

Υ
12
= [

𝑅
1
𝐾
1
+ (𝑋𝐴

1
+ 𝐵
𝑓
𝐶
1
)𝐾
𝑟
1

(𝑌𝐴
1
+ 𝐵
𝑓
𝐶
1
)𝐾
𝑟
1

] ,

Υ
13
= [

(𝑋𝐴
2
+ 𝐵
𝑓
𝐶
2
)𝐾
𝑟
2

+ 𝑍

(𝑌𝐴
2
+ 𝐵
𝑓
𝐶
2
)𝐾
𝑟
2

] ,

Υ
1

11
= sym (𝑋𝐴 + 𝐵

𝑓
𝐶) + 𝑄

1
− 𝑅
1

+ (
𝑑

𝑟
2

)

2 𝑟2

∑

𝑗=1

𝑊
𝑗
−

𝑟
2

∑

𝑗=1

2

2𝑗 − 1
𝑍
𝑗
+ 𝜌𝐺
𝑇

1
𝐺
1
+ 𝜀𝐹
𝑇

1
𝐹
1
,

Υ
14
= [

𝑋𝐴
3

𝑌𝐴
3

] , Υ
15
= [

𝑋𝐴V + 𝐵
𝑓
𝐶V

𝑌𝐴V + 𝐵
𝑓
𝐶V

] ,

Υ
16
= [

𝐴
𝑇
𝑀

0
𝑛,𝑛

] , Υ
26
= 𝐾
𝑇

𝑟
1

𝐴
𝑇

1
𝑀, Υ

36
= 𝐾
𝑇

𝑟
2

𝐴
𝑇

2
𝑀.

(47)

In this case, the parameters of a desired filter in the form of
(4) can be taken as

𝐴
𝑓
= Π
−1

1
𝐴
𝑓
Π
−𝑇

1
Π
2
, 𝐵

𝑓
= Π
−1

1
𝐵
𝑓
,

𝐶
𝑓
= 𝐶
𝑓
Π
−𝑇

1
Π
2
,

(48)

whereΠ
1
andΠ

2
are nonsingular matrices satisfying 0 < Π

2
=

Π
𝑇

2
≤ 𝐼, 0 < 𝑌 = Π

1
Π
−1

2
Π
𝑇

1
, and 𝑋 > 𝑌 > 0.

Proof. From (46), it can be seen that [𝑋 𝑌
𝑌 𝑌

] > 0, and𝑋 > 𝑌 >

0. For any positive definite and symmetric matrix 𝑌, one can
always find nonsingular matrix Π

1
∈ R𝑛×𝑛 and 0 < Π

2
=

Π
𝑇

2
∈ R𝑛×𝑛, such that 𝑌 = Π

1
Π
−1

2
Π
𝑇

1
.

Set

𝑃 = [
𝑋 Π

1

Π
𝑇

1
Π
2

] . (49)

Then𝑋 − Π
1
Π
−1

2
Π
𝑇

1
= 𝑋 − 𝑌 > 0, and 𝑃 > 0.

Define

Π = [
𝐼
𝑛

0
𝑛,𝑛

0
𝑛,𝑛

Π
−1

2
Π
𝑇

1

] . (50)

Then

Π
−1

= [
𝐼
𝑛

0
𝑛,𝑛

0
𝑛,𝑛

Π
−𝑇

1
Π
2

] . (51)

Substitute 𝐴
𝑓

= Π
1
𝐴
𝑓
Π
−1

2
Π
𝑇

1
, 𝐵
𝑓

= Π
1
𝐵
𝑓
, 𝐶
𝑓

=

𝐶
𝑓
Π
−1

2
Π
𝑇

1
, and 𝑌 = Π

1
Π
−1

2
Π
𝑇

1
into (43), (44), and (46) and

then pre- and postmultiply (43) by diag{Π−𝑇, 𝐼
𝑟
1
𝑛
, 𝐼
𝑟
2
𝑛
, 𝐼
𝑛
, 𝐼
𝑛
,

𝐼
𝑛
} and its transpose, respectively. Premultiply and postmul-

tiply (46) by diag{Π−𝑇, 𝐼
𝑝
} and its transpose, respectively.

Noticing that𝑃 = [
𝑋 Π
1

Π
𝑇

1
Π
2

], using Schur complement Lemma,
one can obtain (12) and (14).

On the other hand, (44) implies

[
𝑋 𝑌

𝑌 𝑌
] < 𝜌 [

𝐼 0

0 𝑌
] . (52)

Pre- and postmultiply (52) by Π
−𝑇 and Π

−1, respectively.
Notice that 𝑌 = ΠΛ

−1
Π
𝑇, one can obtain

[
𝑋 Π

1

Π
𝑇

1
Π
2

] < 𝜌 [
𝐼 0

0 Π
2

] . (53)

By (45), it is easy to see that

[
𝑋 Π

1

Π
𝑇

1
Π
2

] < 𝜌 [
𝐼 0

0 𝐼
] . (54)

So, (13) is satisfied.
Therefore, by Theorem 4, the suitable filter parameters

can be constructed by (48), which ensures the filtering error
system (6) to be stochastically asymptotically stable with
𝐿
2
-𝐿
∞

performance 𝛾. This completes the proof.
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Remark 7. When deriving the results in Theorem 6 based on
Theorem 4, considering dealing with the LMI (13), we give
a method to avoid nonlinear terms emerging. Using Matlab
LMI toolbox, one can solve linear matrix inequalities (43)-
(44) and (46).Then, by matrix diagonalization approach, one
can easily find that diagonally positive matrix Π

2
and non-

singular matrix Π
1
satisfy Π

2
= Π
𝑇

1
𝑌
−1
Π
1
. If the obtained

matrix Π
2
does not satisfy (45), one can take Π

2
for Π

2
/

max{eig(Π
2
)} and Π

1
for √max{eig(Π

2
)}Π
1
. Thus, the

desired filter parameters can be obtained by (48).
Following the similar method in Theorem 6, one can

obtain a result of filter design for linear stochastic time-delay
system (41).

Corollary 8. Consider the stochastic time-delay system (41).
For given scalars 𝛾 > 0, ℎ > 0, and 𝑑 > 0 and integers 𝑟

1
≥ 1

and 𝑟
2
≥ 1, there exists a linear filter (4) such that the corre-

sponding filtering error system is stochastically asymptotically
stable with a prescribed 𝐿

2
-𝐿
∞

performance 𝛾, if there exist
symmetrical positive definite 𝑋 ∈ R𝑛×𝑛, 𝑌 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛,

𝑅
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2, . . . , 𝑟

1
), 𝑊
𝑗
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 (𝑗 =

1, 2, . . . , 𝑟
2
) and matrices 𝑀 ∈ R𝑛×𝑛, 𝐴

𝑓
∈ R𝑛×𝑚, 𝐵

𝑓
∈ R𝑛×𝑛,

and 𝐶
𝑓
∈ R𝑛×𝑝 satisfying (46) and

Υ̃ =

[
[
[
[
[
[
[

[

Υ̃
11

Υ
12

Υ
13

Υ
15

Υ
16

Υ
17

∗ Φ̃
22

0 0 Υ
26

Υ
27

∗ ∗ Φ
33

0 Υ
36

Υ
37

∗ ∗ ∗ −𝐼 𝐴
𝑇

V𝑀 Υ
47

∗ ∗ ∗ ∗ Φ
66

0

∗ ∗ ∗ ∗ ∗ Υ
77

]
]
]
]
]
]
]

]

< 0, (55)

where

Υ̃
11
= [

Υ̃
1

11
𝐴
𝑓
+ 𝐴
𝑇
𝑌 + 𝐶

𝑇
𝐵
𝑇

𝑓

∗ 𝐴
𝑓
+ 𝐴
𝑇

𝑓

] ,

Υ̃
1

11
= Υ
1

11
− 𝜌𝐺
𝑇

1
𝐺
1
− 𝜀𝐹
𝑇

1
𝐹
1
, Υ

17
= [

𝐵
𝑇
𝑋 𝐵
𝑇
𝑌

0
𝑛,𝑛

0
𝑛,𝑛

] ,

Υ
27
= 𝐾
𝑇

𝑟
1

[𝐵
𝑇

1
𝑋 𝐵
𝑇

1
𝑌] , Υ

37
= 𝐾
𝑇

𝑟
2

[𝐵
𝑇

2
𝑋 𝐵
𝑇

2
𝑌] ,

Υ
47
= [𝐵
𝑇

v𝑋 𝐵
𝑇

V𝑌] , Υ
77
= [

−𝑋 −𝑌

∗ −𝑌
] .

(56)

Remark 9. The results presented in Theorem 6 and
Corollary 8 can be easily extended to the systems with
only discrete or distributed delays and also to the robust
performance analysis for uncertain stochastic systems with
mixed delays.

5. Numerical Examples

Example 1. Consider the stochastic time-delay system (1)
with parameters

𝐴 = [
−1.5 0.5

−1 −3
] , 𝐴

1
= [

−0.8 0.2

0.2 −0.5
] ,

𝐴
2
= [

0.2 0

0 0.2
] , 𝐴

3
= [

0.1 0

0 0.1
] ,

Table 1: The upper bound of 𝑑max for ℎ = 1 and 𝛾 = 0.2.

Methods 𝑑max

Theorem 6 (𝑟
1
= 1, 𝑟

2
= 1) 7.481

Theorem 6 (𝑟
1
= 2, 𝑟

2
= 2) 8.190

Theorem 6 (𝑟
1
= 3, 𝑟

2
= 3) 8.317

Theorem 6 (𝑟
1
= 5, 𝑟

2
= 5) 8.379

𝐴V = [
0.2 0

0 −0.2
] , 𝐶 = [

2 −0.5

−1.5 0.5
] ,

𝐶
1
= [

0.15 0.1

−0.1 0.1
] , 𝐶

2
= [

0.5 −0.2

0.6 0
] ,

𝐶V = [
0.1 0.2

0.1 0.03
] , 𝐿 = [

0.1 −0.2

0 0.1
] ,

𝜀 = 1, 𝜌 = 7.

(57)

Moreover, for the nonlinear functions, we let 𝐺
1
= 𝐺
2
=

0.1𝐼 and 𝐹
1
= 𝐹
2
= 0.1𝐼. Given ℎ = 1 and 𝛾 = 0.2, from

Theorem 6, one can obtain the upper bound of time delay 𝑑,
which is listed in Table 1.

In the case of 𝑟
1
= 2 and 𝑟

2
= 2, the desired filter param-

eters can be obtained:

𝐴
𝑓
= [

−6.1460 2.2644

0.6168 −4.5679
] , 𝐵

𝑓
= [

−3.8749 1.8868

0.7066 −0.1266
] ,

𝐶
𝑓
= [

−0.0568 0.0052

0.0202 0.0057
] .

(58)

Example 2. Consider the stochastic time-delay system (36)–
(39) with parameters

𝐴 = [
−1.5 0.5

−1 −3
] , 𝐴

1
= [

−0.8 0.2

0.2 −0.5
] ,

𝐴
2
= [

0.2 0

0 0.2
] , 𝐴V = [

0.2 0

0 −0.2
] ,

𝐵 = [
−0.8 0.2

0.5 −0.5
] , 𝐵

1
= [

0.5 0.5

0.2 0.3
] ,

𝐵
2
= [

0.2 0

0 0.2
] , 𝐵V = [

−0.2 0

0 0.5
] ,

𝐶 = [
2 −0.5

−1.5 0.5
] , 𝐶

1
= [

0.15 0.1

−0.1 0.1
] ,

𝐶
2
= [

0.5 −0.2

0.6 0
] , 𝐶V = [

0.1 0.2

0.1 0.03
] ,

𝐿 = [
0.1 −0.2

0 0.1
] .

(59)
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Table 2: The upper bound of ℎmax for 𝑑 = 1 and 𝛾 = 0.2.

Methods ℎmax

[38] 1.725
Corollary 8 (𝑟

1
= 1, 𝑟

2
= 1) 3.755

Corollary 8 (𝑟
1
= 2, 𝑟

2
= 1) 5.054

Corollary 8 (𝑟
1
= 2, 𝑟

2
= 2) 5.111

Corollary 8 (𝑟
1
= 3, 𝑟

2
= 3) 5.688

Corollary 8 (𝑟
1
= 5, 𝑟

2
= 5) 5.920

Given𝑑 = 1 and 𝛾 = 0.2, fromCorollary 8, one can obtain
the upper bound of time delay ℎ. Table 2 lists the results of
Corollary 8 and [38] with constant delays. It is easy to see that
the proposed filter design method in this paper is less con-
servative than [38].

From Corollary 8, in the case of 𝑟
1
= 2 and 𝑟

2
= 2, the

desired filter parameters can be obtained:

𝐴
𝑓
= [

−0.0000 −4.1570

−0.0000 −2.5527
] , 𝐵

𝑓
=[

10.1507 −11.1236

6.0149 −6.1484
],

𝐶
𝑓
= [

0.0000 0.0065

−0.0000 −0.0027
] .

(60)

Remark 3. It can be seen from the results that the conserv-
atism can be reduced with the increase of partition integers.
However, it is necessary to point out that the less conserv-
atism is at the cost of a higher computational complexity.

6. Conclusions

In this paper, a new approach has been developed to inves-
tigate the problems of delay-dependent 𝐿

2
-𝐿
∞

filter design
for stochastic system with mixed delays and nonlinear per-
turbations. Based on the idea of delay partitioning and
integral partitioning, using Lyapunov-Krasovskii functional
approach, a delay-dependent sufficient condition has been
established that ensures the filtering error system is exponen-
tially stable with 𝐿

2
-𝐿
∞
performance 𝛾. By solving the LMIs,

one can get the desired filter gain matrices. The results also
depend on the partition integers with the increase of partition
integers, the conservatism can be decreased. Finally, numer-
ical examples are presented to demonstrate the effectiveness
of the proposed approach.
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