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A novel two-layer predictive control scheme for a continuous biodiesel transesterification reactor is presented. Based on a validated
mechanistic model, the least squares (LS) algorithm is used to identify the finite step response (FSR) process model adapted in
the controller. The two-layer predictive control method achieves the steady-state optimal setpoints and resolves the multivariable
dynamic control problems synchronously. Simulation results show that the two-layer predictive control strategy leads to a significant
improvement of control performance in terms of the optimal set-points tracking and disturbances rejection, as compared to
conventional PID controller within a multiloop framework.

1. Introduction

With the depletion of fossil fuels and global environmen-
tal degradation, the development of alternative fuels from
renewable resources has received considerable attention.
Biodiesel has become the foremost alternative fuel to those
refined from petroleum products. It can be produced from
renewable sources, such as vegetable and animal oils, as well
as from wastes, such as used cooking oil. Transesterification
is the primary method of converting these oils to biodiesel
[1–3]. A block diagram for a biodiesel production process by
transesterification is shown in Figure 1.

A modern transesterification plant is continuous instead
of batch. A continuous biodiesel production leads to better
heat economization, better product purity from phase sepa-
ration by removing only the portion of the layer furthest from
the interface, better recovery of excess methanol in order to
save on methanol cost and regulatory issues, minimal oper-
ator interference in adjusting plant parameters, and lower
capital costs per unit of biodiesel produced. The same tech-
nology can also be applied to other biofuels production [4–
6].

Biodiesel transesterification reactor is the most cru-
cial operation unit to be controlled because any drift in
standard operating condition may lead to significant changes
in process variable and production quality specification [4–
7].These reactors have complicated dynamics and heat trans-
fer characteristics. Moreover, they are inherently concerned
with nonlinearity which arises from fluctuations of reactant
concentration, reactant temperature, coolant temperature,
and instrumentationnoise or complexmicrobial interactions.
The complicated nonlinear, multivariable, and coupling in
nature are the fundamental control problems involved in
biodiesel reactor [8, 9].

Recently, a number of reports have appeared on the
controller design and dynamic optimization in continuous
and batch biodiesel reactors.Mjalli et al. developed a rigorous
mechanistic model of a continuous biodiesel reactor and pro-
posed a multimodel adaptive control strategy which realized
the set-point tracking and disturbance rejection [4]. Ho et al.
further adopted adaptive generalized predictive control strat-
egy to handle multivariable problems of a biodiesel reactor
[8]. Wali et al. proposed an artificial intelligence technique
to design online genetic-ANFIS temperature control based
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Figure 1: Biodiesel production by transesterification.

on LabVIEW for a novel continuous microwave biodiesel
reactor [10]. Benavides and Diwekar realized the optimal
control of a batch biodiesel reactor involved optimization of
the concentration based on maximum principle [11].

This work considers the advanced control strategy of
biodiesel continuous transesterification reactor. Model pre-
dictive control (MPC) is one of the most popular advanced
control strategies. It is a class of model-based control algo-
rithm, which has become a complex standard process indus-
try solving complicated constrained multivariable control
problems, and widely used in the chemical and petrochem-
ical processes [12]. The main technical characteristics of
MPC, include using mathematical models and history input
and output data to predict future output, combined with
the established control objectives, to calculate the optimal
feedback rate. Compared with the traditional multiloop
PID controllers, MPC takes into account simultaneously
the effects of all manipulated variables to all controlled
variables. Usually successfully put into operation, MPC can
significantly reduce the standard deviation of the controlled
variable and then through the card edge operations, improve
the overall efficiency of the control system.

In recent years, there has been an integrated steady-
state optimization of the two-layer predictive control strategy
in MPC industry technology [13–15]. Two-layer predictive
control is divided into upper steady-state optimization (SSO)
layer and lower dynamic control layer. SSO can achieve real

time optimization (RTO) objectives tracking asymptotically,
independently complete local economic optimization of the
corresponding MPC procedure. Specifically, the upper SSO
uses steady-state gain of MPC dynamic mathematical model
as the mathematical model and searches the optimum value
within the constraints space of MPC. Part steady-state values
of the operating or output variables will be in the position of
“card edge”. The calculation results of the SSO layer will be as
the set- points to the lower MPC layer.

Although two-layer predictive control strategy has been
widely used in many applications of chemical reactors,
hardly any work was done on the biodiesel transesterifica-
tion reactor. In this paper, a two-layer predictive control
strategy is designed, tested, and simulated on a continuous
biodiesel transesterification reactor. The scheme can amplify
the advantages of both technologies in terms of process
stability, and optimal and improved performances. Section 2
discusses the transesterification mechanism, which uses a
validatedmechanisticmodel ofMjalli et al. [4].Then the two-
layer predictive control strategy is developed in Section 3.
Section 4 gives the control system design based on two-
layer predictive control theory. Section 5 discusses model
identification results and the performances of the control
strategy.

2. Mathematical Models

The modeling of transesterification reactors starts with
understanding the complex reaction kinetic mechanism.The
stoichiometry of vegetable oil methanolysis reaction requires
three mol of methanol (A) and one mol of triglyceride (TG)
to give three mol of fatty acid methyl ester (E) and one mol of
glycerol (G) [16].Theoverall reaction scheme for this reaction
is

TG + 3A ←→ 3E + G. (1)

The methanolysis, in turn, consists of three consecutive
reversible reactions, where a mole of fatty acid methyl ester
is released in each step, and monoglycerides (MG) and
diglycerides (DG) are intermediate products. The stepwise
reactions are
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The stepwise reactions can be termed as pseudo-homo-
geneous catalyzed reactions, following second-order kinetics.
The second-order kineticmodel can be explained through the
following set of differential equations [17]:
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where 𝐶TG, 𝐶DG, 𝐶MG, 𝐶E, 𝐶A, and 𝐶GL are concentrations
of triglyceride, diglyceride, monoglyceride, methyl ester,
methanol, and glycerol, respectively. 𝑘󸀠

1
, 𝑘󸀠

3
, and 𝑘

󸀠

5
are the

effective rate constants for the forward reactions, and 𝑘󸀠

2
, 𝑘󸀠

4
,

and 𝑘󸀠

6
are the effective rate constants for the reverse reactions.

The previously selected kinetic model can be formulated
in terms of a general reaction equation

𝑟
𝑗
= 𝑘

󸀠

𝑗
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𝑖
]
2

. (4)

The catalyst concentration remained constant because the
sidereactions that consume the catalyst were supposed to
be negligible. Therefore, each effective rate constant includes
the catalyst concentration (𝐶cat) and the corresponding rate
constant for the catalyzed reaction [18]:

𝑘
󸀠

𝑗
= 𝑘

𝑗
𝐶cat. (5)

The temperature influence on the reaction rate was
studied from the Arrhenius equation (6) that shows the
temperature dependency of the reaction rate constant
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, (6)

where 𝑘
0
is a constant called the preexponential factor, 𝐸

𝑎
is

the activation energy of the reaction, and𝑅 is the gas constant.
In order to realize the optimization and control of

continuous biodiesel production process, the model used in
the paper on the basis of the second-order kinetic model
jointing the material and energy balance equations as well
as the dynamic equation of the coolant temperature. The
material balance for each component is expressed as follows
[4]:
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Figure 2: Framework of two-layer predictive control of industrial
processes.

The reactor energy balance is expressed as
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The coolant fluid energy balance is expressed as
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The function equation of heat transfer coefficient is approxi-
mately expressed as

𝑈 = 𝛼𝐹
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𝛽
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3. Theory of Two-Layer Predictive Control

In modern process industries, the MPC controller is part of
a multilevel hierarchy of optimization and control functions.
Typically it is three-layer structure; that is, an RTO block is
at the top layer, a MPC block is at the middle, and a PID
block is at the bottom [19]. Therefore, under this multilevel
hierarchy control system structure, the primary task of the
MPC is to dynamic track the computational target calculated
by the RTO. RTO layer should be optimized for the whole
device.

Reference [20] proposed the framework of two-layer
predictive control shown in Figure 2. SSO is added between
RTO and MPC. Left branch, the SSO layer is used for
recalculating the results of RTO layer, make the output
steady-state target be located in the steady state gain matrix
column space, so as tomeet the compatibility and consistency



4 Journal of Applied Mathematics

conditions of steady state solution. Right branch, the role of
SSO is to conduct local optimization to further improve the
MPC steady-state performance, which can effectively resolve
the nonparty system setpoints in the given problem.

Mathematical description of the two-layer predictive con-
trol include establishing steady-state mathematical model,
steady-state target calculation, and a dynamic controller
design [21].

3.1. Establish Steady-State Mathematical Model. Assume an
MIMO plant with 𝑚 control input and 𝑝 controlled output
and the coefficients of the corresponding step responsemodel
between control input 𝑢

𝑗
and output 𝑦

𝑖
are given; the model

vector is
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where 𝑖 = 1, . . . , 𝑝; 𝑗 = 1, . . . , 𝑚.𝑁 in (11) denotes modeling
horizon of step response model. Thus, a multistep predictive
model can be obtained:
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Under the control increment Δ𝑢(𝑘), . . . , Δ𝑢(𝑘 + 𝑀 − 1)

action, the output predictive value of the system is
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The system can be written at the steady-state time
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To meet the requirements of steady-state target calcula-
tion, model (17) can also be written as

Δ𝑦
∞
(𝑘) = 𝐴

𝑁
Δ𝑢

∞
(𝑘) . (19)

3.2. Steady-State Target Calculation

3.2.1. Basic Problem Description. Steady-state target calcula-
tion is to maximize economic benefits for the purpose of
self-optimization under MPC existing configuration mode
according to the process conditions. According to the pro-
duction process characteristics and objectives, the basic
problem of steady-state target calculation is the optimization
process, which controlled input as cost variables, controlled
output as steady-state variables. A commondescription of the
objective function is as follows [21]:
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Since Δ𝑢
∞
and Δ𝑦

∞
are linearly related, the input output

variation of objective function can be unified to control the
input change. The formula (20) can be unified as
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where 𝑐𝑇
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value of every input at time 𝑘.
Given the steady-state constraints of input and output

variables, global-optimization problem of steady-state target
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calculation can be described as the following linear program
(LP) problem:

min
Δ𝑢
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(𝑘)

𝐽 = 𝑐
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where 𝐺
𝑢
, 𝐺

𝑓
are the steady-state gain matrices of control

input and disturbance variables; and 𝑒 is the model bias.
𝑢min, 𝑢max are low limit and upper limit of steady-state input
variables 𝑦min, 𝑦max are low limit and upper limit of steady
state output variables.

The global-optimization problem of steady-state target
calculation can be described as the following quadratic
program (QP) problem:
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where Maxprofit is the potential maximum economic profit.

3.2.2. Feasibility Judgment and Soft Constraint Adjustment.
Mathematically, optimization feasibility is the existence prob-
lem of the optimal solution. Feasibility of steady-state target
calculation means that optimal steady state of input-output
should meet their operating constraints; if feasible solution
does not exist, the optimization calculation has no solution.
The solving process is as follows: first, judge the existence of
space domain formed by the constraints and if there is in
it for optimization, if does not exist, then through the soft
constraints adjustment to obtain the feasible space domain,
and then to solve.

Soft constraints adjustment is an effective way to solve
infeasible optimization [22, 23]. By relaxing the output
constraints within the hard constraints, increasing the opti-
mization problem feasible region that feasible solution to be
optimized. Hard constraints refer to unalterable constraints
limited by the actual industrial process.

Engineering standards of the priority strategy of soft
constraints adjustment are the following: give priority tomeet
the highly important operating constraints, and allow less

important operating constraints to be violated appropriately
under the premise of satisfying the engineering constraints.

Considering the following constraints (24), constituted by
steady-state model input constraints and output constraints
containing slack variables, the priority rank is “𝑁”, where

Δ𝑦
∞
(𝑘) = 𝐺

𝑢
Δ𝑢

∞
(𝑘) + 𝐺

𝑓
Δ𝑓

∞
(𝑘) + 𝑒,

𝑢
𝐿𝐿
≤ 𝑢

∞
(𝑘) + Δ𝑢

∞
(𝑘) ≤ 𝑢

𝐻𝐿
,

𝑦
𝑗

𝐿𝐿
− 𝜀

𝑗

2
≤ 𝑦

∞
(𝑘) + Δ𝑦

∞
(𝑘) ≤ 𝑦

𝑗

𝐻𝐿
+ 𝜀

𝑗

1
,

𝜀
𝑗

1
≥ 0, 𝜀

𝑗

2
≥ 0,

𝜀
𝑗

1
≤ 𝑦

𝐻𝐻𝐿
− 𝑦

𝐻𝐿
,

𝜀
𝑗

2
≤ 𝑦

𝐿𝐿
− 𝑦

𝐿𝐿𝐿
,

𝑗 = 1, . . . , 𝑁.

(24)

The algorithm steps of feasibility judgment and soft con-
straint adjustment based on the priority strategy are as
follows.

Step 1. Initialization: according to the characteristics of the
output variables and process conditions, set the upper and
lower output constraints priority ranks, the same priority
rank setting adjustments according to actual situation con-
straint weights.

Step 2. According to the priority ranks, judge the feasibility
and adjust the soft constraints in accordance with the ranks
from large to small. Under a larger priority rank if cannot
find a feasible solution, the constraints of the rank will be
relaxed to hard constraints, and then consider less priority
rank constraints, until we find a feasible solution.

Step 3. Then the steady-state target calculation entered the
stage of economy optimization or target tracking.

For Step 2, constraints of the highest priority rank𝑁 are
adjusted first by solving the following optimization problem:

min
𝜀
𝑁

𝐽 = (𝑊
𝑁
)

𝑇

𝜀
𝑁
, (𝑊

𝑁
)

𝑇

= [𝑊
𝑁

1
, . . . ,𝑊

𝑁

2×𝑛
𝑁

]

s.t. Θ
𝑁
𝑍

𝑁
= 𝑏

𝑁
,

Ω
𝑁
𝑍

𝑁
≤ Ψ

𝑁
,

(25)

where

𝑍
𝑁
= [𝑋

𝑇

1
, 𝑋

𝑇

2
, (𝑋

1

3
)

𝑇

, . . . , (𝑋
𝑁

3
)

𝑇

, (𝑋
1

4
)

𝑇

, . . . ,

(𝑋
𝑁

4
)

𝑇

, (𝜀
𝑁

1
)

𝑇

, (𝜀
𝑁

2
)

𝑇

, (𝜀
𝑁

1
)

𝑇

, (𝜀
𝑁

2
)

𝑇

]

𝑇

,

Ω
𝑁
= block-diag (−𝐼

𝑚
, −𝐼

𝑚
, −𝐼

𝑛
1

, . . . , −𝐼
𝑛
𝑁

,

−𝐼
𝑛
1

, . . . , −𝐼
𝑛
𝑁

, −𝐼
𝑛
𝑁

, −𝐼
𝑛
𝑁

, 𝐼
𝑛
𝑁

, 𝐼
𝑛
𝑁

) ,
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Ψ
𝑁
= [(0

𝑚×1
)

𝑇

, (0
𝑚×1

)
𝑇

, (0
𝑛
1
×1
)

𝑇

, . . . , (0
𝑛
𝑁

×1
)

𝑇

,

(0
𝑛
1
×1
)

𝑇

, . . . , (0
𝑛
𝑁

×1
)

𝑇

, (0
𝑛
𝑁

×1
)

𝑇

, (0
𝑛
𝑁

×1
)

𝑇

,

(𝑦
𝑁

𝐻𝐻𝐿
− 𝑦

𝑁

𝐻𝐿
)

𝑇

, (𝑦
𝑁

𝐿𝐿
− 𝑦

𝑁

𝐿𝐿𝐿
)

𝑇

]

𝑇

,

𝑏
𝑁
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑢
𝐻𝐿

− 𝑢
𝐿𝐿

𝐺
1

𝑢
𝑢

∞
(𝑘) − 𝐺

1

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

1

𝐻𝐿
− 𝑦

1

∞
(𝑘) − 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

∞
(𝑘) − 𝐺

𝑁

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

𝑁

𝐻𝐿
− 𝑦

𝑁

∞
(𝑘) − 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

𝑁

𝐺
1

𝑢
𝑢

𝐻𝐿
− 𝐺

1

𝑢
𝑈

∞
(𝑘) + 𝑌

1

∞
(𝑘) + 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

1

𝐿𝐿
+ 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

𝐻𝐿
− 𝐺

𝑁

𝑢
𝑈

∞
(𝑘) + 𝑦

𝑁

∞
(𝑘) + 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

𝑁

𝐿𝐿
+ 𝑒

𝑁

0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Θ
𝑁
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐼
𝑚

𝐼
𝑚

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0

𝐺
1

𝑢
0 0 ⋅ ⋅ ⋅ 0 𝐼

𝑛
1

0 0 0 0 0 0

...
... 0 ⋅ ⋅ ⋅ 0 0 d 0 0 0 0 0

𝐺
𝑁

𝑢
0 0 ⋅ ⋅ ⋅ 0 0 0 𝐼

𝑛
𝑁

−𝐼
𝑛
𝑁

0 0 0

0 𝐺
1

𝑢
𝐼
𝑛
1

0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0

...
... 0 d 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0

0 𝐺
𝑁

𝑢
0 0 𝐼

𝑛
𝑁

0 ⋅ ⋅ ⋅ 0 0 −𝐼
𝑛
𝑁

0 0

0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 𝐼
𝑛
𝑁

0 −𝐼
𝑛
𝑁

0

0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 𝐼
𝑛
𝑁

0 −𝐼
𝑛
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(26)

Solving (25) may appear in three different cases, respectively:
if (25) is feasible, and the optimum solution is 𝜀𝑁

= 0, subject
to 𝐽 = 0, that is, no need for soft constraints adjustment,
directly solve the original problem (22); if (25) is feasible, but
𝜀

𝑁
̸= 0, just need to relax constraints of priority ranks𝑁, and

further optimization solution; if (25) is infeasible, not get a
feasible solution to soft constraints adjustment of the priority
rank𝑁, relaxing the constraints of the priority rank𝑁 to hard
constraints; that is,

𝜀
𝑁

1
= 𝑦

𝑁

𝐻𝐻𝐿
− 𝑦

𝑁

𝐻𝐿
,

𝜀
𝑁

2
= 𝑦

𝑁

𝐿𝐿
− 𝑦

𝑁

𝐿𝐿𝐿
.

(27)

Go to the procedure of judging rank𝑁 − 1 constraints

min
𝜀
𝑁−1

𝐽 = (𝑊
𝑁−1

)

𝑇

𝜀
𝑁−1

, (𝑊
𝑁−1

)

𝑇

= [𝑊
𝑁−1

1
, . . . ,𝑊

𝑁−1

2×𝑛
𝑁−1

]

s.t. Θ
𝑁−1

𝑍
𝑁−1

= 𝑏
𝑁−1

,

Ω
𝑁−1

𝑍
𝑁−1

≤ Ψ
𝑁−1

.

(28)

For (28), the matrix form is the same with priority rank 𝑁,
only in the corresponding position of 𝜀𝑁−1 to replace 𝜀𝑁, 𝑏𝑁−1

matrix is adjusted

𝑏
𝑁−1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑢
𝐻𝐿

− 𝑢
𝐿𝐿

𝐺
1

𝑢
𝑢

∞
(𝑘) − 𝐺

1

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

1

𝐻𝐿
− 𝑦

1

∞
(𝑘) − 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

∞
(𝑘) − 𝐺

𝑁

𝑢
𝑢

𝐿𝐿
(𝑘) + 𝑦

𝑁

𝐻𝐿
− 𝑦

𝑁

∞
(𝑘) − 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑒

𝑁
+ (𝑦

𝑁

𝐻𝐻𝐿
− 𝑦

𝑁

𝐻𝐿
)

𝑇

𝐺
1

𝑢
𝑢

𝐻𝐿
− 𝐺

1

𝑢
𝑢

∞
(𝑘) + 𝑦

1

∞
(𝑘) + 𝐺

1

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

1

𝐿𝐿
+ 𝑒

1

...
𝐺

𝑁

𝑢
𝑢

𝐻𝐿
− 𝐺

𝑁

𝑢
𝑢

∞
(𝑘) + 𝑦

𝑁

∞
(𝑘) + 𝐺

𝑁

𝑓
Δ𝑓

∞
(𝑘) − 𝑦

𝑁

𝐿𝐿
+ 𝑒

𝑁
+ (𝑦

𝑁

𝐿𝐿
− 𝑦

𝑁

𝐿𝐿𝐿
)

𝑇

0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (29)
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𝑁−1 rank and𝑁 rank are the same for the soft constraints
adjustment processing, until the end of constraint adjustment
of the priority rank 1. If all ranks of constraints are relaxed to
the hard constrain and a feasible solution still can’t be found,
then the original problem of soft constraints adjustment is
infeasible and needs to be redesigned.

3.3. Dynamic Controller Design. In engineering applications,
dynamic matrix control (DMC) algorithm is one of the most
widely used MPC algorithms based on the step response
model of the plant. This paper adopts DMC and steady-state
target calculation integration strategy.

The difference is that the general DMC algorithms have
no requirements on the steady-state position of the control
input, and they only require the controlled output as close as
possible to arrive at its set point. However, the integration
strategy DMC requires both input and output variables to
approach their steady-state targets (u

𝑠
, y

𝑠
) as far as possible.

The algorithm has three basic characteristics: predictive
model, receding horizon optimization, and feedback correc-
tion [24].

3.3.1. Predictive Model. Based on system process step re-
sponse model, at the current time 𝑘, the future 𝑃-step
prediction output can be written as follows:

ỹ
𝑃𝑀

(𝑘) = ỹ
𝑃0
(𝑘) + AΔu

𝑀
(𝑘) , (30)

where 𝑃 denotes the prediction horizon, 𝑀 is the con-
trol horizon, A is the prediction matrix composed by the
corresponding step response coefficients, ỹ

𝑃0
is the initial

output prediction value when control action starting from
the present time does not change, Δu

𝑀
(𝑘) is the prediction

incremental in𝑀 control horizon, and ỹ
𝑃𝑀
(𝑘) is the future𝑃-

step prediction output under 𝑀-step control action change.
Among them

ỹ
𝑃𝑀

(𝑘) =
[
[

[

𝑦
1,𝑃𝑀

(𝑘)

...
𝑦

𝑝,𝑃𝑀
(𝑘)

]
]

]

, ỹ
𝑃0
(𝑘) =

[
[

[

𝑦
1,𝑃0

(𝑘)

...
𝑦

𝑝,𝑃0
(𝑘)

]
]

]

,

Δu
𝑀
(𝑘) =

[
[

[

Δ𝑢
1,𝑀

(𝑘)

...
Δ𝑢

𝑚,𝑀
(𝑘)

]
]

]

, A =
[
[

[

𝐴
11

⋅ ⋅ ⋅ 𝐴
1𝑚

... d
...

𝐴
𝑝1

⋅ ⋅ ⋅ 𝐴
𝑝𝑚

]
]

]

.

(31)

3.3.2. Receding Horizon Optimization. In the receding hori-
zon optimization process, control increment can be obtained
in every execution cycle by minimizing the following perfor-
mance index:

min
Δu
𝑀

(𝑘)

𝐽 (𝑘) =
󵄩
󵄩
󵄩
󵄩
w (𝑘) − ỹ

𝑃𝑀
(𝑘)

󵄩
󵄩
󵄩
󵄩

2

Q + ‖𝜀 (𝑘)‖
2

S

+
󵄩
󵄩
󵄩
󵄩
u

𝑀
(𝑘) − u

∞

󵄩
󵄩
󵄩
󵄩

2

T +
󵄩
󵄩
󵄩
󵄩
Δu

𝑀
(𝑘)

󵄩
󵄩
󵄩
󵄩

2

R.

(32)

Subject to the model
ỹ

𝑃𝑀
(𝑘) = ỹ

𝑃0
(𝑘) + AΔu

𝑀
(𝑘) . (33)

Subject to bound constraints
ymin − 𝜀 ≤ ỹ

𝑃𝑀
(𝑘) ≤ ymax + 𝜀,

umin ≤ u
𝑀
≤ umax,

Δumin ≤ Δu𝑀
(𝑘) ≤ Δumax,

(34)

where 𝜀 denotes the slack variables, guaranteeing the feasibil-
ity of theDMCoptimization, and𝑤(𝑘) = [𝑤

1
(𝑘), . . . , 𝑤

𝑝
(𝑘)]

𝑇

is the setpoint of controlled output obtained from upper SSO
layer. Q, R are the weight coefficient matrix

Q = block-diag (𝑄
1
, . . . , 𝑄

𝑝
) ,

Q
𝑖
= diag (𝑞

𝑖
(1) , . . . , 𝑞

𝑖
(𝑃)) , 𝑖 = 1, . . . , 𝑝,

R = block-diag (𝑅
1
, . . . 𝑅

𝑚
) ,

R
𝑗
= diag (𝑟

𝑖
(1) , . . . , 𝑟

𝑖
(𝑀)) , 𝑗 = 1, . . . , 𝑚.

(35)

Through the necessary conditions of extreme value
𝜕𝐽/𝜕Δ𝑢

𝑀
(𝑘) = 0, the optimal increment of control input can

be obtained:

Δu
𝑀
(𝑘) = (A𝑇QA + R)

−1

A𝑇Q [w (𝑘) − ỹ
𝑃0
(𝑘)] . (36)

The instant increment can be calculated as follows:

Δu (𝑘) = LD [w (𝑘) − ỹ
𝑃0
(𝑘)] , (37)

whereD = (A𝑇QA +R)−1A𝑇Q; remark the operation of only
the first element with

𝐿 = [

[

1 0 ⋅ ⋅ ⋅ 0 0

d
0 1 0 ⋅ ⋅ ⋅ 0

]

]

. (38)

3.3.3. Feedback Correction. The difference between the pro-
cess sample values by the present moment 𝑘 and prediction
values of (30) is

𝑒 (𝑘 + 1) =
[
[

[

𝑒
1
(𝑘 + 1)

...
𝑒

𝑝
(𝑘 + 1)

]
]

]

=
[
[

[

𝑦
1
(𝑘 + 1) − 𝑦

1,1
(𝑘 + 1 | 𝑘)

...
𝑦

𝑝
(𝑘 + 1) − 𝑦

𝑝,1
(𝑘 + 1 | 𝑘)

]
]

]

,

(39)

where 𝑦
𝑖,1
(𝑘+1 | 𝑘) is the first element of 𝑦

𝑖,𝑃𝑀
(𝑘+1 | 𝑘), and

the corrected output prediction value can be obtained using
the error vector; that is,

ỹcor (𝑘 + 1) = ỹ
𝑁1
(𝑘) +H𝑒 (𝑘 + 1) , (40)

where ỹ
𝑁1
(𝑘) = ỹ

𝑁0
(𝑘) + A

𝑁
Δu, ỹ

𝑁0
(𝑘) is the future

𝑁 moment initial prediction value when all of the input
remained unchanged at the time 𝑘; ỹ

𝑁1
(𝑘) is the future

𝑁 moment output prediction value under one-step control
input action; 𝐻 is the error correct matrix. Then using a
shift matrix 𝑆, next time the initial prediction value can be
obtained, which is

𝑦
𝑁0
(𝑘 + 1) = 𝑆𝑦cor (𝑘 + 1) , (41)
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Figure 3: Two-layer predictive framework of biodiesel process.

where

𝑆 =

[
[
[
[
[

[

0 1 0

0 1

d d
0 1

0 1

]
]
]
]
]

]𝑁∗𝑁

. (42)

4. Control System Design

In the biodiesel reactor control, multiloops are necessary
to stabilize the plant. One loop is needed to maintain the
set point of specifying the product purity, and another loop
is needed to ensure an optimal yield of biodiesel and to
minimize the generation of unwanted by-products even in
the presence of disturbances.

To achieve these goals, the control loop configurations
analysis is meaningful. Based on the analysis of Mjalli et
al. [4], the favorable pairings are as follows: the biodiesel
concentration (𝐶

𝐸
) is maintained by manipulating reactant

flow rate (𝐹
𝑜
), the reactor temperature (𝑇) is maintained

by manipulating coolant flow rate (𝐹
𝑐
), respectively, and the

effect of stirred rotational speed on the reactor output is
insignificant, and it would be regarded as one of disturbances
to the control system. The relative gain array (RGA) shows
that there are some interactions among the controlled and
manipulated variables which make two-layer predictive con-
troller better qualified.

Consequently, the two-layer predictive controller is
designed to handle a 2 × 2 system of inputs and outputs. The
controlled output variables include biodiesel concentration
(𝐶

𝐸
) and reactor temperature (𝑇); the manipulated variables

include reactant flow rate (𝐹
𝑜
) and coolant flow rate (𝐹

𝑐
). It

is very important for a reactor to handle the disturbances
in the feed concentration and initial temperatures, as these
disturbances heavily change the system performance.

The design of the control loop based on the two-layer
predictive control strategy for the biodiesel reactor is shown
in Figure 3. The SSO layer searches the optimal output set-
points 𝐶

𝐸𝑠𝑠
and 𝑇

𝑠𝑠
according to the economic optimization

goal of the actual production process. The MPC layer selects
the real-time control actions Δ𝑢 to complete the dynamic
tracking control.

5. Simulation Results and Analysis

5.1. Model Identification. For the two-layer predictive control
scheme to be successful, process modeling plays a key role
in capturing the varying dynamics of the system. Section 4
shows that the biodiesel process is a two-input two-output
multivariable process. The process nonlinear model was pro-
grammed and simulated in Matlab as a function. Simulation
results show system is open stable process.

Firstly, generalized binary noise (GBN) signal is selected
as the excitation signal. GBN signals switch between 𝑎 and −𝑎
according to the following rules:

𝑃 [𝑢 (𝑡) = −𝑢 (𝑡 − 1)] = 𝑝
𝑠𝑤
,

𝑃 [𝑢 (𝑡) = 𝑢 (𝑡 − 1)] = 1 − 𝑝
𝑠𝑤
,

(43)

where 𝑝
𝑠𝑤

is transition probability; 𝑇min is defined as the
sampling time of the signal held constant; 𝑇

𝑠𝑤
is time interval

of twice conversion. The average conversion time and power
spectrum are, respectively,

𝐸𝑇
𝑠𝑤
=

𝑇min
𝑝

𝑠𝑤

,

Φ
𝑢
(𝜔) =

(1 − 𝑞
2
) 𝑇min

1 − 2𝑞 cos𝑇min𝜔 + 𝑞
2
, 𝑞 = 1 − 2𝑝

𝑠𝑤
.

(44)

Next, least squares (LS) identification method is used to
estimate the process model parameters. Suppose an MIMO
plant with 𝑚 input 𝑝 output, for the 𝑖th output of the finite
impulse response (FIR) model, is described as

𝑦
𝑖
(𝑘) =

𝑚

∑

𝑗=1

𝑁

∑

𝑙=1

ℎ
𝑖𝑗𝑙
𝑢

𝑗
(𝑘 − 𝑙) . (45)

Consider experimental tests of collecting input sequence

𝑢
1
(1) 𝑢

1
(2) ⋅ ⋅ ⋅ 𝑢

1
(𝐿)

...
...

𝑢
𝑚
(1) 𝑢

𝑚
(2) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝐿)

(46)

and output sequence

𝑦
1
(1) 𝑦

1
(2) ⋅ ⋅ ⋅ 𝑦

1
(𝐿)

...
...

𝑦
𝑝
(1) 𝑦

𝑝
(2) ⋅ ⋅ ⋅ 𝑦

𝑝
(𝐿) .

(47)
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Figure 4: Biodiesel concentration prediction result and relative error under reactor flow rate 𝐹
𝑜
action.
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Figure 5: Reactor temperature prediction result and relative error under reactor flow rate 𝐹
𝑜
action.

Consider matching between data and models; the intro-
duction of residuals for each output can be independently
expressed as follows:

𝑦
𝑖
(𝑘) = 𝜑 (𝑘) 𝜃

𝑖
+ 𝑒 (𝑘) . (48)

Matrix form is written as

𝑦
𝑖
= Φ𝜃

𝑖
+ 𝑒, (49)

where

𝑦
𝑖
=

[
[
[
[

[

𝑦
𝑖
(𝑁 + 1)

𝑦
𝑖
(𝑁 + 2)

...
𝑦

𝑖
(𝐿)

]
]
]
]

]

, 𝑒 =

[
[
[
[

[

𝑒 (𝑁 + 1)

𝑒 (𝑁 + 2)

...
𝑒 (𝐿)

]
]
]
]

]

,

Φ =

[
[
[
[

[

𝑢
1
(𝑁) 𝑢

1
(𝑁 − 1) ⋅ ⋅ ⋅ 𝑢

1
(1) 𝑢

𝑚
(𝑁) 𝑢

𝑚
(𝑁 − 1) ⋅ ⋅ ⋅ 𝑢

𝑚
(1)

𝑢
1
(𝑁 + 1) 𝑢

1
(𝑁) ⋅ ⋅ ⋅ 𝑢

1
(2) 𝑢

𝑚
(𝑁 + 1) 𝑢

𝑚
(𝑁) ⋅ ⋅ ⋅ 𝑢

𝑚
(2)

...
...

... ⋅ ⋅ ⋅

...
...

...
𝑢

1
(𝐿 − 1) 𝑢

1
(𝐿 − 2) 𝑢

1
(𝐿 − 𝑁) 𝑢

𝑚
(𝐿 − 1) 𝑢

𝑚
(𝐿 − 2) 𝑢

𝑚
(𝐿 − 𝑁)

]
]
]
]

]

.

(50)

Minimize the squared residuals

min 𝐽 = 𝑒𝑇
𝑒 = [𝑦 − Φ𝜃]

𝑇

[𝑦 − Φ𝜃] . (51)

Obtain the optimal estimate

̂
𝜃 = [Φ

𝑇
Φ]

−1

Φ
𝑇
𝑦. (52)

For themodel predictive controller design, the FIRmodel
of system identification needs to be further converted into
finite step response (FSR) model. The relationship between
FSR coefficients and FIR coefficients is as follows:

𝑔
𝑗
=

𝑗

∑

𝑖=1

ℎ
𝑗
. (53)
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Figure 6: Biodiesel concentration prediction result and relative
error under reactor flow rate 𝐹

𝑐
action.

Coefficients matrix of FSR is

𝐺
𝑢

𝑙
=

[
[
[
[

[

𝑠
11𝑙

𝑠
12𝑙

⋅ ⋅ ⋅ 𝑠
1𝑚𝑙

𝑠
21𝑙

𝑠
22𝑙

⋅ ⋅ ⋅ 𝑠
2𝑚𝑙

...
... d

...
𝑠
𝑝1𝑙

𝑠
𝑝2𝑙

⋅ ⋅ ⋅ 𝑠
𝑝𝑚𝑙

]
]
]
]

]

. (54)

Finally, (11)–(19) are used to create a steady-state mathe-
matical model of two-layer prediction control. The concrete
simulation process is as follows.

In the work, GBN as the excitation signal was added to
the model input to produce output data. The parameters of
GBN signal applied to the first input are 𝑇

𝑠𝑤
= 65, 𝑎𝑚𝑝 = 0.1

the parameters of GBN applied to the second input are 𝑇
𝑠𝑤
=

65, 𝑎𝑚𝑝 = 0.005, both the conversion probabilities are taken
to be 𝑃

𝑠𝑤
= 1/𝑇

𝑠𝑤
. Simulation time 𝑡 = 2000 s, and sample

time equals 2 s, under each input excitation, corresponding
to two sets of output data each set of data capacity is 1000.
Among them, the former 500 data as model identification,
the remaining data are used as model validations, and FSR
model length value is taken as 200.

Under the action of two inputs, reactant flow rate 𝐹
𝑜

and coolant flow rate 𝐹
𝑐
, respectively, predicted value, actual

value, and the relative error of two outputs biodiesel concen-
tration 𝐶

𝐸
and reactor temperature 𝑇 were shown in Figures

4, 5, 6, and 7. Figures 4–7 show that relative error is small
enough, and the model can describe 𝐶

𝐸
and 𝑇 change trends

under 𝐹
𝑜
and 𝐹

𝑐
.

Figures 8 and 9 give the two output step response curves
under two input 𝐹

𝑜
, 𝐹

𝑐
action, respectively, further shows the

multiple-input multiple-output system is open-loop stable
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Figure 7: Reactor temperature prediction result and relative error
under reactor flow rate 𝐹

𝑐
action.
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Figure 8: Step response curve of biodiesel concentration and reactor
temperature, respectively, under 𝐹

𝑜
action.

and the step response model has been identified successfully.
The FSRmodel will be utilized to represent the actual process
in latter optimization and controller design.

5.2. Dynamic Simulation. To validate the effectiveness and
immunity in two-layer predictive control, the models ob-
tained in Section 5.1 are used in the simulations.
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Figure 9: Step response curve of biodiesel concentration and reactor
temperature, respectively, under 𝐹

𝑐
action.

The reaction rate constants come from [18] under the
common industrial conditions of 6 : 1 methanol/oil mole
ratio, 1.0 wt% catalyst KOH, and 600 rpm stirrer rotational
speed. These kinetics parameters can be considered as con-
stants. The initial operating conditions refer to the literature
[4] the validated data. According to these parameters and
reaction conditions, the simulation of biodiesel transesteri-
fication reactor can be carried out.

The economic optimization method described in (22)
is adopted as SSO whose main parameters are selected as
follows: the cost coefficients of control input in steady-state
optimization are set to [1; −1], the input 𝐹

𝑜
is constrained

between 0 and 0.2m3/s, the input 𝐹
𝑐
is constrained between

0 and 0.1m3/s, and the output 𝐶
𝐸
is constrained between

3.0536 kmol/m3 and 3.196 kmol/m3, the output 𝑇 is con-
strained between 337.77 K and 338.25 K.

The parameters of the dynamic control layer adopted the
unconstrained DMC algorithm: the modeling time domain
𝑁 = 200, prediction horizon 𝑃 = 200, control horizon𝑀 =

20. The weight coefficient values of weight matrix 𝑄 and 𝑅
equal to 10 and 1000, respectively.

Conventional PID controller has also been designed in
this simulation for comparison of performance to two-layer
predictive controller.The parameters of PID controller for𝐶

𝐸

with 𝐹
𝑜
control loop are 𝑘𝑝 = −6𝑒−5, 𝑘𝑖 = −0.05, and 𝑘𝑑 = 0;

the parameters for 𝑇 with 𝐹
𝑐
control loop are 𝑘𝑝 = −0.02,

𝑘𝑖 = −0.001, and 𝑘𝑑 = 0. The simulations of general PID
controller and two-layer predictive controller are compared
to validate the performance of the latter algorithm, whose
results are shown in Figures 10 and 11.

As Figures 10 and 11 show, the two-layer predictive
controller starts running at the time 𝑡 = 0. The results of
steady state optimization are

𝑦
𝑠𝑠
= [3.196, 337.77] , 𝑢

𝑠𝑠
= [0.073, 0.0062] . (55)

0 500 1000 1500 2000
3.12

3.14

3.16

3.18

3.2

3.22

3.24

3.26

3.28

Time (s)

Bi
od

ie
se

l c
on

ce
nt

ra
tio

n 
(k

m
ol

/m
3
)

(a)

0 500 1000 1500 2000

0

0.02

0.04

0.06

0.08

0.1

Time (s)

C
on

tro
lle

r m
ov

es

Two-layer predictive controller
PID controller

−0.02

(b)

Figure 10: Biodiesel concentration and controller moves of two-
layer predictive controller and PID controller.

The optimized values as the setpoints were send to the
lower layer DMC. In the beginning, the closed loop response
of the two-layer predictive controller was a little sluggish
in bringing the biodiesel concentration back the optimum
steady-state values, this is because that the algorithm enter
the constraint adjustment stage based on the priority strategy
which adjusting the upper limit and lower limit to be handled.
About At the time 𝑡 = 400, the response gradually becomes
stable. It can be seen that the two-layer predictive controller
preceded the PID controller in terms of the ability to attain
lower overshoot, smaller oscillation, and faster response time.

Considering the actual application, the control input is
also an important indicator of good or bad controller. From
Figures 10 and 11, the two-layer predictive controller hasmuch
more stable controller moves than does PID that meets the
practical implementation constrains.
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Figure 11: Reactor temperature and controller moves of two-layer
predictive controller and PID controller.

To challenge the stability of two-layer predictive con-
troller, some disturbances were exerted alone and at the same
time.The chosen disturbance variables include coolant input
temperature (𝑇

𝑐0
), feed temperature (𝑇

0
), triglyceride initial

concentration (𝐶TG0
), and stirrer rotational speed (𝑁). After

the system has attained the steady state, The nominal values
of 𝑇

𝑐0
, 𝑇

0
were increased 3K, respectively, and 𝐶TG0

,𝑁 were
increased 5%, respectively, at the time 𝑡 = 1000 s. Figures
12 and 13 show the biodiesel concentration and reactor
temperature profiles when these disturbance variables were
introduced.

Figures 12 and 13 showed satisfactory rejection of all
disturbances. Two-layer predictive controller was able to
bring back the controlled variables to their setpoints in less
than 1000 s, and overshoot was within the acceptable range.
For the biodiesel concentration loop, the initial concentration
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Figure 12: Biodiesel concentration and controller moves of four
individual disturbance variables effects.

𝐶TG0
has the highest effect, with an overshoot of less than

0.01 kmol/m3. For the reactor temperature loop, the feed
temperature 𝑇

0
has the largest effect, with an overshoot of

less than 0.33 K. For the two loops, the stirrer rotational speed
almost has no effect on the controlled variables.

6. Conclusions

Biodiesel transesterification reactor control has become very
important in recent years due to the difficulty in controlling
the complex and highly nonlinear dynamic behavior. In
this paper, a novel two-layer predictive control scheme for
a continuous biodiesel transesterification reactor has been
proposed. The SSO layer achieved optimal output setpoints
according to the local economic optimization goal of the
actual production process, and the MPC layer realized the
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Figure 13: Reactor temperature and controller moves of four
individual disturbance variables effects.

dynamic tracking control.Themain aim was to optimize and
control the biodiesel concentration and reactor temperature
in order to obtain the product of the highest quality at the
lower cost. With steady-state optimum target calculation and
DMCalgorithm implement, the performance of the two-layer
predictive controller was superior to that of a conventional
PID controller. The two-layer predictive control is not only
stable but also tracks set points more efficiently with minimal
overshoots and shorter settling times. Moreover, it exhibits
good disturbance rejection characteristics.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (61034008) and the Science Research

Foundation of Liaoning Provincial Department of Education
(L2012145).

References

[1] D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review
on biodiesel production using catalyzed transesterification,”
Applied Energy, vol. 87, no. 4, pp. 1083–1095, 2010.

[2] S. Shahla, N. G. Cheng, and R. Yusoff, “An overview on
transesterification of natural oils and fats,” Biotechnology and
Bioprocess Engineering, vol. 15, no. 6, pp. 891–904, 2010.

[3] N. N. A. N. Yusuf, S. K. Kamarudin, and Z. Yaakub, “Overview
on the current trends in biodiesel production,” Energy Conver-
sion and Management, vol. 52, no. 7, pp. 2741–2751, 2011.

[4] F. S. Mjalli, L. K. San, K. C. Yin, and M. A. Hussain, “Dynamics
and control of a biodiesel transesterification reactor,” Chemical
Engineering and Technology, vol. 32, no. 1, pp. 13–26, 2009.

[5] T. Eevera, K. Rajendran, and S. Saradha, “Biodiesel produc-
tion process optimization and characterization to assess the
suitability of the product for varied environmental conditions,”
Renewable Energy, vol. 34, no. 3, pp. 762–765, 2009.

[6] C. S. Bildea andA. A. Kiss, “Dynamics and control of a biodiesel
process by reactive absorption,” Chemical Engineering Research
and Design, vol. 89, no. 2, pp. 187–196, 2011.

[7] L. Zong, S. Ramanathan, and C.-C. Chen, “Fragment-based
approach for estimating thermophysical properties of fats and
vegetable oils for modeling biodiesel production processes,”
Industrial and Engineering Chemistry Research, vol. 49, no. 2, pp.
876–886, 2010.

[8] Y. K. Ho, F. S. Mjalli, and H. K. Yeoh, “Multivariable adaptive
predictive model based control of a biodiesel transesterification
reactor,” Journal of Applied Sciences, vol. 10, no. 12, pp. 1019–1027,
2010.

[9] H. Y. Kuen, F. S.Mjalli, andY.H.Koon, “Recursive least squares-
based adaptive control of a biodiesel transesterification reactor,”
Industrial and Engineering Chemistry Research, vol. 49, no. 22,
pp. 11434–11442, 2010.

[10] W. A. Wali, A. I. Al-Shamma, K. H. Hassan, and J. D. Cullen,
“Online genetic-ANFIS temperature control for advanced
microwave biodiesel reactor,” Journal of Process Control, vol. 22,
pp. 1256–1272, 2012.

[11] P. T. Benavides and U. Diwekar, “Optimal control of biodiesel
production in a batch reactor—part I: deterministic control,”
Fuel, vol. 94, pp. 211–217, 2012.

[12] S. J. Qin and T. A. Badgwell, “A survey of industrial model
predictive control technology,”Control Engineering Practice, vol.
11, no. 7, pp. 733–764, 2003.

[13] T. A. Johansen and A. Grancharova, “Approximate explicit
constrained linear model predictive control via orthogonal
search tree,” IEEE Transactions on Automatic Control, vol. 48,
no. 5, pp. 810–815, 2003.

[14] T. Zou, B. C. Ding, and D. Zhang, Model Predictive Control
Engineering Applications Introduction, Chemical Industry Press,
Beijing, China, 2010.

[15] A. Nikandrov and C. L. E. Swartz, “Sensitivity analysis of LP-
MPC cascade control systems,” Journal of Process Control, vol.
19, no. 1, pp. 16–24, 2009.

[16] H. Noureddini and D. Zhu, “Kinetics of transesterification of
soybean oil,” Journal of the American Oil Chemists’ Society, vol.
74, no. 11, pp. 1457–1463, 1997.



14 Journal of Applied Mathematics

[17] A.-F. Chang and Y. A. Liu, “Integrated process modeling and
product design of biodiesel manufacturing,” Industrial and
Engineering Chemistry Research, vol. 49, no. 3, pp. 1197–1213,
2010.

[18] G. Vicente, M. Mart́ınez, and J. Aracil, “Kinetics of Brassica
carinata oil methanolysis,” Energy and Fuels, vol. 20, no. 4, pp.
1722–1726, 2006.

[19] R. Scattolini, “Architectures for distributed and hierarchical
Model Predictive Control—a review,” Journal of Process Control,
vol. 19, no. 5, pp. 723–731, 2009.

[20] T. Zou,H.Q. Li, B. C.Ding, andD.D.Wang, “Compatibility and
uniqueness analyses of steady state solution for multi-variable
predictive control systems,” Acta Automatica Sinica, vol. 39, pp.
519–529, 2013.

[21] D. E. Kassmann, T. A. Badgwell, and R. B. Hawkins, “Robust
steady-state target calculation for model predictive control,”
AIChE Journal, vol. 46, no. 5, pp. 1007–1024, 2000.

[22] Y. G. Xi and H. Y. Gu, “Feasibility analysis of constrained
multi-objective multi-degree-of-freedom optimization control
in industrial processes,”ActaAutomatica Sinica, vol. 24, pp. 727–
732, 1998.

[23] T. Zou, H. Q. Li, X. X. Zhang, Y. Gu, and H. Y. Su, “Feasibility
and soft constraint of steady state target calculation layer in LP-
MPC and QP-MPC cascade control systems,” in Proceedings of
the International Symposium on Advanced Control of Industrial
Processes (ADCONIP ’11), pp. 524–529, May 2011.

[24] Y. G. Xi, Predictive Control, National Defense Industry Press,
Beijing, China, 1993.


