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This paper focuses on the neurodynamical research of a small neural network that consists of 25 neurons. We study the periodic
spontaneous activity and transitions between up and down states without synaptic input. The results demonstrate that these
transitions are bidirectional or unidirectional with the parameters changing, which not only reveals the function of the cortex,
but also cohere with the experiment results.

1. Introduction

Different patterns of brain activity can give rise to different
behavioral states of the animals. Neural electrophysiology
experiments show that during slow-wave sleep in the primary
visual cortex of anesthetized animals [1–3] and during quiet
wakefulness in the somatosensory cortex of unanesthetized
animals [4, 5], the membrane potentials make spontaneous
transitions between two different levels called up and down
states [6]. Transitions between up and down states can also
be evoked by sensory stimulation [1, 4, 7–11]. An interesting
result of these transitions is that sensory-evoked activity
patterns are similar to those produced spontaneously. A hall-
mark of this subthreshold activity is a bimodal distribution of
the membrane potential [12]. However, why these transitions
occur or whether this spontaneous activity engages in brain
functions or not remains unclear. In fact, we know little about
expressions of neuron membrane potentials and interactions
between neural networks, especially the relationship between
neural codingmodes and cognitive behaviors. So our purpose
is to try to understand the inner connection between the up
and down transitions of a single neuron and that of neural
network.

Recent findings show that activation of a single cortical
neuron can significantly modulate sensory and motor out-
puts [13, 14]. Furthermore, repetitive high frequency burst
spiking of a single rat cortical neuron could trigger a switch

between the cortical states resembling slow-wave and rapid-
eye-movement sleep [15]. This is reflected in the switching
of membrane potential of the stimulated neuron from high
frequency and low amplitude oscillations to low frequency
and high amplitude ones or vice versa. At the same time,
cortical local field potential (LFP) changes over time. Here
we use local field potential (LFP) to describe the state
of the whole cortex [16–19]. Therefore, the up and down
states of single neuron reflect distinct global cortical states,
which resemble slow-wave and rapid-eye-movement sleep,
respectively [20–22]. All of these results point to the power
of single cortical neurons in modulating the behavior state
of animals [15]. Here, one single neuron affects the whole
network status by impacting other coupling neurons.

We have started our research on a single neuron, studied
the electrophysiological phenomenon of status transitions,
and obtained the bistability and spontaneity that is similar
to experiment observation. In addition, we found that these
up and down transitions show unidirectional or bidirectional
changing with different parameters. Bistability means that
the neuron stays in one state before stimulation and turn to
another state after stimulation. These two states are called up
state and down state, respectively. That is to say, the neuron
can switch between up and down states. And directivity refers
to the fact that it is not arbitrary to switch from one state
to another. In some cases, transition can only occur from up
state to down state, while it occurs fromdown state to up state
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in other cases. Spontaneity, the periodic spontaneous activity
of neural membrane potential, is the most significant feature
of the transition.

This paper tries to further explore neural dynamic mech-
anism of up and down transitions in a neural network
based on the above results. This work will lay a foundation
for studying the relationship between neural coding and
cognitive behavior. We focus on the dynamic process of the
average membrane potential of a small neural network that
consists of 25 neurons and switches between up and down
states. Andwe observe the difference and distinguish between
transitions in network and one single neuron by numerical
simulation and theoretical analysis. Then we try to know
what happened to the appearance of behavior states and the
inducement of brain cognition. What we want to highlight is
that how great the effect of the emerged relationship between
behavior states and cognition and the ratio of activated
neurons on up and down transitions is.This is also the subject
for our further study.

2. Network Model

There are different kinds of complicated connection between
neurons. According to the topology, some scholars proposed
chain link, ring link, grid link, and so forth [23]. How-
ever, the internal connections between neurons are much
more complicated than those above connections. This paper
constructs a dynamical network model that consists of 25
neurons based on previous study [24]. In this network, any
one neuron connects to any other neurons in the network.
That means every two neurons in the network are coupled
with the connection strength asymmetrically and obeying
standard uniform distribution [25].

The coupling strength between neurons can be expressed
with matrix variable, denoted by 𝐺. Then we have
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where 𝑔
𝑖,𝑗
represents the coupling strength form neuron 𝑖 to

neuron 𝑗. Absolutely, neurons do not couple with themselves,
so these coupling strength denoted by 𝑔

𝑖,𝑗
equals to zero.

To illustrate the state changing of the whole network, we
use the changing of average membrane potential to describe
the changing of local field potential (LFP), which means
that we average membrane potentials of every neuron in the
network to express LFP.

The dynamic model of one neuron in the neural network
is based on H-H equations and is described by (2) to (8).This
dynamic model consists of three ionic currents and synaptic
currents which come from surrounding neurons. The ionic
currents contain an instantaneous, inward current (sodium
current), a slow h-like current [26, 27], and an outward
current (a potassium current and a leak current). Two types of
persistent inward, persistent sodium, and persistent calcium
have been characterized in Purkinje cells [28, 29]. Somatic

Purkinje cell bistability has been associated with persistent
sodiumwhereas dendritic bistability has been shown to result
from persistent calcium conductance. Here we use persistent
sodium in our model for simplicity but it is likely that it is the
combination of these two currents that enables the bistability
[30].

On the basis of previous research, we propose the fol-
lowing neural network model to study the characteristics,
bistability, directivity, and spontaneity, of the up and down
transitions that have been observed in electrophysiology
experiments.Thus, we clarify the neural dynamicmechanism
of the up and down transitions in neural network.The current
equation for the model is
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Here, the ionic currents are as follows:
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The synaptic current is
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The synaptic current of the 𝑖th neuron is a sum of effects
from all the other neurons in the network, so this kind of
current plays a key role in coupling every two neurons in the
whole network. The changing activity of one neuron affects
the whole network states changing through this way.

There are two dynamic variables: membrane potential 𝑉
𝑖

and the inactivation termof the h-current ℎ
𝑖
, whenwe discuss

the bistability and directivity. But when studying the spon-
taneity, we need another variable called the inactivation term
of potassium current 𝑏

𝑖
. The dynamics of the inactivation

terms of h-current and potassium current are
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In these equations, 𝑉
𝑖
represents membrane potential of

the 𝑖th neuron, while 𝐼𝑖
ℎ
, 𝐼
𝑖

𝐾
, 𝐼
𝑖

𝑙
replace a sodium current,

a slow h-like current, and a potassium current and a leak
current of the 𝑖th neuron, respectively. Similarly, 𝑔Na, 𝑔ℎ,
𝑔
𝐾
, 𝑔
𝑙
, respectively, represent the sodium conductance, the

slow h-like conductance, the potassium conductance, and the
leak conductance, and 𝑉Na, 𝑉ℎ, 𝑉𝐾, 𝑉𝑙 are the corresponding
reversal potentials. The inactivation term of the sodium
current, the h-like current, and the potassium current are
described by 𝑚

∞
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∞
, 𝑏
∞
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3. Results

3.1. Bistability. When we studied the single neuron model,
we found that transitions between up and down states can
be induced by two different kinds of stimulus. One is to
add brief outward current pulses; another is to improve the
sodium conductance to a certain value instantaneously. Now,
we research the neural network in the same way to try to find
out that there exist the similar phenomenon or not which
agrees with electrophysiology experiment results.

In the period of 10 seconds, we add a pulse current which
lasts 0.1 second every two seconds, with the current intensity
7.2𝜇A/cm2.The results are shown in Figure 1.We find that the
average membrane potential switches between the up state
(about −45mV) and the down state (about −65mV).

In the period of 10 seconds, we add the stimulation
that lasts 4ms every one or two seconds, leading to the
intensity of sodium conductance changing from0.06mS/cm2
to 1.2mS/cm2 instantaneously. The results are shown in
Figure 2. We find that the average membrane potential
switches between the up state (about −45mV) and the down
state (about −65mV) when adding the same stimulation.
And these transitions are a little bit complex: the membrane
potential rises up to 0mV instantaneously but then drops
quickly.

So from the above two results, we find that this dynamic
model can describe the bistability of up and down transitions
of neural membrane potential in the neural network. That
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Figure 1: Add brief outward current pulses (lasts 0.1 s, every 2 s,
7.2 𝜇A/cm2).
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Figure 2: Increase the sodium conductance instantaneously
(0.06mS/cm2 to 1.2mS/cm2).

means there are two stable states for neural network, with
other states unstable. The network can stay in one of these
two stable states without any input. When the neuron in the
network is stimulated, which destroys its original stability, it
can switch its state from one to another to adjust itself to
a new balance. These two states are called the up state and
the down state, respectively. That is to say, the up and down
transitions can be modulated by external stimulations. The
ionicmovement between inside and outside of themembrane
may be the mechanism of the transitions. When sodium
conductance increases to a certain level, it causes slight
depolarization, activating the sodium channel with sodium
move into cells, which increases the range of the polarization.
In return, the larger the range of depolarization occurs, the
more the sodium channels are activated and the more the
sodium moves into cells. When it arrives to the peak of
membrane potential, the sodium channel is inactivated and
the h-like channel is activated, which leads to repolarization
of the membrane potential. When the membrane potential
reduces to about −45mV, h-like channel is inactivated. At this
point, a new balance between the outflow of potassium and
the inflow of sodium begins. Namely, membrane potential
stays in a stable state. According to the different extent of the
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Figure 3: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 1.2mS/cm2.
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Figure 4: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.09mS/cm2 and 𝑔Na = 1.2mS/cm2.

h-like channel inhibition, themembrane potential stays in the
up state (about −45mV) or the down state (about −65mV).

3.2. Directivity. In the model of a single neuron, directivity
of the transition is modulated by potassium conductance.We
found that when 𝑔

𝑘
= 0.1mS/cm2, membrane potential can

transit both from the down state to the up state and from
the up state to the down state, when 𝑔

𝑘
= 0.09mS/cm2,

membrane potential can only transit from the down state
to the up state, and when 𝑔

𝑘
= 0.105mS/cm2, membrane

potential can only transit from the up state to the down state.
In the model of neural network of this paper, we also do

research on the directivity. And we find that the changing
of sodium conductance can modulate the directivity of the
transitions as well as potassium conductance. Figures 3–
7 describe different transition modes adjusted by different
values of potassium conductance and sodium conductance.
The tops of Figures 3–7 are average membrane potential 𝑉
of the neural network, namely, up and down transitions,
while the bottoms are phase plane for the mean of two kinds
of dynamic variables ℎ and 𝑉 in the model, denoted by
𝑉mean, ℎmean. 𝑉mean is average membrane potential of all the
neurons in the network. ℎmean is average inactivation rate of
all the h-like channel in the network.The red solid line shows

all the points that ℎ = 0, the blue dot line shows all the
points that 𝑉 = 0, and the intersection of these two lines
is stable point of the system. In other words, the two points
are stable states of the network, and other points in the plane
are unstable. That means, the system will stay in any one of
the two stable points after a long run. The green solid line in
the figure presents the transit process from one stable point
to another.

Figure 3 shows that when 𝑔
𝑘
= 0.1mS/cm2, membrane

potential can transit from the down state to the up state
by adding a stimulation that increase sodium conductance
to 𝑔Na = 1.2mS/cm2 instantaneously. With the same
stimulation, it also can transit from the up state to the down
state. So the transitions are bidirectional on condition that
𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 1.2mS/cm2. The h-V phase

plane further shows that the system transmits between the
two stable states.

We can observe the changing of up and down transitions
of the whole network by making some changes on the
potassium conductance while keeping sodium conductance
unchanged; namely, 𝑔Na = 1.2mS/cm2.The results are shown
in Figures 4-5.

Figure 4 represents that when 𝑔
𝑘
= 0.09mS/cm2, the

average membrane potential can transit from the down state
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Figure 5: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.105mS/cm2 and 𝑔Na = 1.2mS/cm2.
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Figure 6: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 0.8mS/cm2.

to the up state by adding a stimulation that increase sodium
conductance instantaneously. But with the same stimulation,
the average membrane potential always stays in the up state
without any change. In other words, the transitions that are
unidirectional vary from the down state to the up state in
the circumstances that 𝑔

𝑘
= 0.09mS/cm2. The h-V phase

plane also shows that the system can only vary from the lower
membrane potential stable point to higher one and thenmove
around the higher one periodically.

Figure 5 reveals that when 𝑔
𝑘

= 0.105mS/cm2, the
average membrane potential can transit from the up state
to the down state by adding a stimulation that increase
sodium conductance instantaneously. However, with the
same stimulation, the average membrane potential always
stays in the down state without any change. In other words,
the transitions that are unidirectional vary from the up
state to the down state under the circumstances that 𝑔

𝑘
=

0.105mS/cm2. The h-V phase plane also presents that the
system can only vary from the higher membrane potential
stable point to lower one and then move around the lower
one periodically.

Accordingly, we can also observe the changing of up
and down transitions of the whole network by making some
changes on the sodiumconductancewhile keeping potassium

conductance unchanged; namely, 𝑔
𝑘
= 0.1mS/cm2. The

results are shown in Figures 6-7.
Figure 6 presents that when 𝑔Na = 0.8mS/cm2, the

average membrane potential can transit from the down state
to the up state by adding a stimulation that increase sodium
conductance instantaneously. But with the same stimulation,
the average membrane potential always stays in the up state
without any change. In other words, the transitions that are
unidirectional vary from the down state to the up state in
the circumstances that 𝑔Na = 0.8mS/cm2. The h-V phase
plane also shows that the system can only vary from the lower
membrane potential stable point to higher one and thenmove
around the higher one periodically.

Figure 7 reveals that when 𝑔Na = 2mS/cm2, the average
membrane potential can transit from the up state to the down
state by adding a stimulation that increase sodium conduc-
tance instantaneously. However, with the same stimulation,
the average membrane potential always stays in the down
state without any change. In other words, the transitions that
are unidirectional vary from the up state to the down state
under the circumstances that 𝑔Na = 2mS/cm2.The h-V phase
plane also presents that the system can only vary from the
highermembrane potential stable point to lower one and then
move around the lower one periodically.
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Figure 7: Average membrane potential 𝑉 and h-V phase plane when 𝑔
𝑘
= 0.1mS/cm2 and 𝑔Na = 2mS/cm2.
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Figure 8: The average membrane potential of spontaneous transitions and its distribution.

The above results reveal that this dynamic model can well
describe the bidirectional or unidirectional characteristic of
up and down transitions of neural network when stimulated
by certain stimulus. These results accord with the results of
a single neuron model. Transitions in the network can be
bidirection from the up state to the down one and vice versa.
And also may be single direction from the up state to the
down one, or only from down state to the up one according
to the different level of conductance.

3.3. Spontaneity. In the discussion of bistability and direction
of the model of a single neuron, we should introduce the
input of synapse to generate the up and down transitions.
Is a neuron still able to up and down transit, if there is no
input of synapse? Virtually, in vivo or in vitro experiments
of animals show that the potential of neural membrane can
transit between up state and down state spontaneously and
periodically. By increasing the variable of the inactivation of
a potassium conductance rate in the original model, we can
obtain the result that is identical to the experimental result.

In this paper, we introduce the dynamic variable b, the
inactivation rate of potassium conductance of each neuron,
to study the spontaneous transitions of neural networks.

The calculated results shown in Figure 8, are case with-
out external stimuli showing that the average membrane
potential transit spontaneously and periodically, while the
distribution graph illustrates the distribution of the average
membrane potential, a two-peak distribution, indicating the
two stable state of up and down transitions of membrane
potential.

By adding the interval of 1 or 2 seconds and lasting
time of 4ms stimuli on this spontaneous network model,
the intensity of sodium conductance increases rapidly from
0.06mS/cm2 to 1.2mS/cm2; the computed results are shown
in Figures 9–11.

The tops of Figures 9(a) and 10(a) show the changes
of membrane potentials after adding stimuli, respectively,
and the bottoms show the corresponding distributions of
membrane potentials.

The simulating results of each neuron stimulated in the
network are shown in Figure 9. Compared with the case
without stimuli, after adding stimuli, the spontaneous tran-
sition of the whole network stops. Because of the disruption
brought by the outer stimuli, the neurons, which should
have been able to transit or transfer to another stable state
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Figure 9: Adding stimuli on each neuron of the spontaneous model to rapidly increase the sodium conductance.
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Figure 10: Adding stimuli on some neurons of the spontaneous model to rapidly increase the sodium conductance.

or to the original stable state of itself. However, for the
whole network, the instant time for transition is different
for each neuron, so the ability of network transition is not
well obtained just by averaging the membrane potential.
As a result, all the transitions we could see are caused by
external stimuli, on the contrary, not all the stimuli can
generate transition. For instance, the stimulus at 8 s fails
to generate the state transition, which indicates that these
transitions have something to do with the state of neural
network. The network in a down state is more susceptible to
external stimuli and transits, while in the up state it is not
susceptible to external stimuli, since the network has a strong
self-stability.

The simulating results of some neurons stimulated in the
network are shown in Figure 10. Comparedwith the results in
Figure 9, this network maintains its spontaneous transition
ability; that is to say, it transits at the moment without any
stimulus. On the other hand, the input of synapse is also
able to let the state of the network transit and each stimulus
leads to a state transition. Because there is coupling among
the neurons, when a neuron is stimulated, such stimulus is
certainly transmitted to everywhere else in the network by
coupling, so as to change the state of the whole network.

To observe this transmission, Figure 11 shows the mem-
brane potential of a neuron that is directly and indirectly
stimulated, respectively. The results of the their potential
are similar, since when a neuron is directly stimulated, its
membrane potential changes correspondingly, and according
to (8), this change transmits to others without delay. This is
one of the aspects for our further improvement in the future.

The obtained results illustrate that this dynamical model
dose can depict the phenomenon of the spontaneous and
periodical transitions. By adjusting the number of the stimu-
lated neurons, the situation of transition of a network differs.
When every neuron is stimulated, the spontaneous transition
of a network disappears, and the external stimuli play an
important role on transitions. When a stimulus is added
to a single neuron, besides the spontaneous transitions, the
network is also able to respond to the external stimuli and
transit. Such transmission between the coupling neurons is
very fast and has no delay.

4. Conclusion

This paper constructs a dynamical network model that
consists of 25 neurons which can show the up and down
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Figure 11: Membrane potential of a neuron is stimulated directly or indirectly, respectively.

transitions, describing three characteristics, bistability, direc-
tivity, and spontaneity, of up and down transitions. The main
conclusions are as follows.

(1) This dynamic model can describe the bistalility of up
and down transitions of the neural network modu-
lated by external stimulations and sodium conduc-
tance.

(2) The dynamic model can describe the bidirectional or
unidirectional characteristic of up and down transi-
tions of the neural network controlled by potassium
conductance and potassium conductance.

(3) The dynamic model can describe periodic sponta-
neous transitions between the up and down states in
absence of input and transitions will become complex
when adding synaptic input.

The above conclusions are similar to the results of up and
down transitions of a single neuron, since the characteristic
of a single neuron’s bursting dominates the real activities
of the neural networks and the dynamic of a single neuron
represents the behavior of the whole networks. In this paper,
the study of up and down transitions is proposed as a prepa-
ration for the further scope of large-scale neural population
and up and down transitions of network behaviors, so as
to understand the effect of a single neuron’s transitions on
network behaviors under the condition of coupling of neural
population as a sort of foundation of the research of the
dynamical mechanism of neural spikes between a single
neuron and the networks behaviors.
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