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Different non-Fourier models of heat conduction have been considered in recent years, in a growing area of applications, to model
microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer. In this work, using Fourier transforms,
we obtain exact solutions for different lagging models of heat conduction in a semi-infinite domain, which allow the construction
of analytic-numerical solutions with prescribed accuracy. Examples of numerical computations, comparing the properties of the
models considered, are presented.

1. Introduction

Non-Fourier models of heat conduction have increasingly
been considered in recent years to model microscale and
ultrafast, transient, nonequilibrium responses in heat and
mass transfer, where thermal lags and nonclassical phenom-
ena are present (see, e.g., [1] and references therein). The
growing area of applications of these models include, among
other examples, the processing of thin-film engineering
structures with ultrafast lasers [2, 3], the transfer of heat in
nanofluids [4, 5], or the exchange of heat in biological tissues
[6–8].

In the Dual-Phase-Lag (DPL) model [9–11], the equation
relating the heat flux vector q and the temperature𝑇, for time
𝑡 and spatial point r,

q (r, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇 (r, 𝑡 + 𝜏𝑇) , (1)

where 𝑘 > 0 is the thermal conductivity, incorporates two
lags, 𝜏𝑞 for the heat flux and 𝜏𝑇 for the temperature gradient.
When both lags are zero, the Fourier law is recovered, while
for 𝜏𝑞 > 0 and 𝜏𝑇 = 0, it reduces to the Single-Phase-Lag
(SPL) model [12].

Combining (1) with the principle of energy conservation,

−∇ ⋅ q (r, 𝑡) + 𝑄 (r, 𝑡) = 𝐶𝑝𝑇𝑡 (r, 𝑡) , (2)

where 𝐶𝑝 is the volumetric heat capacity and 𝑄, the volu-
metric heat source, in the absence of heat sources a partial
differential equation with delay is obtained [13, 14] as

𝑇𝑡 (r, 𝑡 + 𝜏𝑞) = 𝛼Δ𝑇 (r, 𝑡 + 𝜏𝑇) , (3)

where 𝛼 = 𝑘/𝐶𝑝 is the thermal diffusivity. When both
lags are zero, the diffusion equation, a parabolic partial
differential equation which represents the classical model for
heat conduction and other transport phenomena, is obtained.

Using first-order approximations in (1),

q (r, 𝑡) + 𝜏𝑞
𝜕q
𝜕𝑡

(r, 𝑡) ≅ −𝑘{∇𝑇 (r, 𝑡) + 𝜏𝑇
𝜕

𝜕𝑡
∇𝑇 (r, 𝑡)} , (4)

a hyperbolic equation is derived, commonly referred to as the
DPL model [9], here denoted as DPL(1, 1),

𝑇𝑡 (r, 𝑡) + 𝜏𝑞𝑇𝑡𝑡 (r, 𝑡) = 𝛼 {Δ𝑇 (r, 𝑡) + 𝜏𝑇Δ𝑇𝑡 (r, 𝑡)} , (5)

which for 𝜏𝑇 = 0 reduces to the Cattaneo-Vernotte (CV)
model [15–17].

Approximations in (1) up to order two in 𝜏𝑞 and/or 𝜏𝑇
have also been considered [18, 19], leading to models that will
be denoted as DPL(2, 1),

𝑇𝑡 (r, 𝑡) + 𝜏𝑞𝑇𝑡𝑡 (r, 𝑡) +
𝜏
2

𝑞

2
𝑇𝑡𝑡𝑡 (r, 𝑡)

= 𝛼 {Δ𝑇 (r, 𝑡) + 𝜏𝑇Δ𝑇𝑡 (r, 𝑡)} ,
(6)



2 Abstract and Applied Analysis

0 2 4 6 8 10

0.09

0.095

0.1

0.105

0.11

0.115

Diff
DPL(1, 1)

DPL(2, 1)
DH

t

T
(1
0
.0
0

,t
)

(a)

0 2 4 6 8 10

0.06

0.07

0.08

0.09

0.1

0.11

Diff
DPL(1, 1)

DPL(2, 1)
DH

t

T
(1
0
.0
0

,t
)

(b)

Figure 1: Temperature evolution, at 𝑥 = 10, for DPL, DH, and classical diffusion (Diff) models with Dirichlet boundary conditions and
parameters 𝜏

𝑇
= 0, 𝜏

𝑞
= 1, and initial function 𝜑(𝑥, 𝑡) = 2(1 − cos(𝑥))/(𝜋𝑥), for 𝛼 = 0.1 (a) and 𝛼 = 0.8 (b).

and DPL(2, 2),

𝑇𝑡 (r, 𝑡) + 𝜏𝑞𝑇𝑡𝑡 (r, 𝑡) +
𝜏
2

𝑞

2
𝑇𝑡𝑡𝑡 (r, 𝑡)

= 𝛼{Δ𝑇 (r, 𝑡) + 𝜏𝑇Δ𝑇𝑡 (r, 𝑡) +
𝜏
2

𝑇

2
Δ𝑇𝑡𝑡 (r, 𝑡)} .

(7)

From the original formulation of the DPL model, as given in
(1), for 𝜏 = 𝜏𝑞−𝜏𝑇 > 0, a retarded partial differential equation
is obtained [13, 14], referred to as the delayed heat conduction
model (DH),

𝑇𝑡󸀠 (r, 𝑡
󸀠
) = 𝛼Δ𝑇 (r, 𝑡󸀠 − 𝜏) , (8)

where 𝑡󸀠 = 𝑡 + 𝜏𝑞.
Exact solutions for some particular DPL models in

different settings have been discussed (e.g., [11, 13, 14, 20–22]),
and many specific methods to construct numerical solutions,
usually in finite domains using finite difference schemes, have
been developed (see, e.g., [23–27]).

In semi-infinite domains, some particular problems have
also been considered. Solutions for heat propagation accord-
ing to DPL(1, 1) model in a semi-infinite solid, produced
by suddenly raising the temperature at the boundary, were
obtained in [11, 20], using Laplace and Fourier transforms.
Relations between the local values of heat flux and tempera-
ture, in the form of integral equations, in a semi-infinite solid
were considered in [13, 28].

In this work, using Fourier transforms, explicit solutions
for lagging models of heat conduction in a semi-infinite
domain, with different types of boundary conditions, are
obtained, allowing the construction of numerical solutions
with bounded errors.

It should be noted that Fourier transforms can also
be used in time-dependent problems (e.g., [29, 30]), and

the approach of this work could also be useful for time-
dependent DPL models, which have already been proposed
[31].

2. Solutions of DPL Models in
a Semi-Infinite Domain

Consider a plate of infinite thickness, 𝑥 ∈ [0,∞], that can be
heated either at its surface, 𝑥 = 0, or up to a certain depth, 𝑥 ∈
[0, 𝑙]. We will consider, for 𝑡 ≥ 0, either Dirichlet, 𝑇(0, 𝑡) = 0,
or Neumann, 𝑇𝑥(0, 𝑡) = 0, boundary conditions and also that

lim
𝑥→∞

𝑇 (𝑥, 𝑡) = 0, 𝑡 ≥ 0. (9)

Appropriate initial conditionsmust be provided for the differ-
ent models. Thus, for DPL(1, 1) initial values for temperature
and its time derivative have to be specified,

𝑇 (𝑥, 0) = 𝜑 (𝑥, 0) , 𝑇𝑡 (𝑥, 0) = 𝜙 (𝑥, 0) , 0 ≤ 𝑥 < ∞,

(10)

while for DPL(2, 1) and DPL(2, 2), its second derivative also
has to be given,

𝑇𝑡𝑡 (𝑥, 0) = 𝜓 (𝑥, 0) , 0 ≤ 𝑥 < ∞, (11)

and for the DH model, the initial condition for the tempera-
ture has to be specified for a time interval of 𝜏 amplitude,

𝑇 (𝑥, 𝑡) = 𝜑 (𝑥, 𝑡) , 0 ≤ 𝑡 ≤ 𝜏, 0 ≤ 𝑥 < ∞. (12)

For a wide class of initial functions [32, 33], the method of
Fourier transform can be used to eliminate derivatives in
the spatial domain and to obtain expressions for the exact
solutions in the form of an infinite integral, either using
Fourier sine transforms for Dirichlet conditions,

𝑇 (𝑥, 𝑡) =
2

𝜋
∫

∞

0

T (𝑤, 𝑡) sin (𝑤𝑥) 𝑑𝑤, (13)
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Figure 2: Differences from classical diffusion for models DPL and DH, for the data shown in Figure 1.
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Figure 3: Temperature evolution, for (𝑥, 𝑡) ∈ [10, 20] × [0, 10], for the DHmodel with Dirichlet boundary conditions and parameters 𝜏
𝑇
= 0,

𝜏
𝑞
= 1, 𝛼 = 0.8, and initial function 𝜑(𝑥, 𝑡) = 2(1 − cos(𝑥))/(𝜋𝑥) (a), and differences from DH of DPL(1, 1) and DPL(2, 1) at 𝑥 = 10 (b).

or cosine transforms for Neumann conditions,

𝑇 (𝑥, 𝑡) =
2

𝜋
∫

∞

0

T (𝑤, 𝑡) cos (𝑤𝑥) 𝑑𝑤, (14)

where the functions T(𝑤, 𝑡), which are the corresponding
Fourier sine or cosine transforms of 𝑇(𝑥, 𝑡), are obtained as
solutions of the transformed temporal problems, depending
on the continuous set of eigenvalues 𝑤2.

For the family of DPL approximations, the transformed
problems are initial-value problems for linear differential
equations with constant coefficients. Thus, for DPL(1, 1), one
gets

𝜏𝑞T
󸀠󸀠
(𝑤, 𝑡) + (1 + 𝑤

2
𝛼𝜏𝑇)T

󸀠
(𝑤, 𝑡) + 𝑤

2
𝛼T (𝑤, 𝑡) = 0,

T (𝑤, 0) = 𝐹 (𝑤) , T
󸀠
(𝑤, 0) = 𝐺 (𝑤) ,

(15)
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Figure 4: Temperature evolution for DPL, DH, and classical diffusion (Diff) models (left), and differences from DH of DPL approximations
(right), at 𝑥 = 10, with Dirichlet boundary conditions, initial function 𝜑(𝑥, 𝑡) = 2(1 − cos(𝑥))/(𝜋𝑥), and parameters 𝛼 = 0.8, 𝜏

𝑇
= 1, and

𝜏
𝑞
= 1 (top), or 𝜏

𝑇
= 19 and 𝜏

𝑞
= 20 (down).

for DPL(2, 1), the problem reads

𝜏
2

𝑞

2
T
󸀠󸀠󸀠
(𝑤, 𝑡) + 𝜏𝑞T

󸀠󸀠
(𝑤, 𝑡) + (1 + 𝑤

2
𝛼𝜏𝑇)T

󸀠
(𝑤, 𝑡)

+ 𝑤
2
𝛼T (𝑤, 𝑡) = 0,

(16)

with initial conditions

T (𝑤, 0) = 𝐹 (𝑤) , T
󸀠
(0) = 𝐺 (𝑤) ,

T
󸀠󸀠
(0) = 𝐻 (𝑤) ,

(17)

and, with the same initial conditions as in DPL(2, 1), for
DPL(2, 2), one gets

(

𝜏
2

𝑞

2
)T󸀠󸀠󸀠 (𝑤, 𝑡) + (

𝜏𝑞 + 𝑤
2
𝛼𝜏
2

𝑇

2
)T󸀠󸀠 (𝑤, 𝑡)

+ (1 + 𝑤
2
𝛼𝜏𝑇)T

󸀠
(𝑤, 𝑡) + 𝑤

2
𝛼T (𝑤, 𝑡) = 0,

(18)

where 𝐹(𝑤), 𝐺(𝑤), and 𝐻(𝑤) are the Fourier sine or cosine
transforms, according to the type of boundary conditions, of
the initial functions 𝜑(𝑥, 𝑡), 𝜙(𝑥, 𝑡), and 𝜓(𝑥, 𝑡), respectively.
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Hence, these problems can be solved, obtaining expres-
sions for T(𝑤, 𝑡) in terms of the roots of the corresponding
characteristic equation, and thus explicit expressions for the
exact solutions for these models, in the form of (13) or (14),
can be obtained.

For the DH model, the transformed temporal problems
are initial-value problems for delay differential equationswith
general initial functions,

T
󸀠
(𝑤, 𝑡) + 𝑤

2
𝛼T (𝑤, 𝑡 − 𝜏) = 0, 𝑡 > 𝜏,

T (𝑤, 𝑡) = 𝐹 (𝑤, 𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(19)

where𝐹(𝑤, 𝑡) is the appropriate Fourier transform, according
to the boundary conditions, of the initial function 𝜑(𝑥, 𝑡). To
obtain constructive solutions for this problem, a combination
of the steps method and a convolution integral can be applied
[34, 35], producing the following expression, for 𝑡 ∈ [𝑝𝜏, (𝑝+
1)𝜏],

T (𝑤, 𝑡) = 𝐹 (𝑤, 𝜏) + 𝐹 (𝑤, 0)

𝑝

∑

𝑘=1

(−𝑤
2
)
𝑘

𝛼
𝑘
(𝑡 − 𝑘𝜏)

𝑘

𝑘!

+

𝑝−1

∑

𝑘=1

(−𝑤
2
)
𝑘

𝛼
𝑘

𝑘!
∫

𝜏

0

(𝑡 − 𝑘𝜏 − 𝑠)
𝑘
𝐹𝑠 (𝑤, 𝑠) 𝑑𝑠

+

(−𝑤
2
)
𝑝

𝛼
𝑝

𝑝!
∫

𝑡−𝑝𝜏

0

(𝑡 − 𝑝𝜏 − 𝑠)
𝑝
𝐹𝑠 (𝑤, 𝑠) 𝑑𝑠.

(20)

The solutions obtained with the Fourier transforms, as
given in (13) or (14), can be shown to converge and provide
exact solutions under adequate integrability and regularity
conditions on the initial functions. Numerical integration is
required in general to compute numerical approximations
of these solutions, with errors that can be bounded in
finite spatial and temporal domains by controlling errors
in the numerical integrators or by appropriately truncating
the infinite integrals. However, for some particular initial
functions, the solutions given by (13) or (14) may reduce to
finite integrals.

3. Numerical Examples

Numerical examples are presented in the following figures,
where, in order to properly compare DPL and DH models,
the initial interval for DH, where the initial function 𝜑(𝑥, 𝑡) is
given, is displaced to [−𝜏, 0], and the initial functions for DPL
models are set so that the values of temperature and its first
derivative at 𝑡 = 0, and also its second derivative forDPL(2, 1)
and DPL(2, 2), are matched to those of the DH model. The
classical diffusion model, whose solution is available and
readily obtained [36], is also included as reference.

First, we consider models with 𝜏𝑇 = 0, so that DPL(2, 1)
and DPL(2, 2) are equal, and an initial function with damped
temperature oscillations, thought to be the result of a mod-
ulated heat source that is switched off at 𝑡 = 0, showing the
transient behavior for the different DPL models for different

values of𝛼 (Figure 1), aswell as their differences fromclassical
diffusion (Figure 2).

In Figure 3, a more detailed view of the spatiotemporal
behavior of the DHmodel (Figure 3(a)) and differences from
DH of DPL(1, 1) and DPL(2, 1) (Figure 3(b)) are presented.

In Figure 4, different values of 𝜏𝑇 and 𝜏𝑞, such that 𝜏 =

𝜏𝑞 − 𝜏𝑇 is kept constant, are used, so that variations in the
temperature evolution are observed in the DPL approximate
models, but not in the DHmodel, which only depends on the
value of 𝜏.
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