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The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder
position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder
system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium
equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID
control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy
logic rules, and defuzzification.The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain
theorem. Experiments for targets position of 250mm, 300mm, and 350mm were done and the results showed that the absolute
error of the position control is less than 0.25mm. And comparative experiment between fuzzy PID and classical PID verified the
advantage of the proposed algorithm.

1. Introduction

In 1956, Shearer [1] first developed the pneumatic servo con-
trol system, using the high temperature and high pressure gas
(500∘C, 20∼30MPa) from the aerospace craft andmissile pro-
pulsion as the working media. This pneumatic servo control
system was successfully applied in the position, orientation,
and stable flying control for aerospace crafts and missiles.
In the subsequent period of time, efforts are contributed to
investigate the pneumatic servo technology parallel with the
hydraulic servo technique. But the early study made slow
progress and there were few achievements that could be used,
because of the difficulty in mathematic system models and
lack of powerful analysis and calculating tools.

With the development of computer technology andmod-
ern control technique, the pneumatic servo control problem
was revisited by scholars. Scavanda et al. [2] and Liu and
Bobrow [3] broadened the linear model to several working
points adopting the state-space method. But the influence of
nonlinear factors such as mechanical friction is neglected.
Baoren [4], Yunbo [5], and Guoliang et al. [6, 7] identified the
system model based on experimental data, which can reflect
the pneumatic system characteristics more accurately than
the former methods. But it is not suitable for cases such as

long cylinder journey, large parametric variation, or heavy
friction. Lee et al. [8] established a nonlinear model for pneu-
matic system and verified the model with experiments. Still,
the model is complicated and requires rigid application con-
ditions.

In this paper, we investigated a proportional valve-
controlled cylinder system and developed a position control
method. Firstly, nonlinear mathematic model of the cylinder
is established in Section 1. Then Section 2 gives the math-
ematic model of the whole pneumatic cylinder system. In
Section 3, we designed a fuzzy PID controller for the pro-
posed pneumatic position system, including all the detailed
information. Experiments for different positions and com-
parison with classical PID were carried out, which are deeply
discussed in Section 4. Finally, Section 5 summaries themain
contribution and meaning of our work.

2. NonLinear Mathematic Model of Cylinder

The dynamic characteristics of cylinder are mainly described
by three equations: the pressure differential equation of
cylinder, pressure-flow equation of proportional valve and
moment equilibrium equation of cylinder.
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The flowing state of air inside the pneumatic system is
extremely complicated. To simplify the system mathematical
model, we use the following hypothesis.

(1) The working media (here refers to air) in the system
is taken as ideal gas.

(2) The flowing state while the air runs through the valve
port or other chokes is taken as the isentropic and
adiabatic process.

(3) The lumped parameter model is adopted, ignoring
the influences on the system from the distributed
resistance in the air tube and flexibility of the pipeline.

(4) The air pressure and temperature inside the same
chamber are equal everywhere.

(5) There is no leakage of the cylinder, both inside and
outside.

(6) The pressures of air source and atmosphere are
constant.

2.1. PressureDifferential Equation of the Cylinder. Wesuppose
that the flowing air inside the thermodynamic system has no
energy exchange with the outside and the pressure changes
slightly, during the fast inflating process from air source to
cylinder chamber. And then, this flowing process can be
taken as the isentropic and adiabatic process. According to
the energy equation of adiabatic inflating process from con-
stant pressure air source to limited volume, there are four
kinds of energy changing processes inside the volume during
the movement [9].

(1) The air will bring in or take out the energy 𝑞
𝑚
𝑒 itself

during flowing in or out of the volume. Defining the
internal energy of unit mass gas as 𝑢, kinetic energy
as V2/2 and static energy as 𝑔𝑧, we get

𝑞

𝑚
𝑒 = 𝑞

𝑚
(

𝑢 + V2

2 + 𝑔𝑧

) . (1)

(2) The flowingwork between the volume and the outside
during the air runs in and out of the chamber is
Δ𝑊

𝑓
= 𝑞

𝑚
𝑝V, where 𝑝 is the air pressure and V

denotes the air specific volume.
(3) The thermoexchange between the chamber and the

outside is Δ𝑄.
(4) The work from the chamber to the outside during the

piston movement is Δ𝑊 = 𝑝Δ𝑉.

If we ignore the leakage of cylinder and valve, according
to the energy conservation principle, the total internal energy
𝐸 of the chamber is
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.

(2)

Supposing that the gas is ideal air and disregarding the
kinetic energy and static energy of the air, we can get

𝑞

𝑚
𝑒 + 𝑞

𝑚
𝑝V = 𝑞

𝑚
(𝑢 + 𝑝V) = 𝑞

𝑚
ℎ, (3)

where ℎ is the specific enthalpy of air, ℎ = 𝐶

𝑝
𝑇

𝑠
, 𝐶
𝑝
is the

constant-pressure specific heat, and 𝑇

𝑠
is the air temperature

at the valve port.
As is well known, the internal energy of air is 𝐸 = 𝑚𝐶V𝑇,

where 𝐶V is the constant-volume specific heat. According to
the ideal air state equations, we have 𝑚𝑇 = 𝑝V/𝑅, where 𝑅 is
the gas constant, with the value of 287.1 j/(kg∗k) and𝑅 = 𝐶

𝑝
−

𝐶V.
Substituting the above equations by formula (2), we can

get
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(4)

Generally, the rate of heat exchange d𝑄/d𝑡 is determined
by the temperature difference between the inside and outside
of the cylinder and the coefficient of heat conduction of the
cylinder block.

2.2. Pressure-Flow Equation of Proportional Valve. In the pro-
portional valve-controlled cylinder system, the air mass flow
running into and out of the cylinder chamber is controlled
by the port area of the proportional valve. And the air mass
flow 𝑄

𝑚
running through the valve port is determined by

the effective port area of the valve 𝐴
𝑒
and the upstream and

downstream air pressure 𝑃
𝑢
and 𝑃

𝑑
, that is,
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(5)

where 𝐴

𝑒
is the effective port area of the valve, m2; 𝑇

𝑢

represents the stagnation temperature of the orifice upstream,
𝐾; 𝑄
𝑚
denotes the air mass flow running through the valve

port, Kg/s.

2.3. Force Equilibrium Equation of Cylinder. We can obtain
the kinetic equilibrium between the cylinder and load by the
force analysis for the system

𝐴

1
𝑝

1
− 𝐴

2
𝑝

2
= 𝑚

d2𝑦
d𝑡2

+ 𝑏

d𝑦
d𝑡

+ 𝐹

𝐿
+ 𝐹

𝑒
sign (𝑒) , (6)

where 𝐴
1
and 𝐴

2
are the pressure working areas inside the

two chambers of the cylinder, respectively;𝑚means themass
load; 𝑏 is the viscous damping coefficient between the piston
and load; 𝐹

𝐿
denotes the external load; 𝐹

𝑒
represents the Cou-

lomb friction and 𝑒 is the displacement deviation.
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Figure 1: Cylinder position servo control diagram.

Combining the Coulomb friction and external load as 𝐹
and linearizing the force equilibrium equation, we can get

𝐴

1
𝑝

1
− 𝐴

2
𝑝

2
= 𝑚𝑠

2

𝑦 + 𝑏𝑠𝑒 + 𝐹. (7)

3. Mathematic Model of the Pneumatic
Position Servo System

From the above dynamic characteristics basical equations, it
is clear that the system is nonlinear. Sowe linearize the system
near the cylinder equilibrium point based on the linear sys-
tem theory.

Generally, the spool opening area of proportional servo
valve can be taken as the linear function of the controlling
voltage; that is, the spool displacement is directly propor-
tional to the controlling signal:

𝐴

𝑒
= 𝑘

𝑎
𝑢, (8)

where 𝑘
𝑎
is the voltage proportional coefficient.

Linearizing the flow equation of the proportional valve
and applying the Laplace transform, we can get

𝑄
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= 𝐾
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1
,
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𝑝2
𝑝

2
,

(9)

where 𝐾
𝑞1

and 𝐾

𝑞2
are the flow gains at the working point

of the controlling valves for the cylinder chambers, 𝐾
𝑞

=

𝜕𝑞

𝑚
/𝜕𝑈;𝐾

𝑝1
and𝐾

𝑝2
are the flow pressure coefficients of the

controlling valves for the cylinder chambers,𝐾
𝑃
= 𝜕𝑞

𝑚
/𝜕𝑝.

Linearizing the pressure differential equations of the
cylinder chambers (2) and applying the Laplace transform,
we can get

𝑝

1
=

𝑘𝑅𝑇𝑞

𝑚1

𝑉

𝑘1

1

𝑠

−

𝑘𝑝

𝑘1
𝐴

1

𝑉

𝑘1

𝑒,

𝑝

2
=

𝑘𝑅𝑇𝑞

𝑚2

𝑉

𝑘2

1

𝑠

−

𝑘𝑝

𝑘2
𝐴

2

𝑉

𝑘2

𝑒.

(10)

The force equilibrium equation (6) can be transformed as

𝐴

1
𝑝

1
− 𝐴

2
𝑝

2
= 𝑚𝑠

2

𝑦 + 𝑏𝑠𝑦 + 𝑓𝑒. (11)

From the above analysis, the cylinder position servo con-
trol diagram can be drawn as Figure 1.

If 0 ≤ 𝑢 < 5, then
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Substituting the above equations into (11) produces
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where
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(14)

4. Fuzzy PID Control Algorithm

PID algorithm is the most used and useful control technique
in mechatronics system. But the classical PID algorithm has
its inherent shortcomings in practice because of the fixed
parameters. For example, the fixed parameters cannot take
into account the dynamic features and control requirements
in both transient process and stable period. It often fails to
achieve the ideal integrated control quality. So, in practice,
PID algorithm is usually combined with other parameter
adjusting methods, such as fuzzy logic and artificial neuro
network.
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Figure 2: Fuzzy PID control principle.

We integrate the classical PID algorithm and fuzzy logic,
using fuzzy logic to adjust the PID control parameters accord-
ing to the deviation and its gradient between the output and
target. Thus we can control the cylinder position precisely.
The basical control principle is shown in Figure 2.

4.1. FuzzyVariables andTheirDomain. ThePIDcontrol input
is

𝑒 (𝑡) = 𝑟 (𝑡) − 𝑦 (𝑡) . (15)

And the output of the control module can be written as

𝑢 (𝑡) = 𝐾

𝑃
𝑒 (𝑡) + 𝐾

𝐼
∫ 𝑒 (𝑡) d𝑡 + 𝐾

𝐷

d𝑒 (𝑡)
d𝑡

. (16)

The deviation 𝑒(dis
0
− dis) between the target position

dis
0
and the actual displacement dis of the cylinder and its

gradient 𝑒𝑐(d𝑒/d𝑡) are the input variables for fuzzy logic. And
the variationsΔ𝐾

𝑃
,Δ𝐾
𝐼
, andΔ𝐾

𝐷
of PID control parameters

𝐾

𝑃
,𝐾
𝐼
, and𝐾

𝐷
are the output variables of the fuzzy logic.The

cylinder position deviation 𝑒 and its gradient 𝑒𝑐 are sampled
and calculated in real time. And the output variables Δ𝐾

𝑃
,

Δ𝐾

𝐼
, andΔ𝐾

𝐷
are extracted from the fuzzymatrix table based

on the fuzzy rules and reasoning.The PID control parameters
are adjusted using Δ𝐾

𝑃
, Δ𝐾
𝐼
, and Δ𝐾

𝐷
, in order to realize

the real-time dynamic control of the cylinder displacement.
According to the cylinder position control requirement, the
domain of the displacement deviation 𝑒 is set as (−0.5, 0.5),
and the domain of the 𝑒𝑐 is (−0.1, 0.1). The domains of Δ𝐾

𝑃
,

Δ𝐾

𝐼
, and Δ𝐾

𝐷
for PID parameters are (−1.2, 1.2), (−0.1, 0.1),

and (−0.05, 0.05), respectively.

4.2. Fuzzy Logic Rules. The triangle membership function is
adopted, and the membership function for Δ𝐾

𝑃
is shown

in Figure 3. The fuzzy logic rules are deduced, as listed in
Tables 1, 2, and 3. In these tables, NB, NM, NS, ZO, PS,
PM, PB represent negative big, negative medium, negative
small, zero, positive small, positive medium, and positive big,
respectively.

0 0.4 0.8 1.2 
0

0.2

0.4

0.6

0.8

1 NB NM NS ZO PS PM PB

−1.2 −0.8 −0.4

Figure 3: Membership function for Δ𝐾
𝑃

.

Table 1: Fuzzy logic rule for Δ𝐾
𝑃

.

𝑒𝑐

𝑒

NB NM NS ZO PS PM PB
NB PB PB PB PM PS PS ZO
NM PB PB PM PM PS ZO NS
NS PB PM PM PS PS ZO NS
ZO PM PM PB PS PS ZO NM
PS PM PS PS ZO ZO NS NM
PM PS PS ZO ZO NS NM NB
PB PS ZO ZO NM NS NB NB

Table 2: Fuzzy logic rule for Δ𝐾
𝐼

.

𝑒𝑐

𝑒

NB NM NS ZO PS PM PB
NB NB NB NM NM NS NS ZO
NM NB NM NM NS NS ZO ZO
NS NB NM NS ZO ZO PS PS
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PS PM PB
PM ZO ZO PS PS PM PM PB
PB ZO ZO PS PM PM PM PB

Using the above fuzzy logic rules, the PID control param-
eters can be adjusted as

𝐾

𝑃(𝑛+1)

= 𝐾

𝑃𝑛

+ Δ𝐾

𝑃
,

𝐾
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= 𝐾

𝐼𝑛

+ Δ𝐾

𝐼
,

𝐾

𝐷(𝑛+1)

= 𝐾

𝐷𝑛

+ Δ𝐾

𝐷
.

(17)
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Table 3: Fuzzy logic rule for Δ𝐾
𝐷

.

ec e
NB NM NS ZO PS PM PB

NB PS NS NB NB NM NM PS
NM PS NB NB NM NM NS ZO
NS ZO NS NM NM NS NS ZO
ZO ZO NS NS NS NS ZO NS
PS ZO PM PS ZO ZO PS ZO
PM PS PB PS PS PB PB PS
PB PB PM PM PS PB PS PS

Define
𝑅

𝑙
= (𝑒 and 𝑒𝑐) 󳨀→ 𝐾

𝑃
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)

2
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𝑚
= (𝑒 and 𝑒𝑐) 󳨀→ 𝐾

𝐼
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2

,
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𝑛
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𝐷
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𝑒×𝑒𝑐×𝐾𝐷

𝑢 (𝑒) Λ𝑢 (𝑒𝑐) Λ𝑢 (𝐾

𝐷𝑛
)

2

,

(18)

where 𝑙, 𝑚, 𝑛 = 1, 2, 3, . . . , 25.
Then the fuzzy relations of𝐾

𝑃
, 𝐾
𝐼
, and𝐾

𝐷
are

𝑅

𝐾𝑃
=

25

⋃

𝑙=1

𝑅

𝑙
,

𝑅

𝐾𝐼
=

25

⋃

𝑚=1

𝑅

𝑚
,

𝑅

𝐾𝐷
=

25

⋃

𝑛=1

𝑅

𝑛
.

(19)

4.3. Defuzzification. The outputs of the fuzzy logic rules are
also fuzzy set. In practical digital control system, the parame-
ters must be defuzzified, that is, converting the fuzzy set into
exact values according to an appropriate algorithm.

We use conventional gravity center method to realize the
defuzzification:

𝑦

∗

=

∫

𝑌

𝑦𝑢

𝑐
(𝑦) d𝑦

∫

𝑌

𝑢

𝑐
(𝑦) d𝑦

, (20)

where 𝑦∗ is the center of the covered region by membership
function 𝑢

𝑐
(𝑦) of fuzzy set 𝐶.

It is obvious that the calculating process needs certain
time, which makes it difficult to be used in real-time control
system. So, the calculating process is executed off-line in
advance. Then the produced defuzzification decision tables
are stored in the memory of the controller. In this way, the
instantaneity of the control process can be enhanced.

System 
model

Fuzzy 
PI+

+

+

Fuzzy 
D

r(nT)
e(nT)

u(nT) y(nT)

ec(nT)

−1

−

Figure 4: Discrete-time Fuzzy PID controller.

4.4. Stability Analysis. Chen and Ying [10] theoretically
proved the stability of nonlinear fuzzy PI controller, based on
their previous work on fuzzy control theory [11]. After that,
they continued to investigate the stability of nonlinear fuzzy
PI + 𝐷 controller [12]. Their work offers a quite convenient
and practicalmethod to explore the stability of similar control
algorithms.

As described in Section 2, the target cylinder system can
be taken as a classical second order system. To interpret the
stability of the proposed nonlinear system, we need to recon-
sider the fuzzy PID control principle shown in Figure 2,
which can be rearranged as Figure 4 in discrete-time form,
where𝑇 is the sampling period,𝑇 > 0.This diagramexpresses
the same meaning as Figure 2 and shows the simplified
structure as a figure in [12].

The stability of the fuzzy PI controller and the fuzzy PD
controller has been analyzed in [10, 13], respectively, accord-
ing to the small gain theorem [14]. In our case, if we discon-
nect the fuzzy 𝐷 control component from Figure 4, we have
the fuzzy PI control system, whose stability is completely
proved in [10]. The stability conditions are as follows.

Theorem 1. A sufficient condition for the nonlinear fuzzy PI
control system to be globally bounded-input and bounded-
output (BIBO) stable is that

(1) the given nonlinear system has a bounded norm (gain)
‖𝑁‖ < ∞;

(2) the parameters of the fuzzy PI controller 𝐾
𝑃
, 𝐾
𝐼
, and

𝐾

𝑢𝑃𝐼
satisfy

𝐾

𝑢𝑃𝐼
(𝛾𝐾

𝑃
+ 𝐾

𝐼
) 𝐿

𝑇 (2𝐿 − 𝐾

𝑀
)

‖𝑁‖ < 1, (21)

where 𝐿 is the domain boundary of fuzzy logic parameters,
𝛾 = max{1, 𝑇} and 𝐾

𝑀
= max{𝐾

𝑃
𝑀

𝑃
, 𝐾

𝐼
𝑀

𝑐
}, with 𝑀

𝑃
=

sup
𝑛≥0

|𝑒(𝑛𝑇)| and𝑀
𝑐
= sup

𝑛≥0

|𝑒𝑐(𝑛𝑇)| ≤ (2/𝑇)𝑀

𝑃
.

In the same way, by disconnecting the fuzzy PI controller
from Figure 4, we reduce the fuzzy PID control system to a
simple fuzzy 𝐷 controller. This fuzzy 𝐷 control system is a
special or simplified case of the fuzzy PD control system stud-
ied in [13], and hence its stability condition can be derived
from that obtained in [13] by removing the fuzzy 𝑃 controller
or just setting the output of fuzzy 𝑃 component as zero. The
stability conditions can be derived as follows.
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Figure 5: Equivalent closed-loop control system for the fuzzy PID controller.

Theorem 2. A sufficient condition for the fuzzy 𝐷 control
system to be BIBO stable is that the given process has a bounded
norm (gain) ‖𝑁‖ < ∞ and the parameters of the fuzzy𝐷 con-
troller 𝐾

𝐷
and 𝐾

𝑢𝐷
satisfy

𝛾𝐾

𝐷
𝐾

𝑢𝐷

2𝑇 (𝐿 − 𝐾

𝐷
(𝑀

𝐷
+ |𝑟|))

‖𝑁‖ < 1, (22)

where 𝛾 = max{1, 𝐿}.

Till now, we are sure that the fuzzy PI controller and
fuzzy 𝐷 controller are stable according to Theorems 1 and 2,
respectively. Then, we need to verify that the combined fuzzy
PID controller is stable.

Again, the Fuzzy PID controller shown in Figure 2 can be
redrawn as Figure 5. The fuzzy PID control systems shown
in Figures 2, 4, and 5 are the same thing but in different
forms, just for analysis convenience. In Figure 5(a), let the
system model be denoted by 𝑆

1
and the fuzzy PID controller

together be denoted by 𝑆
2
, resulting in the new structure in

Figure 5(b). Then, as discussed in [10, 13], we can obtain a
sufficient condition for the BIBO stability of the overall fuzzy
PID equivalent closed-loop control system from the bounds:

󵄩
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(23)

where𝑀
1
,𝑀
2
, 𝐿
1
, 𝐿
2
are constants, and 𝐿

1
𝐿

2
< 1.

5. Experiments and Analysis

5.1. Experimental System Design. The experimental system is
composed of pneumatic servo control actuating mechanism,
feedback units, loading module, and controller. The pneu-
matic servo control actuating mechanism is symmetrical cyl-
inder system controlled by proportional flow valve.The feed-
back units include displacement transducer and the pressure

Displacement
transducer

Flow proportional
valve

Pressure
transducer

Main
cylinder

Viscous cylinder

Elastic load

Pressure
proportional
valve

Force cylinder

Mass load

Fore
transducer

A/D IPC D/A

Figure 6: Pneumatic servo control system principle.

transducer for the cylinder chambers. The whole controller
for the system includes industrial personal computer (shorted
as IPC), A/D, and D/A board cards for data acquisition and
output.The experimental system schematic diagram is shown
in Figure 6 and the experimental platform is shown in
Figure 7. The instruments used in the experiment are listed
in Table 4.

The control software was developed based on MATLAB
and LabVIEW. All the fuzzy logic and PID control algorithms
were realized in MATLAB simulink toolbox and then com-
piled into real-time control program using RTW technique.
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Table 4: Experimental instruments.

Name Model Specification Brand
Main cylinder CA2WL40-500

Φ32mm, range: 500mm SMC
Flow proportional valve MPYE-5-1/8-010B Max flow: 700 L/min, response: 3ms, lag: 0.3% Festo
Pressure proportional valve MPPE-5-1/8-010B Max flow: 820 L/min, response: 3ms, lag: 0.3% Festo

Displacement transducer MTS-500 Range: 500mm, resolution: 5 us, repeatability:
±0.001% FS MTS

Pressure transducer JYB-KO-HVG Accuracy: 0.25% FS, range: 0-1Mpa, response: 30ms,
nonlinearity: ±0.2% FS, repeatability: ±0.1% FS Kunlun Coast

Force transducer BK-1 Range: 1500N, accuracy: 0.05% FS, nonlinearity:
0.05% FS, repeatability: 0.05% FS Kunlun Coast

Figure 7: Experimental system.

RTW is an important supplementary functional module
for MATLAB graphic modeling and simulation module
Simulink. Optimized, portable, and personalized codes can
be directly generated from Simulink model with RTW tools.
According to the specific target preparation, the generated
codes can be compiled into program for a different rapid
prototype real-time environment. RTW ensures us to focus
on the model establishment and system design and release
from the boring programming work.This kind of developing
pattern is very suitable for laboratory experimental system
design.

RTW technique has the following features: (1) it supports
continuous, discrete, and hybrid time system, including con-
ditioned executing system and nonvirtual system; (2) RTW
seamlessly integrates the Run-Time Monitor with the real-
time target, which provides an excellent signal monitor and
parameters adjusting interface.The flow diagram of real-time
control program developing using RTW technique is shown
in Figure 8.

LabWindows/CVI is adopted to create the control pro-
gram frame and user interface, shown in Figure 9.

5.2. Target Position Control Experiments. On the experimen-
tal platform, we set the target position of the cylinder as
250mm, 300mm, and 350mm, respectively. And the control
results are shown in Figures 10, 11, and 12.

The rising times of the three experiments are 2.65 s, 4.3 s,
and 3.2 s, respectively, which indicates that long displacement

Real-time test 
environment

Model and 
simulation

Generate 
C codes

Analysis in 
MATLAB

Monitor and 
adjustment

Figure 8: Working flow with RTW.

Table 5: Control errors of cylinder position (mm).

Initial Target AE RE
100 250 0.2441 0.20%
100 300 0.20 0.07%
100 350 0.2441 0.09%
AE represents absolute error and RE denotes relative error.

does not mean long corresponding time. During the motion,
the proposed fuzzy PID controller can adjust the control
parameters and change the behavior of the system to achieve
the best performance. Also, the overshoots in Figures 10, 11,
and 12 are 0.49mm, 0.04mm, and 0mm, respectively. Con-
sulting the stable errors listed in Table 5, we can see that when
the displacement becomes longer, the systemhysteresis shows
greater influence on the final error. To be more frank, long
displacement has no overshoot but big negative error, while
short displacement has big overshoot and positive error.

From the experimental data, three significant features can
be drawn as follows.

(1) Dynamic quality: the proposed method has fuzzy
logic virtues in the earlier stage of control that can
actuate the cylinder to approximate the target posi-
tion rapidly. And during the late stages of control, it
has virtues of PID algorithm, which means that the
PIDparameters are adjusted to execute the cylinder to
quickly reach the target position without overshoot.

(2) Stable quality: the analysis of stable error is listed in
Table 5. From the error analysis, it can be seen that
the proposed theoretical model, control method, and
experimental system can guarantee that the absolute
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Figure 9: LabVIEW control program diagram.
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Figure 10: Response of target position 250mm.

control error is around 0.24mm. In addition, the
error is independent of the target position.The robust
of the control method is quite well.

(3) No creeping phenomenon: when the cylinder runs
with quite low speed or stops in the middle, there will
be creeping phenomenon because of the air pressure
in both the chambers and friction. From the response
data in Figures 10, 11, and 12, it can be concluded that
the proposed method can control the cylinder to stay
at any position without creeping phenomenon.

5.3. Compared with Classical PID. To show the advantages
of the proposed cylinder position servo control method, an
experiment was done to compare the classical PID controller
and the developed one in this paper, with the target position
300mm.
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Figure 11: Response of target position 300mm.

The stable state data and error data are shown in Figures 13
and 14. From the above two comparing data curves, it can be
seen that the classical PID controller can achieve the destina-
tion, but has bigger error, error range, and overshoot, which
are 0.78mm, 0.25mm, and 0.78mm, respectively. However,
the proposed fuzzy PID controller has relative smaller error,
error range, and overshoot, which are 0.20mm, 0.24mm, and
0.04mm, respectively.

6. Conclusions

(1) The nonlinear mathematical models of cylinder and
its valve-control pneumatic system, that is, pressure
differential equation, pressure-flow equation, and
moment equilibrium equation, are proposed.

(2) The cylinder position servo controller based on the
mathematical models and fuzzy PID algorithm is
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Figure 12: Response of target position 350mm.
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Figure 13: Stable data of comparing experiment.

established and proved to be stable under specified
conditions.

(3) Experimental results show that the absolute control
error is less than 0.25mmand the proposed fuzzy PID
controller has better performance than classical PID.
The dynamic and stable qualities of the controller are
quite well.
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