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We study a nonlinear evolution partial differential equation, namely, the (2+1)-dimensional Boussinesq equation. For the first
time Lie symmetry method together with simplest equation method is used to find the exact solutions of the (2+1)-dimensional
Boussinesq equation. Furthermore, the new conservation theorem due to Ibragimov will be utilized to construct the conservation
laws of the (2+1)-dimensional Boussinesq equation.

1. Introduction

Nonlinear evolution equations (NLEEs) are broadly used as
models to represent physical phenomena in numerous fields
of sciences, especially in biology, solid state physics, plasma
physics, plasma waves, and fluid mechanics. It is therefore of
paramount importance that exact solutions of such NLEEs
are obtained. However, finding exact solutions of NLEEs is
an onerous exercise and only in certain distinctive cases one
can explicitly write down their solutions. Nevertheless, in
the last few decades important progress has been made and
many powerful and effective methods for obtaining exact
solutions of NLEEs have been suggested in the literature.
Some of the important methods found in the literature
include the Darboux transformation method [1], the inverse
scattering transformmethod [2],Hirota’s bilinearmethod [3],
Jacobi elliptic function expansionmethod [4], the sine-cosine
method [5], the auxiliary ordinary differential equation
method [6], Lie symmetry analysis [7–11], the 𝐹-expansion
method [12], and the exp-function expansion method [13].

In this paper we consider one such NLEE, namely, the
(2+1)-dimensional Boussinesq equation given by

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

− 𝛼(𝑢
2
)
𝑥𝑥

− 𝑢
𝑥𝑥𝑥𝑥

= 0, (1)

which describes the propagation of gravity waves on the
surface of water; in particular it describes the head-on

collision of an oblique wave. The (2+1)-dimensional Boussi-
nesq equation (1) combines the two-way propagation of the
classical Boussinesq equation with the dependence on a
second spatial variable, as that occurs in the two-dimensional
Kadomstev-Petviashvili (KP) equation. This equation pro-
vides a description of head-on collision of oblique waves
and it possesses some interesting properties. The unknown
function describes the elevation of the free surface of the fluid.
Moreover, (1) involves the two dissipative terms 𝑢

𝑥𝑥
and 𝑢

𝑦𝑦

in addition to the fourth-order spatial derivative 𝑢
𝑥𝑥𝑥𝑥

that
represents the dispersion phenomenon. Unlike the standard
Boussinesq equation, which is completely integrable, that
admits multiple solitons solutions, (1) is not integrable and
gives two soliton solutions at most. It is to be noted that if we
delete the dissipative term 𝑢

𝑦𝑦
from (1), we obtain the stan-

dard Boussinesq equation.The standard Boussinesq equation
arises in many physical applications such as nonlinear lattice
waves and iron sound waves in plasma and in vibrations in
a nonlinear string. It is used in many physical applications
such as the percolation of water in porous subsurface of a
horizontal layer of material. See also [14].

In [15] the authors used a generalized transformation
in homogeneous balance method and found some explicit
solitary wave solutions of the (2+1)-dimensional Boussinesq
equation. Applied homotopy perturbation method was used
in [16] to construct numerical solutions of (1). Extended
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ansätz method was employed in [17] to derive exact periodic
solitary wave solutions. Recently, the Hirota bilinear method
was used in [18] to obtain two soliton solutions.

Lie group method is one of the most effective methods
to find solutions of nonlinear partial differential equations
(PDEs). Originally, developed by Sophus Lie (1842–1899) in
the latter half of the nineteenth century, this method is based
upon the study of the invariance under one parameter Lie
group of point transformations and it is highly algorithmic
[7–9].

In the study of PDEs, conservation laws play a vital role
in their solution process and the reduction of PDEs. Conser-
vation laws have been broadly used in studying the existence,
uniqueness, and stability of solutions of nonlinear PDEs (see,
e.g., [19–21]). They have also been used in the development
of numerical methods (see, e.g., [22, 23]). Exact solutions (by
exploiting a double reduction method) of some classical par-
tial differential equations have been obtained using conserved
vectors associated with the Lie point symmetries [24–26].

In this paper, for the first time, Lie group analysis in
conjunction with the simplest equation method [27, 28] is
employed to obtain some exact solutions of (1). In addition to
this, conservation laws will be derived for (1) using the new
conservation theorem due to Ibragimov [29].

2. Solutions of (1)
In this sectionwe obtain exact solutions of (1) using Lie group
analysis along with the simplest equation method.

2.1. Exact Solutions Using Lie Point Symmetries. In this sub-
section we first calculate the Lie point symmetries of (1) and
later use the translation symmetries to construct the exact
solutions.

2.1.1. Lie Point Symmetries. Thesymmetry group of the (2+1)-
dimensional Boussinesq equation (1) will be generated by the
vector field of the form

𝑅 = 𝜉
1 𝜕

𝜕𝑥
+ 𝜉
2 𝜕

𝜕𝑦
+ 𝜉
3 𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
, (2)

where 𝜉𝑖, 𝑖 = 1, 2, 3 and 𝜂 depend on 𝑥, 𝑦, 𝑡 and 𝑢. Applying
the fourth prolongation pr(4)𝑅 to (1) we obtain an overdeter-
mined system of linear partial differential equations. Solving
this resultant system one obtains the following five Lie point
symmetries:

𝑅
1
=

𝜕

𝜕𝑥
, 𝑅

2
=

𝜕

𝜕𝑡
, 𝑅

3
=

𝜕

𝜕𝑦
,

𝑅
4
= 𝑦

𝜕

𝜕𝑡
+ 𝑡

𝜕

𝜕𝑦
,

𝑅
5
= −2𝛼𝑡

𝜕

𝜕𝑡
− 𝛼𝑥

𝜕

𝜕𝑥
− 2𝛼𝑦

𝜕

𝜕𝑦
+ (1 + 2𝛼𝑢)

𝜕

𝜕𝑢
.

(3)

We now utilize the symmetry 𝑅 = 𝑅
1
+ 𝑅
2
+ 𝑐𝑅
3
, where 𝑐 is a

constant, and reduce the Boussinesq equation (1) to a PDE in

two independent variables. Solving the associated Lagrange
system for 𝑅, we obtain the following three invariants:

𝑓 = 𝑦 − 𝑐𝑡, 𝑔 = 𝑡 − 𝑥, 𝜃 = 𝑢. (4)

Now treating 𝜃 as the new dependent variable and 𝑓 and 𝑔

as new independent variables, the Boussinesq equation (1)
transforms to

(1 − 𝑐
2
) 𝜃
𝑓𝑓

+ 2𝑐𝜃
𝑓𝑔

+ 2𝛼𝜃
2

𝑔
+ 2𝛼𝜃𝜃

𝑔𝑔
+ 𝜃
𝑔𝑔𝑔𝑔

= 0, (5)

which is a nonlinear PDE in two independent variables. We
now use the Lie point symmetries of (5) and transform it to
an ordinary differential equation (ODE).The equation (5) has
the following three symmetries:

Γ
1
=

𝜕

𝜕𝑔
, Γ

2
=

𝜕

𝜕𝑓
,

Γ
3
= (2𝛼𝑓 − 2𝛼𝑓𝑐

2
)
𝜕

𝜕𝑓
+ (𝛼𝑐𝑓 − 𝑐

2
𝛼𝑔 + 𝛼𝑔)

𝜕

𝜕𝑔

+ (𝑐
2
+ 2𝑐
2
𝛼𝜃 − 2𝛼𝜃)

𝜕

𝜕𝜃
.

(6)

The combination of the first two translational symmetries,
Γ = Γ
1
+ ]Γ
2
, where ] is a constant, yields the two invariants

𝑧 = 𝑓 − ]𝑔, 𝜓 = 𝜃, (7)

which gives rise to a group-invariant solution 𝜓 = 𝜓(𝑧), and
consequently using these invariants, (5) is transformed into
the fourth-order nonlinear ODE

2𝛼]2𝜓󸀠2 + (1 − 𝑐
2
− 2𝑐]) 𝜓󸀠󸀠 + 2𝛼]2𝜓𝜓󸀠󸀠 + ]4𝜓󸀠󸀠󸀠󸀠 = 0. (8)

Integrating the above equation four times and taking the
constants of integration to be zero (because we are looking for
soliton solutions) and reverting back to the original variables,
we obtain the following group-invariant solutions of the
Boussinesq equation (1):

𝑢 (𝑥, 𝑦, 𝑡) =
𝐴
1

𝐴
2

sech2 [
√𝐴
1

2
(𝐵 ± 𝑧)] , (9)

where 𝐵 is a constant of integration and

𝐴
1
=
𝑐
2
+ 2]𝑐 − 1

]4
, 𝐴

2
=

2𝛼

3]2
,

𝑧 = ]𝑥 + 𝑦 − (𝑐 + ]) 𝑡.

(10)

It is worth noting that the obtained solitary wave solution
𝑢(𝑥, 𝑦, 𝑡) is a regular soliton in the form of a bell-shaped
soliton.

2.2. Exact Solutions of (1) Using Simplest Equation Method.
In this section we employ the simplest equation method [27,
28] to solve the nonlinear ODE (8). This will then give us the
exact solutions for our Boussinesq equation (1). The simplest
equations that we will use in our work are the Bernoulli and
Riccati equations.
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Here we first present the simplest equation method and
consider the solutions of (8) in the form

𝐹 (𝑧) =

𝑀

∑

𝑖=0

𝐴
𝑖
(𝐺 (𝑧))

𝑖
, (11)

where 𝐺(𝑧) satisfies the Bernoulli and Riccati equations, 𝑀
is a positive integer that can be determined by balancing
procedure, and𝐴

0
, . . . , 𝐴

𝑀
are parameters to be determined.

The Bernoulli equation

𝐺
󸀠
(𝑧) = 𝑎𝐺 (𝑧) + 𝑏𝐺

2
(𝑧) , (12)

where 𝑎 and 𝑏 are arbitrary constants has the general solution
given by

𝐺 (𝑧) = 𝑎 {
cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]
}

(13)

and represents a solitary wave solution.
The Riccati equation considered in this work is

𝐺
󸀠
(𝑧) = 𝑏𝐺

2
(𝑧) + 𝑎𝐺 (𝑧) + 𝑑, (14)

where 𝑎, 𝑏, and 𝑑 are arbitrary constants. Its solutions are

𝐺 (𝑧) = −
𝑎

2𝑏
−

𝜃

2𝑏
tanh [1

2
𝜃 (𝑧 + 𝐶)] ,

𝐺 (𝑧) = −
𝑎

2𝑏
−

𝜃

2𝑏
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑏/𝜃) sinh (𝜃𝑧/2)
,

(15)

with 𝜃
2

= 𝑎
2
− 4𝑏𝑑 and 𝐶 is an arbitrary constant of

integration.

2.2.1. Solutions of (1) Using the Bernoulli Equation as the
Simplest Equation. The balancing procedure gives𝑀 = 2 so
the solutions of (8) are of the form

𝐹 (𝑧) = 𝐴
0
+ 𝐴
1
𝐺 + 𝐴

2
𝐺
2
. (16)

Inserting (16) into (8) and using the Bernoulli equation (12)
and, thereafter, equating the coefficients of powers of 𝐺𝑖 to
zero, we obtain an algebraic system of six equations in terms
of 𝐴
0
, 𝐴
1
, and 𝐴

2
, namely,
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𝑏
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𝑏
2
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2
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2
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2
𝑎
2
𝑏
2
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1
𝑎𝑏𝐴
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2
𝑏
2
𝑐
2
− 6𝐴
2
𝑏
2
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1
𝑎
3
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2
𝑎
2
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1
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2
𝑎
2
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2
𝑎
2
𝑐
2
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1
𝑎
2
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0
𝐴
1
𝑎𝑏 − 16]4𝐴

2
𝑎
4

+ 6𝐴
1
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0
𝐴
2
𝑎
2
+ 3𝐴
1
𝑎𝑏𝑐
2
= 0,

− 18𝛼]2𝐴
1
𝐴
2
𝑎
2
− 10𝛼]2𝐴2

1
𝑎𝑏 − 4𝛼]2𝐴

0
𝐴
1
𝑏
2

+ 10𝐴
2
𝑎𝑏𝑐
2
+ 4]𝐴

1
𝑏
2
𝑐 + 20]𝐴

2
𝑎𝑏𝑐 − 2𝐴

1
𝑏
2

+ 2𝐴
1
𝑏
2
𝑐
2
− 20𝛼]2𝐴

0
𝐴
2
𝑎𝑏 − 10𝐴

2
𝑎𝑏

− 130]4𝐴
2
𝑎
3
𝑏 − 50]4𝐴

1
𝑎
2
𝑏
2
= 0.

(17)

With the aid of Mathematica, solving the above system of
algebraic equations, one possible solution for𝐴

0
,𝐴
1
, and𝐴

2

is

𝐴
0
=

− (1 − 𝑐
2
− 2𝑐] + 𝑎

2]4)

2𝛼]2
,

𝐴
1
=
−6𝑎𝑏]2

𝛼
,

𝐴
2
=
−6𝑏
2]2

𝛼
.

(18)

Thus, reverting back to the original variables, a solution of (1)
is

𝑢 (𝑡, 𝑥, 𝑦)

= 𝐴
0
+ 𝐴
1
𝑎 {

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]
}

+ 𝐴
2
𝑎
2
{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]
}

2

,

(19)

where 𝑧 = ]𝑥 + 𝑦 − (𝑐 + ])𝑡 and 𝐶 is an arbitrary constant of
integration, which represents a solitary wave solution.

2.2.2. Solutions of (1)Using the Riccati Equation as the Simplest
Equation. The balancing procedure yields 𝑀 = 2 so the
solutions of (8) take the form

𝐹 (𝑧) = 𝐴
0
+ 𝐴
1
𝐺 + 𝐴

2
𝐺
2
. (20)

Inserting (20) into (8) andmaking use of the Riccati equation
(14), we obtain algebraic system of equations in terms of 𝐴

0
,

𝐴
1
, and 𝐴

2
by equating the coefficients of powers of 𝐺𝑖 to

zero. The resulting algebraic equations are

−120]4𝐴
2
𝑏
4
− 20𝛼]2𝐴2

2
𝑏
2
= 0,

− 36𝛼]2𝐴2
2
𝑎𝑏 − 336]4𝐴

2
𝑎𝑏
3
− 24]4𝐴

1
𝑏
4

− 24𝛼]2𝐴
1
𝐴
2
𝑏
2
= 0,
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− 32𝛼]2𝐴2
2
𝑏𝑑 − 6𝛼]2𝐴2

1
𝑏
2
− 240]4𝐴

2
𝑏
3
𝑑

+ 6𝐴
2
𝑏
2
𝑐
2
+ 12𝐴

2
𝑏
2
𝑐] − 6𝐴

2
𝑏
2

− 12𝛼]2𝐴
0
𝐴
1
𝑏
2
− 42𝛼]2𝐴

1
𝐴
2
𝑎𝑏 − 16𝛼]2𝐴2

2
𝑎
2

− 60]4𝐴
1
𝑎𝑏
3
− 330𝐴

2
𝑎
2
𝑏
2
= 0,

− 16]4𝐴
2
𝑏𝑑
3
− 14]4𝐴

2
𝑎
2
𝑑
2
+ 2𝐴
1
𝑎𝑐𝑑]

− 𝐴
1
𝑎𝑑 + 4𝐴

2
𝑐𝑑
2] + 𝐴

1
𝑎𝑐
2
𝑑 − 8]4𝐴

1
𝑎𝑏𝑑
2

+ 2𝐴
2
𝑐
2
𝑑
2
− ]4𝐴

1
𝑎
3
𝑑 − 2𝛼]2𝐴

0
𝐴
1
𝑎𝑑

− 4𝛼]2𝐴
0
𝐴
2
𝑑
2
− 2𝛼]2𝐴2

1
𝑑
2
− 2𝐴
2
𝑑
2
= 0,

2𝐴
1
𝑏
2
𝑐
2
− 28𝛼]2𝐴2

2
𝑎𝑑 − 20𝛼]2𝐴

0
𝐴
2
𝑎𝑏

− 36𝛼]2𝐴
1
𝐴
2
𝑏𝑑 − 18𝛼]2𝐴

1
𝐴
2
𝑎
2
− 10𝛼]2𝐴2

1
𝑎𝑏

− 10𝐴
2
𝑎𝑏 + 10𝐴

2
𝑎𝑏𝑐
2
+ 4𝐴
1
𝑏
2
𝑐] − 40]4𝐴

1
𝑏
3
𝑑

− 4𝛼]2𝐴
0
𝐴
1
𝑏
2
− 50]4𝐴

1
𝑎
2
𝑏
2
+ 20𝐴

2
𝑎𝑏𝑐] − 2𝐴

1
𝑏
2

− 130]4𝐴
2
𝑎
3
𝑏 − 440]4𝐴

2
𝑎𝑏
2
𝑑 = 0,

2𝐴
1
𝑎
2
𝑐] − 6𝐴

2
𝑎𝑑 − ]4𝐴

1
𝑎
4

+ 12𝐴
2
𝑎𝑐𝑑] − 6𝛼]2𝐴2

1
𝑎𝑑 + 6𝐴

2
𝑎𝑐
2
𝑑

+ 𝐴
1
𝑎
2
𝑐
2
− 12𝛼]2𝐴

1
𝐴
2
𝑑
2
− 4𝛼]2𝐴

0
𝐴
1
𝑏𝑑

− 120]4𝐴
2
𝑎𝑏𝑑
2
+ 4𝐴
1
𝑏𝑐𝑑] − 2𝛼]2𝐴

0
𝐴
1
𝑎
2

− 12𝛼]2𝐴
0
𝐴
2
𝑎𝑑 − 16]4𝐴

1
𝑏
2
𝑑
2
− 𝐴
1
𝑎
2

− 30]4𝐴
2
𝑎
3
𝑑 − 2𝐴

1
𝑏𝑑 + 2𝐴

1
𝑏𝑐
2
𝑑

− 22]4𝐴
1
𝑎
2
𝑏𝑑 = 0,

− 8𝛼]2𝐴
0
𝐴
2
𝑎
2
+ 3𝐴
1
𝑎𝑏𝑐
2
− 8𝐴
2
𝑏𝑑

+ 6𝐴
1
𝑎𝑏𝑐] − 3𝐴

1
𝑎𝑏 − 6𝛼]2𝐴

0
𝐴
1
𝑎𝑏

− 136]4𝐴
2
𝑏
2
𝑑
2
− 4𝐴
2
𝑎
2
− 12𝛼]2𝐴2

2
𝑑
2

+ 8𝐴
2
𝑎
2
𝑐] − 16𝛼]2𝐴

0
𝐴
2
𝑏𝑑 − 232]4𝐴

2
𝑎
2
𝑏𝑑

− 8𝛼]2𝐴2
1
𝑏𝑑 + 16𝐴

2
𝑏𝑐𝑑] − 15]4𝐴

1
𝑎
3
𝑏

− 16]4𝐴
2
𝑎
4
− 60]4𝐴

1
𝑎𝑏
2
𝑑 + 8𝐴

2
𝑏𝑐
2
𝑑

+ 4𝐴
2
𝑎
2
𝑐
2
− 30𝛼]2𝐴

1
𝐴
2
𝑎𝑑 − 4𝛼]2𝐴2

1
𝑎
2
= 0.

(21)

Solving the above equations, we get

𝐴
0
=
−8𝑏𝑑]4 − 𝑎

2]4 + 𝑐
2
+ 2𝑐] − 1

2]2𝛼
,

𝐴
1
=
−6𝑎𝑏]2

𝛼
, 𝐴

2
=
−6𝑏
2]2

𝛼
,

(22)

and consequently, the solutions of (1) are

𝑢 (𝑡, 𝑥, 𝑦)

= 𝐴
0
+ 𝐴
1
{−

𝑎

2𝑏
−

𝜃

2𝑏
tanh [1

2
𝜃 (𝑧 + 𝐶)]}

+ 𝐴
2
{−

𝑎

2𝑏
−

𝜃

2𝑏
tanh [1

2
𝜃 (𝑧 + 𝐶)]}

2

,

𝑢 (𝑡, 𝑥, 𝑦)

= 𝐴
0
+ 𝐴
1

{{{

{{{

{

−
𝑎

2𝑏
−

𝜃

2𝑏
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑏/𝜃) sinh (𝜃𝑧/2)

}}}

}}}

}

+ 𝐴
2

{{{

{{{

{

−
𝑎

2𝑏
−

𝜃

2𝑏
tanh(1

2
𝜃𝑧)

+
sech (𝜃𝑧/2)

𝐶 cosh (𝜃𝑧/2) − (2𝑏/𝜃) sinh (𝜃𝑧/2)

}}}

}}}

}

2

,

(23)

where 𝑧 = ]𝑥 + 𝑦 − (𝑐 + ])𝑡 and 𝐶 is an arbitrary constant of
integration.

The solution (16) is a solitary wave solution in the form of
a kink solution.

3. Conservation Laws for (1)
In this section we obtain conservation laws for the (2+1)-
dimensional Boussinesq equation (1) using Ibragimov the-
orem [29], but first we give some definitions and notations
which we will utilize later.

3.1. Fundamental Operators and Their Relationship. Let us
consider a 𝑘th-order system of PDEs of 𝑛 independent varia-
bles 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) and 𝑚 dependent variables 𝑢 = (𝑢

1
,

𝑢
2
, . . . , 𝑢

𝑚
), namely,

𝐸
𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚. (24)

Here 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑘)
denote the collections of all first,

second, . . ., 𝑘th-order partial derivatives; that is, 𝑢𝛼
𝑖
= 𝐷
𝑖
(𝑢
𝛼
),

𝑢
𝛼

𝑖𝑗
= 𝐷
𝑗
𝐷
𝑖
(𝑢
𝛼
), . . ., respectively, with the total derivative

operator with respect to 𝑥𝑖 defined by

𝐷
𝑖
=

𝜕

𝜕𝑥𝑖
+ 𝑢
𝛼

𝑖

𝜕

𝜕𝑢𝛼
+ 𝑢
𝛼

𝑖𝑗

𝜕

𝜕𝑢
𝛼

𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, . . . , 𝑛. (25)
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The Euler-Lagrange operator, for each 𝛼, is defined by

𝛿

𝛿𝑢𝛼
=

𝜕

𝜕𝑢𝛼
+∑

𝑠≥1

(−1)
𝑠
𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

,

𝛼 = 1, . . . , 𝑚,

(26)

and the Lie-Bäcklund operator is given by

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢𝛼
, 𝜉
𝑖
, 𝜂
𝛼
∈ A, (27)

where A is the space of differential functions. The operator
(27) can be written as

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢𝛼
+∑

𝑠≥1

𝜁
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

, (28)

where

𝜁
𝛼

𝑖
= 𝐷
𝑖
(𝑊
𝛼
) + 𝜉
𝑗
𝑢
𝛼

𝑖𝑗
,

𝜁
𝛼

𝑖
1
⋅⋅⋅𝑖
𝑠

= 𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
) + 𝜉
𝑗
𝑢
𝛼

𝑗𝑖
1
⋅⋅⋅𝑖
𝑠

, 𝑠 > 1.

(29)

Here𝑊𝛼 is the Lie characteristic function defined by

𝑊
𝛼
= 𝜂
𝛼
− 𝜉
𝑖
𝑢
𝛼

𝑗
. (30)

We can write the Lie-Bäcklund operator (28) in characteristic
form as

𝑋 = 𝜉
𝑖
𝐷
𝑖
+𝑊
𝛼 𝜕

𝜕𝑢𝛼

+∑

𝑠≥1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
)

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

.

(31)

The Noether operators associated with a Lie-Bäcklund sym-
metry operator𝑋 are defined as

𝑁
𝑖
= 𝜉
𝑖
+𝑊
𝛼 𝛿

𝛿𝑢
𝛼

𝑖

+∑

𝑠≥1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
)

𝛿

𝛿𝑢
𝛼

𝑖𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

, 𝑖 = 1, . . . , 𝑛,

(32)

where the Euler-Lagrange operators with respect to deriva-
tives of 𝑢𝛼 are obtained from (26) by replacing 𝑢

𝛼 by the
corresponding derivatives. For example,

𝛿

𝛿𝑢
𝛼

𝑖

=
𝜕

𝜕𝑢
𝛼

𝑖

+∑

𝑠≥1

(−1)
𝑠
𝐷
𝑗
1

⋅ ⋅ ⋅ 𝐷
𝑗
𝑠

𝜕

𝜕𝑢
𝛼

𝑖𝑗
1
𝑗
2
⋅⋅⋅𝑗
𝑠

,

𝑖 = 1, . . . , 𝑛, 𝛼 = 1, . . . , 𝑚,

(33)

and the Euler-Lagrange, Lie-Bäcklund, and Noether opera-
tors are connected by the operator identity

𝑋 + 𝐷
𝑖
(𝜉
𝑖
) = 𝑊

𝛼 𝛿

𝛿𝑢𝛼
+ 𝐷
𝑖
𝑁
𝑖
. (34)

The 𝑛-tuple vector 𝑇 = (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
), 𝑇𝑗 ∈ A, 𝑗 = 1, . . . , 𝑛,

is a conserved vector of (24) if 𝑇𝑖 satisfies

𝐷
𝑖
𝑇
𝑖
|
(11)

= 0, (35)

which defines a local conservation law of system (24).
The system of adjoint equations to (24) is defined by

𝐸
∗

𝛼
(𝑥, 𝑢, V, . . . , 𝑢

(𝑘)
, V
(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚, (36)

where

𝐸
∗

𝛼
(𝑥, 𝑢, V, . . . , 𝑢

(𝑘)
, V
(𝑘)
) =

𝛿 (V𝛽𝐸
𝛽
)

𝛿𝑢𝛼
,

𝛼 = 1, . . . , 𝑚, V = V (𝑥)

(37)

and V = (V1, V2, . . . , V𝑚) are new dependent variables.
The system of (24) is known as self-adjoint if the substitu-

tion of V = 𝑢 into the system of adjoint equations (36) yields
the same system (24).

Let us now assume the system of (24) admits the symme-
try generator

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢𝛼
. (38)

Then the system of adjoint equations (36) admits the
operator

𝑌 = 𝜉
𝑖 𝜕

𝜕𝑥𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢𝛼
+ 𝜂
𝛼

∗

𝜕

𝜕V𝛼
,

𝜂
𝛼

∗
= − [𝜆

𝛼

𝛽
V𝛽 + V𝛼𝐷

𝑖
(𝜉
𝑖
)] ,

(39)

where the operator (39) is an extension of (38) to the variable
V𝛼 and the 𝜆𝛼

𝛽
are obtainable from

𝑋(𝐸
𝛼
) = 𝜆
𝛽

𝛼
𝐸
𝛽
. (40)

We now state the following theorem.

Theorem 1 (see [29]). Every Lie point, Lie-Bäcklund, and non-
local symmetry (38) admitted by the system of (24) gives rise
to a conservation law for the system consisting of (24) and the
adjoint equation (36), where the components 𝑇𝑖 of the con-
served vector 𝑇 = (𝑇

1
, . . . , 𝑇

𝑛
) are determined by

𝑇
𝑖
= 𝜉
𝑖
𝐿 +𝑊

𝛼 𝛿𝐿

𝛿𝑢
𝛼

𝑖

+∑

𝑠≥1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
)

𝛿𝐿

𝛿𝑢
𝛼

𝑖𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

,

𝑖 = 1, . . . , 𝑛,

(41)

with Lagrangian given by

𝐿 = V𝛼𝐸
𝛼
(𝑥, 𝑢, . . . , 𝑢

(𝑘)
) . (42)
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3.2. Construction of Conservation Laws for (1) . In this sub-
section, we obtain conservation laws of (2+1)-dimensional
Boussinesq equation

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

− 2𝛼𝑢
2

𝑥
− 2𝛼𝑢𝑢

𝑥𝑥
− 𝑢
𝑥𝑥𝑥𝑥

= 0. (43)

Recall that (43) admits the following five Lie point symmetry
generators:

𝑅
1
=

𝜕

𝜕𝑥
, 𝑅

2
=

𝜕

𝜕𝑡
, 𝑅

3
=

𝜕

𝜕𝑦
,

𝑅
4
= 𝑦

𝜕

𝜕𝑡
+ 𝑡

𝜕

𝜕𝑦
,

𝑅
5
= −2𝛼𝑡

𝜕

𝜕𝑡
− 𝑥𝛼

𝜕

𝜕𝑥
− 2𝛼𝑦

𝜕

𝜕𝑦
+ (1 + 2𝛼𝑢)

𝜕

𝜕𝑢
.

(44)

We now find five conserved vectors corresponding to each of
these five Lie point symmetries.

The adjoint equation of (43), by invoking (37), is

𝐸
∗
(𝑡, 𝑥, 𝑢, V, . . . , 𝑢

𝑥𝑥𝑥𝑥
, V
𝑥𝑥𝑥𝑥

)

=
𝛿

𝛿𝑢
[V (𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

− 2𝛼𝑢
2

𝑥
,

−2𝛼𝑢𝑢
𝑥𝑥

− 𝑢
𝑥𝑥𝑥𝑥

) ] = 0,

(45)

where V = V(𝑡, 𝑥, 𝑦) is a newdependent variable and (45) gives

V
𝑡𝑡
− V
𝑥𝑥

− V
𝑦𝑦

− 2𝛼𝑢V
𝑥𝑥

− V
𝑥𝑥𝑥𝑥

= 0. (46)

It is obvious from the adjoint equation (46) that (43) is
not self-adjoint. By recalling (42), we get the following
Lagrangian for the system of (43) and (46):

𝐿 = V (𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

− 2𝛼𝑢
2

𝑥
− 2𝛼𝑢𝑢

𝑥𝑥
− 𝑢
𝑥𝑥𝑥𝑥

) . (47)

(i) We first consider the Lie point symmetry generator
𝑅
1
= 𝜕/𝜕𝑥. It can be verified from (39) that the operator 𝑌

1
is

the same as𝑅
1
and the Lie characteristic function is𝑊 = −𝑢

𝑥
.

Thus, by using (41), the components 𝑇𝑖, 𝑖 = 1, 2, 3, of the
conserved vector 𝑇 = (𝑇

1
, 𝑇
2
, 𝑇
3
) are given by

𝑇
1
= 𝑢
𝑥
V
𝑡
− V𝑢
𝑡𝑥
,

𝑇
2
= V𝑢
𝑡𝑡
− V𝑢
𝑦𝑦

− 𝑢
𝑥
V
𝑥
− 2𝛼𝑢𝑢

𝑥
V
𝑥

− 𝑢
𝑥
V
𝑥𝑥𝑥

+ V
𝑥𝑥
𝑢
𝑥𝑥

− V
𝑥
𝑢
𝑥𝑥𝑥

,

𝑇
3
= −𝑢
𝑥
V
𝑦
+ V𝑢
𝑥𝑦
.

(48)

Remark 2. The conserved vector 𝑇 contains the arbitrary
solution V of the adjoint equation (46) and hence gives an
infinite number of conservation laws.

The same remark applies to all the following four cases.
(ii) Now for the second symmetry generator 𝑅

2
= 𝜕/𝜕𝑡,

we have 𝑊 = −𝑢
𝑡
. Hence, by invoking (41), the symmetry

generator 𝑅
2
gives rise to the following components of the

conserved vector:

𝑇
1
= −V𝑢

𝑥𝑥
− V𝑢
𝑦𝑦

− 2𝛼V𝑢2
𝑥
− 2𝛼𝑢V𝑢

𝑥𝑥
− V𝑢
𝑥𝑥𝑥𝑥

+ 𝑢
𝑡
V
𝑡
,

𝑇
2
= −𝑢
𝑡
V
𝑥
+ 2𝛼V𝑢

𝑡
𝑢
𝑥
− 2𝛼𝑢𝑢

𝑡
V
𝑥
− 𝑢
𝑡
V
𝑥𝑥𝑥

+ V𝑢
𝑡𝑥
+ 2𝛼𝑢V𝑢

𝑡𝑥
+ V
𝑥𝑥
𝑢
𝑡𝑥
− V
𝑥
𝑢
𝑡𝑥𝑥

+ V𝑢
𝑡𝑥𝑥𝑥

,

𝑇
3
= −V
𝑦
𝑢
𝑡
+ V𝑢
𝑡𝑦
.

(49)

(iii) The third symmetry generator, 𝑅
3
= 𝜕/𝜕𝑦, gives𝑊 =

−𝑢
𝑦
and the corresponding components of the conserved

vector are

𝑇
1
= V
𝑡
𝑢
𝑦
− V𝑢
𝑡𝑦
,

𝑇
2
= −𝑢
𝑦
V
𝑥
+ 2𝛼V𝑢

𝑦
𝑢
𝑥
− 2𝛼𝑢𝑢

𝑦
V
𝑥
− 𝑢
𝑦
V
𝑥𝑥𝑥

+ V𝑢
𝑥𝑦

+ 2𝛼𝑢V𝑢
𝑥𝑦

+ V
𝑥𝑥
𝑢
𝑥𝑦

− V
𝑥
𝑢
𝑥𝑥𝑦

+ V𝑢
𝑥𝑥𝑥𝑦

,

𝑇
3
= V𝑢
𝑡𝑡
− V𝑢
𝑥𝑥

− 2𝛼V𝑢2
𝑥
− 2𝛼𝑢V𝑢

𝑥𝑥
− V𝑢
𝑥𝑥𝑥𝑥

− 𝑢
𝑦
V
𝑦
.

(50)

(iv) For the symmetry generator 𝑅
4
= 𝑦𝜕/𝜕𝑡 + 𝑡𝜕/𝜕𝑦 the

components of the conserved vector, as before, are given by

𝑇
1
= −𝑦V𝑢

𝑥𝑥
− 𝑦V𝑢

𝑦𝑦
− 2𝛼𝑦V𝑢2

𝑥

− 2𝛼𝑦𝑢V𝑢
𝑥𝑥

− 𝑦V𝑢
𝑥𝑥𝑥𝑥

+ 𝑦𝑢
𝑡
V
𝑡

+ 𝑡𝑢
𝑦
V
𝑡
− V𝑢
𝑦
− 𝑡V𝑢
𝑡𝑦
,

𝑇
2
= −𝑦𝑢

𝑡
V
𝑥
+ 2𝛼𝑦V𝑢

𝑡
𝑢
𝑥
− 2𝛼𝑦𝑢𝑢

𝑡
V
𝑥

− 𝑦𝑢
𝑡
V
𝑥𝑥𝑥

− 𝑡V
𝑥
𝑢
𝑦
+ 2𝛼𝑡V𝑢

𝑦
𝑢
𝑥
− 2𝛼𝑡𝑢V

𝑥
𝑢
𝑦

− 𝑡𝑢
𝑦
V
𝑥𝑥𝑥

+ 𝑦V𝑢
𝑡𝑥
+ 2𝛼𝑦𝑢V𝑢

𝑡𝑥
+ 𝑦𝑢
𝑡𝑥
V
𝑥𝑥

+ 𝑡V𝑢
𝑥𝑦

+ 2𝛼𝑡𝑢V𝑢
𝑥𝑦

+ 𝑡𝑢
𝑥𝑦
V
𝑥𝑥

− 𝑦V
𝑥
𝑢
𝑡𝑥𝑥

− 𝑡V
𝑥
𝑢
𝑥𝑥𝑦

+ 𝑦V𝑢
𝑡𝑥𝑥𝑥

+ 𝑡V𝑢
𝑥𝑥𝑥𝑦

,

𝑇
3
= 𝑡V𝑢
𝑡𝑡
− 𝑡V𝑢
𝑥𝑥

− 2𝛼𝑡V𝑢2
𝑥

− 2𝛼𝑡𝑢V𝑢
𝑥𝑥

− 𝑡V𝑢
𝑥𝑥𝑥𝑥

− 𝑦V
𝑦
𝑢
𝑡

− 𝑡V
𝑦
𝑢
𝑦
+ V𝑢
𝑡
+ 𝑦V𝑢

𝑡𝑦
.

(51)

(v) Finally, for the symmetry generator

𝑅
5
= −2𝛼𝑡

𝜕

𝜕𝑡
− 𝑥𝛼

𝜕

𝜕𝑥
− 2𝛼𝑦

𝜕

𝜕𝑦
+ (1 + 2𝛼𝑢)

𝜕

𝜕𝑢
(52)

the value of 𝑌
5
is different from 𝑅

5
and is given by

𝑌
5
= −2𝛼𝑡

𝜕

𝜕𝑡
− 𝑥𝛼

𝜕

𝜕𝑥
− 2𝛼𝑦

𝜕

𝜕𝑦
+ (1 + 2𝛼𝑢)

𝜕

𝜕𝑢
− V𝛼

𝜕

𝜕V
.

(53)
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In this case the Lie characteristic function is𝑊 = 1 + 2𝛼𝑢 +

2𝛼𝑡𝑢
𝑡
+ 𝑥𝛼𝑢

𝑥
+ 2𝛼𝑦𝑢

𝑦
. So using (41), one can obtain the

conserved vector 𝑇 whose components are given by

𝑇
1
= 2𝛼𝑡V𝑢

𝑥𝑥
+ 2𝛼𝑡V𝑢

𝑦𝑦
+ 4𝛼
2
𝑡V𝑢2
𝑥

+ 4𝛼
2
𝑡V𝑢𝑢
𝑥𝑥

+ 2𝛼𝑡V𝑢
𝑥𝑥𝑥𝑥

− V
𝑡

− 2𝛼𝑢V
𝑡
− 2𝛼𝑡𝑢

𝑡
V
𝑡
− 𝑥𝛼𝑢

𝑥
V
𝑡
− 2𝛼𝑦𝑢

𝑦
V
𝑡

+ 4𝛼V𝑢
𝑡
+ 𝑥𝛼V𝑢

𝑡𝑥
+ 2𝛼𝑦V𝑢

𝑡𝑦
,

𝑇
2
= −𝑥𝛼V𝑢

𝑡𝑡
+ 𝑥𝛼V𝑢

𝑦𝑦
+ 2𝛼𝑥𝑢V𝑢

𝑥𝑥

+ V
𝑥
+ 4𝛼𝑢V

𝑥
+ V
𝑥𝑥𝑥

+ 4𝛼
2
𝑢
2V
𝑥

+ 2𝛼𝑢V
𝑥𝑥𝑥

− 8𝛼𝑡V𝑢
𝑥
𝑢
𝑡
+ 2𝛼𝑡𝑢

𝑡
V
𝑥

+ 4𝛼
2
𝑡V𝑢
𝑡
𝑢
𝑥
+ 4𝛼
2
𝑡𝑢𝑢
𝑡
V
𝑥
+ 2𝛼𝑡𝑢

𝑡
V
𝑥𝑥𝑥

+ 𝑥𝛼𝑢
𝑥
V
𝑥
+ 2𝛼
2
𝑥𝑢𝑢
𝑥
V
𝑥
+ 𝑥𝛼𝑢

𝑥
V
𝑥𝑥𝑥

− 8𝛼
2
𝑦V𝑢
𝑥
𝑢
𝑦
+ 2𝛼𝑦𝑢

𝑦
V
𝑥
+ 4𝛼
2
𝑦V𝑢
𝑥
𝑢
𝑦

+ 4𝛼
2
𝑦𝑢𝑢
𝑦
V
𝑥
+ 2𝛼𝑦𝑢

𝑦
V
𝑥𝑥𝑥

− 2𝛼𝑡V𝑢
𝑡𝑥

− 5𝛼V𝑢
𝑥
− 2𝛼𝑦V𝑢

𝑥𝑦
− 4𝛼
2
𝑡𝑢V𝑢
𝑡𝑥

− 10𝛼
2
𝑢V𝑢
𝑥
− 2𝛼
2
𝑥𝑢V𝑢
𝑥𝑥

− 4𝛼
2
𝑦𝑢V𝑢
𝑥𝑦

− 3𝛼𝑢
𝑥
V
𝑥𝑥

− 2𝛼𝑡𝑢
𝑡𝑥
V
𝑥𝑥

− 𝑥𝛼𝑢
𝑥𝑥
V
𝑥𝑥

− 2𝛼𝑦𝑢
𝑥𝑦
V
𝑥𝑥

+ 2𝛼𝑡V
𝑥
𝑢
𝑡𝑥𝑥

+ 4𝛼V
𝑥
𝑢
𝑥𝑥

+ 𝑥𝛼V
𝑥
𝑢
𝑥𝑥𝑥

+ 2𝛼𝑦V
𝑥
𝑢
𝑥𝑥𝑦

− 2𝛼𝑡V𝑢
𝑡𝑥𝑥𝑥

− 5𝛼V𝑢
𝑥𝑥𝑥

− 2𝛼𝑦V𝑢
𝑥𝑥𝑥𝑦

,

𝑇
3
= −2𝛼𝑦V𝑢

𝑡𝑡
+ 2𝛼𝑦V𝑢

𝑥𝑥
+ 4𝛼
2
𝑦V𝑢2
𝑥

+ 4𝛼
2
𝑦V𝑢𝑢
𝑥𝑥

+ 2𝛼𝑦V𝑢
𝑥𝑥𝑥𝑥

+ V
𝑦

+ 2𝛼𝑢V
𝑦
+ 2𝛼𝑡𝑢

𝑡
V
𝑦
+ 𝑥𝛼𝑢

𝑥
V
𝑦
+ 2𝛼𝑦𝑢

𝑦
V
𝑦

− 4𝛼V𝑢
𝑦
− 𝑥𝛼V𝑢

𝑥𝑦
− 2𝛼𝑡V𝑢

𝑡𝑦
.

(54)

4. Conclusions

In this paper, for the first time, Lie symmetries as well as the
simplest equation method were used to obtain exact solu-
tions of the (2+1)-dimensional Boussinesq equation (1). The
solutions obtained were solitary waves and nontopological
soliton. It is obvious from the analysis we conducted that the
(2+1)-dimensional equation gives rise to a variety of solitary
wave solutions that ranges from kink to soliton solutions.The
obtained kink and soliton solutions are regular solitons given
in the form of hyperbolic tan or the sech2 form. Moreover,
the conservation laws for the (2+1)-dimensional Boussinesq
equation were also derived by using the new conservation
theorem due to Ibragimov [29].
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