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We study the existence of periodic solutions of the second-order differential equation 𝑥󸀠󸀠 + 𝑎𝑥+ − 𝑏𝑥− + 𝑔(𝑥(𝑡 − 𝜏)) = 𝑝(𝑡), where
𝑎, 𝑏 are two constants satisfying 1/√𝑎+1/√𝑏 = 2/𝑛, 𝑛 ∈ 𝑁, 𝜏 is a constant satisfying 0 ≤ 𝜏 < 2𝜋, 𝑔, 𝑝 : 𝑅 → 𝑅 are continuous, and
𝑝 is 2𝜋-periodic. When the limits lim

𝑥→±∞
𝑔(𝑥) = 𝑔(±∞) exist and are finite, we give some sufficient conditions for the existence

of 2𝜋-periodic solutions of the given equation.

1. Introduction

In this paper, we are concerned with the existence of periodic
solutions of the second-order differential equation with an
asymmetric nonlinearity and a deviating argument:

𝑥
󸀠󸀠
+ 𝑎𝑥
+
− 𝑏𝑥
−
+ 𝑔 (𝑥 (𝑡 − 𝜏)) = 𝑝 (𝑡) , (1)

where 𝑎, 𝑏 are two constants satisfying 1/√𝑎 + 1/√𝑏 = 2/𝑛,
𝑛 ∈ 𝑁, 𝜏 is a constant satisfying 0 ≤ 𝜏 < 2𝜋, 𝑔, 𝑝 : 𝑅 → 𝑅

are continuous, and 𝑝 is 2𝜋-periodic.
In recent years, the periodic problem of the second-order

differential equation with a deviating argument has been
widely studied because of its background in applied sciences
(see [1–6] and the references cited therein).

In case when 𝜏 = 0 and 𝑎 = 𝑏 = 𝑛2, (1) becomes

𝑥
󸀠󸀠
+ 𝑛
2
𝑥 + 𝑔 (𝑥) = 𝑝 (𝑡) . (2)

Assume that the limits
lim
𝑥→±∞

𝑔 (𝑥) = 𝑔 (±∞) (𝑔)

exist and are finite. Lazer and Leach [7] proved that (2) has
one 2𝜋-periodic solution provided that the function

Ψ (𝜃) = 2 [𝑔 (+∞) − 𝑔 (−∞)] − ∫

2𝜋

0

𝑝 (𝑡) sin 𝑛 (𝑡 + 𝜃) 𝑑𝑡

(3)

is of constant sign.

In case when 𝜏 = 0 and 𝑎, 𝑏 satisfy the equation 1/√𝑎 +
1/√𝑏 = 2/𝑛, 𝑛 ∈ 𝑁, (1) becomes

𝑥
󸀠󸀠
+ 𝑎𝑥
+
− 𝑏𝑥
−
+ 𝑔 (𝑥) = 𝑝 (𝑡) . (4)

Equation (4) was first introduced by Fuč́ık [8]. Lately, the
periodic problem of (4) was widely studied in the literature
(see [9–13] and the references cited therein). To deal with the
existence of periodic solutions of (4), Dancer [9] introduced
a 2𝜋/𝑛-periodic function

Φ (𝜃) = 2𝑛 [

𝑔 (+∞)

𝑎

−

𝑔 (−∞)

𝑏

] − ∫

2𝜋

0

𝑝 (𝑡) 𝑐 (𝑡 + 𝜃) 𝑑𝑡,

(5)

where 𝑐(𝑡) is a 2𝜋/𝑛-periodic function defined by

𝑐 (𝑡) =

{
{
{

{
{
{

{

1

√𝑎

sin (√𝑎𝑡) , 0 ≤ 𝑡 ≤

𝜋

√𝑎

,

−√
1

𝑏

sin [√𝑏(𝑡 − 𝜋

√𝑎

)] ,

𝜋

√𝑎

≤ 𝑡 ≤

2𝜋

𝑛

.

(6)

Obviously, 𝑐(𝑡) is a periodic solution of the equation 𝑥󸀠󸀠 +
𝑎𝑥
+
−𝑏𝑥
−
= 0 satisfying the initial value𝑥(0) = 0, 𝑥󸀠(0) = 1. It

was proved in [9] that (4) has at least one 2𝜋-periodic solution
provided that Φ has a constant sign in [0, 2𝜋/𝑛).

In the present paper, we will deal with the periodic
solutions of (1) under condition (𝑔). Owing to the appearance



2 Abstract and Applied Analysis

of the asymmetric nonlinearity 𝑎𝑥+ − 𝑏𝑥−, the methods in
[4, 5] are no longer valid. To overcome this difficulty, we
embed (1) into an operator equation with the form 𝐿𝑥 =

𝑁(𝑥, 𝜆) instead of 𝐿𝑥 = 𝜆𝑁𝑥 as in [4, 5]. We first prove a
continuation lemma and then apply this continuation lemma
to prove the existence of periodic solution of (1).

Let us denote

] = 𝜏 (mod 2𝜋
𝑛

) . (7)

Obviously, we have

0 ≤ ] <
2𝜋

𝑛

. (8)

We obtain the following result.

Theorem 1. Assume that condition (𝑔) holds and 0 ≤ ] ≤
min{𝜋/√𝑎, 𝜋/√𝑏}. Then (1) has at least one 2𝜋-periodic
solution provided that either

𝑛𝑔 (−∞)(

1 − cos√𝑎]
𝑎

−

1 + cos√𝑏]
𝑏

)

+ 𝑛𝑔 (+∞)(

1 + cos√𝑎]
𝑎

−

1 − cos√𝑏]
𝑏

)

̸= ∫

2𝜋

0

𝑝 (𝑡) 𝑐 (𝑡 + 𝜃) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋]

(9)

or

𝑛 (𝑔 (−∞) − 𝑔 (+∞))(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

)

̸= ∫

2𝜋

0

𝑝 (𝑡) 𝑠 (𝑡 + 𝜃) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋]

(10)

holds, where the function 𝑠 is defined by 𝑠(𝑡) = 𝑐󸀠(𝑡), 𝑡 ∈ 𝑅.

Remark 2. In the case when min{𝜋/√𝑎, 𝜋/√𝑏} ≤ ] < 2𝜋/𝑛,
we can obtain the similar sufficient conditions. For brevity, we
omit the detailed description.

Remark 3. Obviously, if ] = 0 or 𝜏 = 2𝑘𝜋/𝑛, 𝑘 = 0, 1, 2, . . . , 𝑛−
1, then the first inequality of Theorem 1 reduces to the
condition as in [8]; namely,

2𝑛 [

𝑔 (+∞)

𝑎

−

𝑔 (−∞)

𝑏

] ̸= ∫

2𝜋

0

𝑝 (𝑡) 𝑐 (𝑡 + 𝜃) 𝑑𝑡,

∀𝜃 ∈ [0, 2𝜋] .

(11)

Throughout this paper, we always useR to denote the real
number set. For amultivariate function 𝜁 depending on 𝑟, the
notation 𝜁 = 𝑜(1) always means that, for 𝑟 → ∞, 𝜁 → 0

holds uniformly with respect to other variables, whereas 𝜁 =
𝑂(1) (or 𝜁 = 𝑂(𝑟−1)) always means that 𝜁 (or 𝑟 ⋅ 𝜁) is bounded
for 𝑟 large enough. For any continuous 2𝜋-periodic function
𝜙(𝑡), we always set ‖𝜙‖

∞
= max

0≤𝑡≤2𝜋
|𝜙(𝑡)|.

2. Preliminary Lemmas

We now embed (1) into a family of equations with one
parameter 𝜆 ∈ [0, 1],

𝑥
󸀠󸀠
+ 𝑎𝑥
+
− 𝑏𝑥
−
+ (1 − 𝜆) 𝜓 (𝑥

󸀠
) + 𝜆𝑔 (𝑥 (𝑡 − 𝜏)) = 𝜆𝑝 (𝑡) ,

(12)

where 𝜓 : 𝑅 → 𝑅 is continuous and satisfies the sign
condition as follows:

𝜓 (𝑥) 𝑥 > 0, ∀𝑥 ∈ 𝑅, 𝑥 ̸= 0. (13)

Lemma 4. Suppose that there exist two positive constants𝑀
1

and𝑀
2
such that, for any 2𝜋-periodic solution 𝑥(𝑡) of (12), the

following conditions hold:

‖𝑥‖
∞
< 𝑀
1
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞
< 𝑀
2
. (14)

Then (1) has at least one 2𝜋-periodic solution.

Proof. We follow an argument in [14] to prove Lemma 4.
At first, we introduce some notations. Let 𝑋 and 𝑌 be two
Banach spaces defined by

𝑋 = {𝑥 ∈ 𝐶
1

(R,R) : 𝑥 (𝑡 + 2𝜋) = 𝑥 (𝑡) , ∀𝑡 ∈ R} ,

𝑌 = {𝑦 ∈ 𝐶 (R,R) : 𝑦 (𝑡 + 2𝜋) = 𝑦 (𝑡) , ∀𝑡 ∈ R} ,
(15)

with the norms

‖𝑥‖
𝑋
= max {‖𝑥‖

∞
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞
} ,

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝑌
=
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩∞
. (16)

Define a linear operator by

𝐿 : 𝐷 (𝐿) ⊂ 𝑋 󳨀→ 𝑌, 𝐿𝑥 = 𝑥
󸀠󸀠
, (17)

where 𝐷(𝐿) = {𝑥 ∈ 𝑋 : 𝑥
󸀠󸀠
∈ 𝐶(R,R)}, and a nonlinear

operator𝑁 : 𝑋 × [0, 1] → 𝑌,

𝑁(𝑥, 𝜆) (𝑡) = − (𝑎𝑥
+
− 𝑏𝑥
−
) − (1 − 𝜆) 𝜓 (𝑥

󸀠
)

− 𝜆𝑔 (𝑥 (𝑡 − 𝜏)) + 𝜆𝑝 (𝑡) .

(18)

It is easy to see that

Ker 𝐿 = R, Im 𝐿 = {𝑦 ∈ 𝑌 : ∫
𝑇

0

𝑦 (𝑡) 𝑑𝑡 = 0} . (19)

It follows that 𝐿 is a Fredholm mapping of index zero.
Let us define two continuous projectors 𝑃 : 𝑋 → Ker 𝐿

and 𝑄 : 𝑌 → 𝑌 by setting

𝑃𝑥 = 𝑥 (0) , 𝑄𝑦 =

1

𝑇

∫

𝑇

0

𝑦 (𝑡) 𝑑𝑡. (20)

Set 𝐿
𝑃
= 𝐿|
𝐷(𝐿)∩Ker𝑃 → Im 𝐿. Then 𝐿

𝑃
is an algebraic

isomorphism, and we define𝐾
𝑃
: Im 𝐿 → 𝐷(𝐿) by

𝐾
𝑃
= 𝐿
−1

𝑃
. (21)
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Clearly, we have that, for any 𝑦 ∈ Im 𝐿,

(𝐾
𝑃
𝑦) (𝑡) = −

𝑡

𝑇

∫

𝑇

0

(𝑡 − 𝑠) 𝑦 (𝑠) 𝑑𝑠 + ∫

𝑡

0

(𝑡 − 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(22)

For any open bounded set Ω ⊂ 𝑋, we can prove by standard
arguments that 𝐾

𝑃
(𝐼 − 𝑄)𝑁 and 𝑄𝑁 are relatively compact

on the closure Ω. Therefore,𝑁 is 𝐿-compact onΩ.
It is noted that (12), together with the 2𝜋-periodic

boundary condition, is equivalent to the operator equation

𝐿𝑥 = 𝑁 (𝑥, 𝜆) . (23)

LetΩ ⊂ 𝑋 be the open bounded set defined by

Ω = {𝑥 ∈ 𝑋 : ‖𝑥‖
∞
< 𝑀
1
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞
< 𝑀
2
} . (24)

From (14), we have

𝐿𝑥 ̸=𝑁 (𝑥, 𝜆) , for 𝑥 ∈ 𝜕Ω ∩ 𝐷 (𝐿) , 𝜆 ∈ [0, 1] . (25)

Since 𝐿 is a Fredholm operator with index zero and 𝑁 is 𝐿-
compact onΩ× [0, 1], we get from the homotopic invariance
of the coincidence degree that

𝐷
𝐿
(𝐿 − 𝑁 (⋅, 1) , Ω) = 𝐷

𝐿
(𝐿 − 𝑁 (⋅, 0) , Ω) . (26)

Next, we will compute 𝐷
𝐿
(𝐿 − 𝑁(⋅, 0), Ω). To this end, we

introduce an auxiliary operator 𝑆 : Ω × [0, 1] → 𝑌 defined
by

𝑆 (𝑥, 𝜇) = − (𝑎𝑥
+
− 𝑏𝑥
−
) − 𝜓 (𝑥

󸀠
) − 𝜇𝑥

󸀠
. (27)

Clearly, 𝑆 is 𝐿-compact onΩ × [0, 1] and

𝑆 (𝑥, 0) = 𝑁 (𝑥, 0) , for 𝑥 ∈ Ω. (28)

Now, we will prove that

𝐿𝑥 ̸= 𝑆 (𝑥, 𝜇) , for 𝑥 ∈ 𝜕Ω ∩ dom 𝐿, 𝜇 ∈ [0, 1] . (29)

Obviously, it follows from (25) and (28) that

𝐿𝑥 ̸= 𝑆 (𝑥, 0) , for 𝑥 ∈ 𝜕Ω. (30)

On the other hand, if 𝑥 ∈ dom 𝐿 is a solution of 𝐿𝑥 = 𝑆(𝑥, 𝜇),
then 𝑥 satisfies the equation as follows:

𝑥
󸀠󸀠
+ 𝜇𝑥
󸀠
+ (𝑎𝑥

+
− 𝑏𝑥
−
) + 𝜓 (𝑥

󸀠
) = 0. (31)

Multiplying both sides of (31) by 𝑥󸀠 and integrating over
[0, 2𝜋], we get

𝜇∫

2𝜋

0

𝑥
󸀠2

(𝑡) 𝑑𝑡 + ∫

2𝜋

0

𝜓 (𝑥
󸀠
) 𝑥
󸀠
𝑑𝑡 = 0. (32)

If 𝜇 > 0, then we infer from (13) and (32) that 𝑥󸀠(𝑡) ≡ 0 for
every 𝑡 ∈ [0, 2𝜋]. Furthermore, 𝑥(𝑡) ≡ 𝑐 for every 𝑡 ∈ [0, 2𝜋],
where 𝑐 is a constant. Consequently, we have 𝑥(𝑡) ≡ 0, and
then 𝑥 ∈ Ω.

From the homotopic invariance of the coincidence
degree, we have

𝐷
𝐿
(𝐿 − 𝑆 (⋅, 0) , Ω) = 𝐷

𝐿
(𝐿 − 𝑆 (⋅, 1) , Ω) . (33)

In the following, we will compute 𝐷
𝐿
(𝐿 − 𝑆(⋅, 1), Ω). To this

end, we use the equality [15] as follows:

󵄨
󵄨
󵄨
󵄨
𝐷
𝐿
(𝐿 − 𝑆 (⋅, 1) , Ω)

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑑
𝐵
(−𝑄𝑆 (⋅, 1)|Ker𝐿, Ω ∩ Ker 𝐿, 0)

󵄨
󵄨
󵄨
󵄨
,

(34)

which holds provided that the following conditions are
satisfied,

𝐿𝑥 ̸= 𝜆𝑆 (𝑥, 1) , ∀𝑥 ∈ 𝜕Ω ∩ dom 𝐿, 𝜆 ∈ (0, 1] , (35)

𝑄𝑆 (𝑥, 1) ̸= 0, ∀𝑥 ∈ 𝜕Ω ∩ Ker 𝐿. (36)

In what follows, we will prove that conditions (35) and (36)
are satisfied. In fact, if 𝑥 ∈ 𝜕Ω ∩ dom 𝐿 is a solution of 𝐿𝑥 =
𝜆𝑆(𝑥, 1), then 𝑥(𝑡) satisfies the equation as follows:

𝑥
󸀠󸀠

(𝑡) + 𝜆𝑥
󸀠
+ 𝜆 (𝑎𝑥

+
− 𝑏𝑥
−
) + 𝜆𝜓 (𝑥

󸀠
) = 0. (37)

Using the same method as before, we can get 𝑥 ∈ Ω. This
is a contradiction. To check condition (36), we notice that if
𝑥 ∈ 𝜕Ω∩Ker 𝐿, then 𝑥(𝑡) = 𝑐󸀠 with |𝑐󸀠| = 𝑀

1
. Hence, we have

that, for 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿,

𝑄𝑆 (𝑥, 1) =

1

𝑇

∫

𝑇

0

(−𝑎𝑥
+
+ 𝑏𝑥
−
) 𝑑𝑡 = −𝑎𝑐

󸀠 or − 𝑏𝑐
󸀠
̸= 0.

(38)

Finally, we can easily calculate the Brouwer degree
𝑑
𝐵
(−𝑄𝑆(⋅, 1)|Ker𝐿, Ω ∩ Ker 𝐿, 0) and obtain

𝑑
𝐵
(−𝑄𝑆(⋅, 1)|Ker𝐿, Ω ∩ Ker 𝐿, 0) = 1. (39)

Therefore, we have

𝐷
𝐿
(𝐿 − 𝑁 (⋅, 1) , Ω) ̸= 0. (40)

Consequently, the equation

𝐿𝑥 = 𝑁 (𝑥, 1) (41)

has at least one 2𝜋-periodic solution. Equivalently, (1) has at
least one 2𝜋-periodic solution.

Remark 5. In (12), if 𝜓 satisfies the following condition,

𝑥𝜓 (𝑥) < 0, ∀𝑥 ∈ R, 𝑥 ̸= 0, (42)

then the conclusion of Lemma 4 still holds.This claim can be
proved by using the samemethod as the one used for proving
Lemma 4. In fact, we only need to modify the term −𝜇𝑥󸀠 in
the auxiliary operator 𝑆(𝑥, 𝜇) to the term 𝜇𝑥󸀠.
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3. Periodic Solutions of Duffing Equation with
a Deviating Argument

At first, we choose a continuous function 𝜓 : 𝑅 → 𝑅

satisfying

lim
𝑥→±∞

𝜓 (𝑥) = 𝜓 (±∞) , (43)

where 𝜓(±∞) ∈ 𝑅 are constants. Moreover, 𝜓 satisfies
condition (13).

Considering the equivalent system of (12),

𝑥
󸀠
= 𝑦,

𝑦
󸀠
= − (𝑎𝑥

+
− 𝑏𝑥
−
) − 𝜆𝑔 (𝑥 (𝑡 − 𝜏)) − (1 − 𝜆) 𝜓 (𝑥

󸀠
)

+ 𝜆𝑝 (𝑡) .

(44)

Let 𝑥(𝑡) be any (possible) 2𝜋-periodic solution of (12). Write
𝑦(𝑡) = 𝑥

󸀠
(𝑡). Then, (𝑥(𝑡), 𝑦(𝑡)) is a 2𝜋-periodic solution of

system (44).
In what follows, we will introduce a transformation. To

this end, let us denote by 𝑐(𝑡) a solution of equation 𝑥󸀠󸀠+𝑎𝑥+−
𝑏𝑥
−
= 0 satisfying the initial condition 𝑐(0) = 0, 𝑐󸀠(0) = 1.

Obviously, 𝑐(𝑡) is 2𝜋/𝑛-periodic.The derivative of 𝑐(𝑡)will be
denoted by 𝑠(𝑡) = 𝑐󸀠(𝑡). It is easy to check that the following
properties are satisfied:

(1) 𝑐(𝑡 + 2𝜋/𝑛) = 𝑐(𝑡), 𝑠(𝑡 + 2𝜋/𝑛) = 𝑠(𝑡).

(2) 𝑐󸀠(𝑡) = 𝑠(𝑡), 𝑠󸀠(𝑡) = −(𝑎𝑐+(𝑡) − 𝑏𝑐−(𝑡)).

(3) 𝑠(𝑡)2 + 𝑎𝑐+(𝑡)2 + 𝑏𝑐−(𝑡)2 = 1, ∀𝑡 ∈ 𝑅.

Let us define a mappingΦ : (𝜃, 𝜌) ∈ 𝑆1 ×(0, +∞) → (𝑥, 𝑦) ∈

𝑅
2
\ {0} as follows:

𝑥 = 𝜌
1/2
𝑐 (

𝜃

𝑛

) , 𝑦 = 𝜌
1/2
𝑠 (

𝜃

𝑛

) , (45)

where 𝑆1 = 𝑅/2𝜋𝑍.
Under the transformation Φ, if |𝑥(𝑡)| + |𝑦(𝑡)| ̸= 0, ∀𝑡 ∈

[0, 2𝜋], then the 2𝜋-periodic solution (𝑥(𝑡), 𝑦(𝑡)) of system
(44) can be expressed in the form (𝜌(𝑡), 𝜃(𝑡)) satisfying the
equations as follows:

𝑑𝜌

𝑑𝑡

= −2𝜆𝜌
1/2

× (𝑔(𝜌
1/2

(𝑡 − 𝜏) 𝑐 (

𝜃 (𝑡 − 𝜏)

𝑛

)) 𝑠 (

𝜃

𝑛

) − 𝑝 (𝑡) 𝑠 (

𝜃

𝑛

))

− 2 (1 − 𝜆) 𝜌
1/2
𝜓(𝜌
1/2
𝑠 (

𝜃

𝑛

)) 𝑠 (

𝜃

𝑛

) ,

𝑑𝜃

𝑑𝑡

= 𝑛 + 𝑛𝜆𝜌
−1/2

× (𝑔(𝜌
1/2

(𝑡 − 𝜏) 𝑐 (

𝜃 (𝑡 − 𝜏)

𝑛

)) 𝑐 (

𝜃

𝑛

) − 𝑝 (𝑡) 𝑐 (

𝜃

𝑛

))

+ 𝑛 (1 − 𝜆) 𝜌
−1/2
𝜓(𝜌
1/2
𝑠 (

𝜃

𝑛

)) 𝑐(

𝜃

𝑛

) .

(46)

Let us denote (𝜌
0
, 𝜃
0
) = (𝜌(0), 𝜃(0)). Fromnowon, we always

assume that 𝑔 is bounded. From the first equation of (46) we
get that

𝑑𝜌
1/2

𝑑𝑡

= − 𝜆𝑔(𝜌
1/2

(𝑡 − 𝜏) 𝑐 (

𝜃 (𝑡 − 𝜏)

𝑛

)) 𝑠 (

𝜃

𝑛

)

+ 𝜆𝑝 (𝑡) 𝑠 (

𝜃

𝑛

) − (1 − 𝜆) 𝜓(𝜌
1/2
𝑠 (

𝜃

𝑛

)) 𝑠 (

𝜃

𝑛

) .

(47)

Therefore, we have

𝜌(𝑡)
1/2
= 𝜌
1/2

0
+ 𝑂 (1) . (48)

Furthermore, we get

𝜌(𝑡)
−1/2

= 𝜌
−1/2

0
+ 𝑂 (𝜌

−1

0
) . (49)

From the second equation of (46), we have

𝑑𝜃

𝑑𝑡

= 𝑛 + 𝑂 (𝜌
−1/2

0
) . (50)

As a result,

𝜃 (𝑡) = 𝜃
0
+ 𝑛𝑡 + 𝑂 (𝜌

−1/2

0
) . (51)

Substituting (51) in (47), we obtain that, for 𝑡 ∈ [0, 2𝜋],

𝑑𝜌
1/2

𝑑𝑡

= − 𝜆𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)

+ 𝜆𝑝 (𝑡) 𝑠 (𝑡 +

𝜃
0

𝑛

) − (1 − 𝜆) 𝜓(𝜌
1/2
𝑠 (

𝜃

𝑛

)) 𝑠 (

𝜃

𝑛

)

+ 𝑂 (𝜌
−1/2

0
) .

(52)

Consequently,

𝜌
1/2

(2𝜋)

= 𝜌
1/2

0
− 𝜆∫

2𝜋

0

𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

− (1 − 𝜆) ∫

2𝜋

0

𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

+ 𝜆∫

2𝜋

0

𝑝 (𝑡) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡 + 𝑂 (𝜌
−1/2

0
) .

(53)
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Similarly, substituting (51) in the second equality of (44), we
get that, for 𝑡 ∈ [0, 2𝜋],

𝑑𝜃

𝑑𝑡

= 𝑛 + 𝑛𝜆𝜌
−1/2

0
𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1))

× 𝑐 (𝑡 +

𝜃
0

𝑛

) − 𝑛𝜆𝜌
−1/2

0
𝑝 (𝑡) 𝑐 (𝑡 +

𝜃
0

𝑛

)

+ 𝑛 (1 − 𝜆) 𝜌
−1/2

0
𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1))

× 𝑐 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (𝜌
−1

0
) .

(54)

Therefore, we have

𝜃 (2𝜋)

= 𝜃
0
+ 2𝑛𝜋 + 𝑛𝜆𝜌

−1/2

0

× ∫

2𝜋

0

𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

+ 𝑛 (1 − 𝜆) 𝜌
−1/2

0

× ∫

2𝜋

0

𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

− 𝑛𝜆𝜌
−1/2

0
∫

2𝜋

0

𝑝 (𝑡) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡 + 𝑂 (𝜌
−1

0
) .

(55)

Write

𝜓
1
(𝜃
0
) = ∫

2𝜋

0

𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡,

𝜓
2
(𝜃
0
) = ∫

2𝜋

0

𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡,

𝜓
3
(𝜃
0
) = ∫

2𝜋

0

𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡,

𝜓
4
(𝜃
0
) = ∫

2𝜋

0

𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡.

(56)

Recalling that ] = 𝜏(mod(2𝜋/𝑛)) and 0 ≤ ] < 2𝜋/𝑛, we have
the following estimates.

Lemma 6. Assume that condition (𝑔) holds. Then, for 𝜌
0
→

+∞,

𝜓
1
(𝜃
0
)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−𝑛 (𝑔 (+∞) − 𝑔 (−∞))(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

)

+𝑜 (1) ,

𝑓𝑜𝑟 ] ≤
𝜋

√𝑎

≤

𝜋

√𝑏

, or ] ≤ 𝜋

√𝑏

≤

𝜋

√𝑎

,

𝑛 (𝑔 (+∞) − 𝑔 (−∞))

× [

sin√𝑏 (] − 𝜋/√𝑎)
√𝑏

−

sin√𝑏]
√𝑏

] + 𝑜 (1) ,

𝑓𝑜𝑟

𝜋

√𝑎

< ] ≤
𝜋

√𝑏

,

𝑛 (𝑔 (+∞) − 𝑔 (−∞))

×[

sin√𝑎 (] − 𝜋/√𝑏)
√𝑎

−

sin√𝑎]
√𝑎

] + 𝑜 (1) ,

𝑓𝑜𝑟

𝜋

√𝑏

< ] ≤
𝜋

√𝑎

,

𝑛 (𝑔 (+∞) − 𝑔 (−∞))

×[

sin√𝑎 (] − 𝜋/√𝑏)
√𝑎

+

sin√𝑏 (] − 𝜋/√𝑎)
√𝑏

]

+𝑜 (1) ,

𝑓𝑜𝑟

𝜋

√𝑎

≤

𝜋

√𝑏

< ] or 𝜋
√𝑏

≤

𝜋

√𝑎

< ].

(57)

Proof. We only give the proof for the case 0 ≤ ] ≤ 𝜋/√𝑎 ≤
𝜋/√𝑏 < 2𝜋/𝑛. The other cases can be treated similarly. Since
𝑠(𝑡) is 2𝜋/𝑛-periodic, it follows from the expression of 𝜓

1
(𝜃
0
)

that

𝜓
1
(𝜃
0
) = ∫

2𝜋

0

𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

= ∫

2𝜋

0

𝑔 (𝜌
1/2

0
𝑐 (𝑢) + 𝑂 (1)) 𝑠 (𝑢 + 𝜏) 𝑑𝑢

= ∫

2𝜋

0

𝑔 (𝜌
1/2

0
𝑐 (𝑢) + 𝑂 (1)) 𝑠 (𝑢 + ]) 𝑑𝑢.

(58)

From the dominated convergent theorem, we have that, for
𝜌
0
→ ∞,

𝜓
1
(𝜃
0
)

= 𝑛𝑔 (+∞)∫

𝜋/√𝑎

0

𝑠 (𝑢 + ]) 𝑑𝑢 + 𝑛𝑔 (−∞)

× ∫

2𝜋/𝑛

𝜋/√𝑎

𝑠 (𝑢 + ]) 𝑑𝑢 + 𝑜 (1)

= 𝑛𝑔 (+∞)[∫

𝜋/√𝑎−]

0

𝑠 (𝑢 + ]) 𝑑𝑢 + ∫
𝜋/√𝑎

𝜋/√𝑎−]
𝑠 (𝑢 + ]) 𝑑𝑢]
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+ 𝑛𝑔 (−∞)[∫

2𝜋/𝑛−]

𝜋/√𝑎

𝑠 (𝑢 + ]) 𝑑𝑢

+∫

2𝜋/𝑛

2𝜋/𝑛−]
𝑠 (𝑢 + ]) 𝑑𝑢] + 𝑜 (1)

= −𝑛𝑔 (+∞)(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

)

+ 𝑛𝑔 (−∞)(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

) + 𝑜 (1)

= −𝑛 (𝑔 (+∞) − 𝑔 (−∞))(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

) + 𝑜 (1) .

(59)

Lemma 7. Assume that condition (𝑔) holds. Then, for 𝜌
0
→

+∞,

𝜓
2
(𝜃
0
)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑛𝑔 (+∞)(

1 + cos√𝑎]
𝑎

−

1 − cos√𝑏]
𝑏

)

+𝑛𝑔 (−∞)(

1 − cos√𝑎]
𝑎

−

1 + cos√𝑏]
𝑏

) + 𝑜 (1) ,

𝑓𝑜𝑟 ] ≤
𝜋

√𝑎

≤

𝜋

√𝑏

, or ] ≤ 𝜋

√𝑏

≤

𝜋

√𝑎

,

𝑛𝑔 (+∞)[

cos√𝑏] − cos√𝑏 (] − 𝜋/√𝑎)
𝑏

] + 𝑛𝑔 (−∞)

×[(

2

𝑎

−

2

𝑏

) −

cos√𝑏] − cos√𝑏 (] − 𝜋/√𝑎)
𝑏

]

+𝑜 (1) ,

𝑓𝑜𝑟

𝜋

√𝑎

< ] ≤
𝜋

√𝑏

,

𝑛𝑔 (+∞)[(

2

𝑎

−

2

𝑏

) −

cos√𝑎 (] − 𝜋/√𝑏) − cos√𝑎]
𝑎

]

+𝑛𝑔 (−∞)[

cos√𝑎 (] − 𝜋/√𝑏) − cos√𝑎]
𝑎

]

+𝑜 (1) ,

𝑓𝑜𝑟

𝜋

√𝑏

< ] ≤
𝜋

√𝑎

,

𝑛𝑔 (+∞)[

1 − cos√𝑎 (] − 𝜋/√𝑏)
𝑎

−

1 + cos√𝑏 (] − 𝜋/√𝑎)
𝑏

]

+𝑛𝑔 (−∞)[

1 + cos√𝑎 (] − 𝜋/√𝑏)
𝑎

−

1 − cos√𝑏 (] − 𝜋/√𝑎)
𝑏

]

+𝑜 (1) ,

𝑓𝑜𝑟

𝜋

√𝑎

≤

𝜋

√𝑏

< ] or 𝜋
√𝑏

≤

𝜋

√𝑎

< ].

(60)

Proof. We also only give the proof for the case 0 ≤

] ≤ 𝜋/√𝑎 ≤ 𝜋/√𝑏 < 2𝜋/𝑛. The other cases can be
treated similarly. Since 𝑐(𝑡) is 2𝜋/𝑛-periodic, it follows from
the expression of 𝜓

2
(𝜃
0
) and the dominated convergent

theorem that, for 𝜌
0
→ ∞,

𝜓
2
(𝜃
0
)

= ∫

2𝜋

0

𝑔(𝜌
1/2

0
𝑐 (𝑡 − 𝜏 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

= ∫

2𝜋

0

𝑔 (𝜌
1/2

0
𝑐 (𝑢) + 𝑂 (1)) 𝑐 (𝑢 + 𝜏) 𝑑𝑢

= ∫

2𝜋

0

𝑔 (𝜌
1/2

0
𝑐 (𝑢) + 𝑂 (1)) 𝑐 (𝑢 + ]) 𝑑𝑢

= 𝑛𝑔 (+∞)∫

𝜋/√𝑎

0

𝑐 (𝑢 + ]) 𝑑𝑢

+ 𝑛𝑔 (−∞)∫

2𝜋/𝑛

𝜋/√𝑎

𝑐 (𝑢 + ]) 𝑑𝑢 + 𝑜 (1)

= 𝑛𝑔 (+∞)

× [∫

𝜋/√𝑎−]

0

𝑐 (𝑢 + ]) 𝑑𝑢 + ∫
𝜋/√𝑎

𝜋/√𝑎−]
𝑐 (𝑢 + ]) 𝑑𝑢]

+ 𝑛𝑔 (−∞)

× [∫

2𝜋/𝑛−]

𝜋/√𝑎

𝑐 (𝑢 + ]) 𝑑𝑢 + ∫
2𝜋/𝑛

2𝜋/𝑛−]
𝑐 (𝑢 + ]) 𝑑𝑢] + 𝑜 (1)

= 𝑛𝑔 (+∞)(

1 + cos√𝑎]
𝑎

−

1 − cos√𝑏]
𝑏

)

+ 𝑛𝑔 (−∞)(

1 − cos√𝑎]
𝑎

−

1 + cos√𝑏]
𝑏

) + 𝑜 (1) .

(61)

Lemma 8. Assume that condition (43) holds. Then, for 𝜌
0
→

+∞,

𝜓
3
(𝜃
0
) = 2 [𝜓 (+∞) − 𝜓 (−∞)] + 𝑜 (1) ,

𝜓
4
(𝜃
0
) = 𝑛 [𝜓 (+∞) + 𝜓 (−∞)] (

1

𝑎

−

1

𝑏

) + 𝑜 (1) .

(62)

Proof. From the expression of 𝜓
3
(𝜃
0
) and the dominated

convergent theorem we have that, for 𝜌
0
→ ∞,

𝜓
3
(𝜃
0
)

= ∫

2𝜋

0

𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑠 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

= ∫

2𝜋

0

𝜓 (𝜌
1/2

0
𝑠 (𝑢) + 𝑂 (1)) 𝑠 (𝑢) 𝑑𝑢



Abstract and Applied Analysis 7

= 𝑛𝜓 (+∞)(∫

𝜋/2√𝑎

0

𝑠 (𝑢) 𝑑𝑢 + ∫

2𝜋/𝑛

𝜋/√𝑎+𝜋/2√𝑏

𝑠 (𝑢) 𝑑𝑢)

+ 𝑛𝜓 (−∞)(∫

𝜋/√𝑎

𝜋/2√𝑎

𝑠 (𝑢) 𝑑𝑢 + ∫

𝜋/√𝑎+𝜋/2√𝑏

𝜋/√𝑎

𝑠 (𝑢) 𝑑𝑢)

+ 𝑜 (1)

= 2 [𝜓 (+∞) − 𝜓 (−∞)] + 𝑜 (1) .

(63)

Similarly, we have that, for 𝜌
0
→ +∞,

𝜓
4
(𝜃
0
)

= ∫

2𝜋

0

𝜓(𝜌
1/2

0
𝑠 (𝑡 +

𝜃
0

𝑛

) + 𝑂 (1)) 𝑐 (𝑡 +

𝜃
0

𝑛

)𝑑𝑡

= ∫

2𝜋

0

𝜓 (𝜌
1/2

0
𝑠 (𝑢) + 𝑂 (1)) 𝑐 (𝑢) 𝑑𝑢

= 𝑛𝜓 (+∞)(∫

𝜋/2√𝑎

0

𝑐 (𝑢) 𝑑𝑢 + ∫

2𝜋/𝑛

(𝜋/√𝑎)+(𝜋/2√𝑏)

𝑐 (𝑢) 𝑑𝑢)

+ 𝑛𝜓 (−∞)(∫

𝜋/√𝑎

𝜋/2√𝑎

𝑐 (𝑢) 𝑑𝑢 + ∫

(𝜋/√𝑎)+(𝜋/2√𝑏)

𝜋/√𝑎

𝑐 (𝑢) 𝑑𝑢)

+ 𝑜 (1) = 𝑛 [𝜓 (+∞) + 𝜓 (−∞)] (

1

𝑎

−

1

𝑏

) + 𝑜 (1) .

(64)

Proof of Theorem 1. We proceed to prove Theorem 1 in two
different cases.
(1) Assume that the first inequality of Theorem 1 holds.

Without loss of generality, we assume

𝑛𝑔 (−∞)(

1 − cos√𝑎]
𝑎

−

1 + cos√𝑏]
𝑏

)

+ 𝑛𝑔 (+∞)(

1 + cos√𝑎]
𝑎

−

1 − cos√𝑏]
𝑏

)

> ∫

2𝜋

0

𝑝 (𝑡) 𝑐 (𝑡 + 𝜃) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] .

(65)

Let us set

𝜂 (𝜃) = 𝑛𝑔 (−∞)(

1 − cos√𝑎]
𝑎

−

1 + cos√𝑏]
𝑏

)

+ 𝑛𝑔 (+∞)(

1 + cos√𝑎]
𝑎

−

1 − cos√𝑏]
𝑏

)

− ∫

2𝜋

0

𝑝 (𝑡) 𝑐 (𝑡 + 𝜃) 𝑑𝑡 > 0, 𝜃 ∈ [0, 2𝜋] .

(66)

We now choose a function 𝜓 satisfying (43) and (13).
Moreover, 𝜓(±∞) satisfy

𝜇 = [𝜓 (+∞) + 𝜓 (−∞)] (

1

𝑎

−

1

𝑏

) > 0. (67)

Then we infer from Lemmas 7 and 8 that, for 𝜌
0
→ ∞,

𝜃 (2𝜋) = 𝜃
0
+ 2𝑛𝜋 + 𝑛𝜌

−1/2

0
[𝜆𝜂(

𝜃
0

𝑛

) + 𝑛 (1 − 𝜆) 𝜇]

+ 𝑜 (𝜌
−1/2

0
) .

(68)

Since 𝜂(𝜃) > 0, 𝜃 ∈ [0, 2𝜋], and 𝜇 > 0, there exists a constant
𝛾 > 0 such that, for 𝜃 ∈ [0, 2𝜋] and 𝜆 ∈ [0, 1],

𝜆𝜂 (𝜃) + 𝑛 (1 − 𝜆) 𝜇 ≥ 𝛾. (69)

From (68) and (69) we have that, for 𝜌
0
→ ∞,

𝜃 (2𝜋) = 𝜃
0
+ 2𝑛𝜋 + 𝑜 (1) , 𝜃 (2𝜋) > 𝜃

0
+ 2𝑛𝜋. (70)

Consequently, there exists a constant 𝑀 > 0 such that if
(𝜌(𝑡), 𝜃(𝑡)) is a 2𝜋-periodic solution of system (46), then
𝜌(𝑡) ≤ 𝑀, 𝑡 ∈ [0, 2𝜋]. Furthermore, there exist constants
𝑀
1
> 0 and𝑀

2
> 0 such that if 𝑥(𝑡) is a 2𝜋-periodic solution

of (12), then

‖𝑥‖
∞
< 𝑀
1
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞
< 𝑀
2
. (71)

From Lemma 4, we know that (1) has at least one 2𝜋-periodic
solution.
(2) We assume that the second inequality of Theorem 1

holds. Without loss of generality, we assume

𝑛 (𝑔 (−∞) − 𝑔 (+∞))(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

)

> ∫

2𝜋

0

𝑝 (𝑡) 𝑠 (𝑡 + 𝜃) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] .

(72)

Let us set

𝜁 (𝜃) = 𝑛 (𝑔 (−∞) − 𝑔 (+∞))(

sin√𝑎]
√𝑎

+

sin√𝑏]
√𝑏

)

− ∫

2𝜋

0

𝑝 (𝑡) 𝑠 (𝑡 + 𝜃) 𝑑𝑡 > 0, 𝜃 ∈ [0, 2𝜋] .

(73)

Similarly, we choose a continuous function 𝜓 satisfying (43)
and (13). Moreover, 𝜓(±∞) satisfy

𝜇
󸀠
= 𝜓 (+∞) − 𝜓 (−∞) > 0. (74)

Then we infer from Lemmas 7 and 8 that, for 𝜌
0
→ ∞,

𝜌
1/2

(2𝜋) = 𝜌
1/2

0
− [𝜆𝜁(

𝜃
0

𝑛

) + 2 (1 − 𝜆) 𝜇
󸀠
] + 𝑜 (1) . (75)

Since 𝜁(𝜃) > 0, 𝜃 ∈ [0, 2𝜋], and 𝜇󸀠 > 0, there exists a constant
𝛾
󸀠
> 0 such that, for 𝜃 ∈ [0, 2𝜋] and 𝜆 ∈ [0, 1] and 𝜌

0
→ ∞,

𝜆𝜁 (𝜃) + 2 (1 − 𝜆) 𝜇
󸀠
≥ 𝛾
󸀠
. (76)

From (75) and (76) we have that, for sufficiently large 𝜌
0
,

𝜌
1/2

(2𝜋) ≤ 𝜌
1/2

0
−

𝛾
󸀠

2

. (77)
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Consequently, there exists a constant 𝑀󸀠 > 0 such that
if (𝜌(𝑡), 𝜃(𝑡)) is a 2𝜋-periodic solution of system (46), then
𝜌(𝑡) ≤ 𝑀

󸀠, 𝑡 ∈ [0, 2𝜋]. Furthermore, there exist constants
𝑀
󸀠

1
> 0 and𝑀󸀠

2
> 0 such that if 𝑥(𝑡) is a 2𝜋 periodic solution

of (12), then

‖𝑥‖
∞
< 𝑀
󸀠

1
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞
< 𝑀
󸀠

2
. (78)

From Lemma 4 we know that (1) has at least one 2𝜋 periodic
solution.
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