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This paper studies the stability for nonlinear stochastic discrete-time systems. First of all, several definitions on stability are
introduced, such as stability, asymptotical stability, and pth moment exponential stability. Moreover, using the method of the
Lyapunov functionals, some efficient criteria for stochastic stability are obtained. Some examples are presented to illustrate the
effectiveness of the proposed theoretical results.

1. Introduction

Stability is the first of all the considered problems in the
system analysis and synthesis of modern control theory,
which plays an essential role in dealing with infinite-horizon
linear-quadratic regulator, 𝐻

2
/𝐻
∞

robust optimal control,
and other control problems; see [1–5]. In 1892, Lyapunov
introduced the concept of stability of dynamic systems
and created a very powerful tool known as the Lyapunov
method in the study of stability. It can be found that
the Lyapunov method has been developed and applied to
investigate stochastic stability of the Itô-type systems, and
many important classical results on deterministic differential
equations have been generalized to the stochastic Itô systems;
we refer the reader to Arnold [6], Friedman [7], Has’minskii
[8], Kushner [9], Kolmanovskii and Myshkis [10], Ladde and
Lakshmikantham [11], Mohammed [12], and Mao [13].

Compared with the plenty of fruits of the continuous-
time Itô systems, few results have been obtained on the
stability of discrete-time nonlinear stochastic systems:

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡) , 𝑤 (𝑡) , 𝑡) . (1)

In [14], the mean square stability of the discrete-time
time-varying Markov jump system

𝑥 (𝑡 + 1) = [𝐴
0
(𝑡, 𝜂
𝑡
) +

𝑟

∑

𝑘=1

𝐴
𝑘
(𝑡, 𝜂
𝑡
) 𝑤
𝑘
(𝑡)] 𝑥 (𝑡) (2)

was studied. Nevertheless [15], based on the exact observ-
ability assumption, extensively researched the mean square
stability of the following linear discrete-time time-invariant
system with multiplicative noise:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡) 𝑤 (𝑡) , (3)

where the Classical LyapunovTheorem was extended. Refer-
ence [16] considered the 𝑝th mean stability of the following
difference equations

𝑥 (𝑡 + 1) = 𝐴 (𝑡, 𝜔) 𝑥 (𝑡) , 𝑡 = 0, 1, 2, . . . ,

𝑥 (𝑡 + 1) = 𝐴 (𝑡, 𝜔) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 = 0, 1, 2, . . . ,

(4)

with random coefficients. For the nonlinear stochastic differ-
ence equation

𝑥 (𝑡 + 1) =

𝑡+ℎ

∑

𝑗=0

𝑎
𝑗
𝑥 (𝑡 − 𝑗) +

𝑡+ℎ

∑

𝑗=0

𝜎
𝑗
𝑥 (𝑡 − 𝑗) 𝜉 (𝑡)

+ 𝑔 (𝑡, 𝑥 (−ℎ) , . . . , 𝑥 (𝑡)) ,

(5)

its stability in probability was investigated in [17]. It is not
difficult to find that, different from the continuous-time Itô
systems, up to now, there lacks the systematic theory on
stability of nonlinear discrete-time stochastic systems. The
aim of this paper is to develop a parallel theory for stability of
general nonlinear stochastic discrete-time systems, and some
sufficient criteria for various stabilities are given.
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Different from the Itô systems, most sufficient criteria are
presented viaL𝑉(𝑥) ≤ 0 orL𝑉(𝑥) < 0 together with other
assumptions on the Lyapunov function 𝑉(𝑥), whereL is the
so-called infinitesimal generator associated with the given
Itô system. In discrete-time stochastic systems, most stability
criteria are given via 𝐸[Δ𝑉(𝑥(𝑡))] ≤ 0 or 𝐸[Δ𝑉(𝑥(𝑡))] < 0,
where 𝐸 represents the mathematical expectation. So general
discrete stochastic stability is more difficult to be tested due
to the appearance of the mathematical expectation 𝐸.

The organization of this paper is as follows. Section 2
presents some stability definitions. Section 3 is devoted to
developing some efficient criteria for various stabilities.
Section 4 contains three examples provided to show the
efficiency of the proposed results. Finally, we end this paper
by Section 5 with a brief conclusion.

For convenience, we adopt the following notations:

𝐴
𝑇: the transpose of the matrix 𝐴;

𝐴 ≥ 0 (𝐴 > 0): 𝐴 is a positive semidefinite (positive
definite) matrix;
𝐷
𝑟
:= {𝑥 ∈ 𝑅

𝑛
: |𝑥| < 𝑟} for 𝑟 > 0;

𝐶
2
(𝑈): the class of functions𝑉(𝑥) twice continuously

differential with respect to 𝑥 ∈ 𝑈;
𝑍
+
:= {0, 1, 2, . . .};

𝑃{𝐵}: the probability of event 𝐵;
a.s.: almost surely, or with probability 1;
𝐼
𝐵
: the indicator function of a set 𝐵; that is, 𝐼

𝐵
(𝑥) = 1

if 𝑥 ∈ 𝐵 or otherwise 0;
𝑎 ∧ 𝑏: the minimum of 𝑎 and 𝑏.

2. Definitions of Stability

We will investigate various types of stabilities in probability
for the 𝑛-dimensional stochastic discrete-time system

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡) , 𝑤 (𝑡) , 𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
, (6)

where 𝑥
0
∈ 𝑅
𝑛 is a constant vector. For any given initial

value 𝑥(𝑡
0
) = 𝑥

0
∈ 𝑅
𝑛, (6) has a unique solution that is

denoted by 𝑥(𝑡; 𝑡
0
, 𝑥
0
) or 𝑥(𝑡; 𝑡

0
, 𝑥
0
) = 𝑥(𝑡) simply. 𝑤(𝑡) is a

one-dimensional stochastic process defined on the complete
probability space (Ω, 𝐹, 𝑃). We assume that 𝑓(0, 𝑤(𝑡), 𝑡) ≡ 0
for all 𝑡 ∈ 𝐼 := { 𝑡

0
+𝑘 : 𝑘 ∈ 𝑍

+
}, so (6) has the solution 𝑥(𝑡) ≡

0 corresponding to the initial value 𝑥(𝑡
0
) = 0. This solution is

called the trivial solution or the equilibrium position.

Definition 1. The trivial solution of (6) is said to be stochas-
tically stable or stable in probability if, for every 𝜀 > 0 and
ℎ > 0, there exists 𝛿 = 𝛿(𝜀, ℎ, 𝑡

0
) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
0
, (7)

when |𝑥
0
| < 𝛿. Otherwise, it is said to be stochastically

unstable.
If the previous 𝛿 is independent of 𝑡

0
, that is, 𝛿 = 𝛿(𝜀, ℎ) >

0, then the trivial solution of (6) is said to be stochastically
uniformly stable in probability.

Definition 2. The trivial solution of (6) is said to be stochasti-
cally asymptotically stable in probability if it is stochastically
stable, and for every 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀, 𝑡

0
) > 0, such

that

𝑃{ lim
𝑡→∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀, (8)

when |𝑥
0
| < 𝛿.

Definition 3. The trivial solution of (6) is said to be stochas-
tically uniformly asymptotically stable in probability if it is
stochastically uniformly stable in probability, and for every
𝜀 > 0, ℎ > 0, there exist 𝛿 = 𝛿(𝜀, ℎ) > 0 and a 𝑇(𝜀) > 0, such
that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀) , when 󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨 < 𝛿.

(9)

Definition 4. The trivial solution of (6) is said to be stochas-
tically asymptotically stable in the large in probability if it is
stochastically stable, and for all 𝑥

0
∈ 𝑅
𝑛,

𝑃{ lim
𝑡→∞

𝑥 (𝑡) = 0} = 1. (10)

Definition 5. The trivial solution of (6) is said to be uniformly
bounded if, for every 𝛼 > 0 and 𝑡

0
∈ 𝑍
+, there exists 𝛽 =

𝛽(𝛼) > 0, such that

|𝑥 (𝑡)| < 𝛽, a.s., (11)

when |𝑥
0
| < 𝛼 and 𝑡 ≥ 𝑡

0
.

Definition 6. The trivial solution of (6) is said to be stochas-
tically uniformly asymptotically stable in the large in proba-
bility if the following are satisfied:

(i) it is stochastically uniformly stable;
(ii) it is uniformly bounded;
(iii) for any 𝛼 > 0, ℎ > 0, and 𝜀 > 0, there exists 𝑇(𝜀, 𝛼) >

0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀, 𝛼) ,

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 < 𝛼. (12)

Definition 7. The trivial solution of (6) is said to be 𝑝th
moment exponentially stable if there exist positive constants
𝜆 and 𝐶, such that

𝐸|𝑥 (𝑡)|
𝑝
≤ 𝐶

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

𝑒
−𝜆(𝑡−𝑡0), (13)

where 𝑝 > 0, 𝑡 ≥ 𝑡
0
, and 𝑥

0
∈ 𝑅
𝑛. When 𝑝 = 2, it is usually

said to be exponentially stable in mean square.
Below, we consider such a continuous function

𝑉 (𝑥) : 𝑅
𝑛
󳨀→ 𝑅, (14)

with 𝑉(0) = 0, and write

Δ𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (𝑡 + 1)) − 𝑉 (𝑥 (𝑡)) . (15)



Journal of Applied Mathematics 3

Definition 8 (see [13]). A continuous function𝜑 : [0, +∞) →

[0, +∞) is said to belong to class 𝐾 if it is strictly increasing
and 𝜑(0) = 0.

Definition 9 (see [13]). A continuous function 𝑉(𝑥) defined
on𝐷
𝑟
is said to be positive definite (in the sense of Lyapunov)

if 𝑉(0) = 0 and, for some 𝜑 ∈ 𝐾,

𝑉 (𝑥) ≥ 𝜑 (|𝑥|) . (16)

A continuous function 𝑉(𝑥) defined on 𝐷
𝑟
is said to

be negative definite (in the sense of Lyapunov) if −𝑉(𝑥) is
positive definite.

Definition 10 (see [13]). A function𝑉(𝑥) defined on𝐷
𝑟
is said

to be radially unbounded if

lim
|𝑥|→∞

inf 𝑉 (𝑥) = ∞. (17)

Definition 11. A function 𝑉(𝑥) defined on 𝐷
𝑟
is said to have

infinite small upper bound if there exists 𝜑 ∈ 𝐾 such that

|𝑉 (𝑥)| ≤ 𝜑 (|𝑥|) . (18)

3. Main Results

In this section, we state our main results in this paper. By
using the method of the Lyapunov functionals, some efficient
criteria for the stability are obtained.

Theorem 12. If there exists a positive definite function 𝑉(𝑥) ∈
𝐶
2
(𝐷
𝑟
), such that

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ 0, (19)

for all 𝑥(𝑡) ∈ 𝐷
𝑟
, then the trivial solution of (6) is stochastically

stable in probability.

Proof. By the definition of 𝑉(𝑥), we obtain that 𝑉(0) = 0 and
that there exists a function 𝜑 ∈ 𝐾, such that

𝑉 (𝑥) ≥ 𝜑 (|𝑥|) , ∀𝑥 ∈ 𝐷
𝑟
. (20)

For any 𝜀 ∈ (0, 1) and ℎ > 0, without loss of generality, we
assume that ℎ < 𝑟. Because 𝑉(𝑥) is continuous, we can find
that 𝛿 = 𝛿(𝜀, ℎ, 𝑡

0
) > 0, such that

𝑉 (𝑥) ≤ 𝜀𝜑 (ℎ) , ∀𝑥 ∈ 𝐷
𝛿
. (21)

It is obvious that 𝛿 < ℎ. We fix the initial value 𝑥
0
∈ 𝐷
𝛿

arbitrarily. Let 𝜇 be the first exit time of 𝑥(𝑡) from𝐷
ℎ
; that is,

𝜇 = inf {𝑡 ≥ 𝑡
0
: 𝑥 (𝑡) ∉ 𝐷

ℎ
} . (22)

Let 𝜏 = 𝜇 ∧ 𝑡, for any 𝑡 ≥ 𝑡
0
, we have

𝑉 (𝑥 (𝜇 ∧ 𝑡)) − 𝑉 (𝑥
0
) = 𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (𝜏 − 1))

+ 𝑉 (𝑥 (𝜏 − 1)) − 𝑉 (𝑥 (𝜏 − 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑥 (𝑡
0
+ 1)) − 𝑉 (𝑥

0
)

=

𝜏−1

∑

𝑡=𝑡0

Δ𝑉 (𝑥 (𝑡)) .

(23)

Taking the expectation on both sides, it is easy to see that

𝐸𝑉 (𝑥 (𝜇 ∧ 𝑡)) ≤ 𝑉 (𝑥
0
) . (24)

If 𝜇 ≤ 𝑡 and we note that |𝑥(𝜇 ∧ 𝑡)| = |𝑥(𝜇)| = ℎ, then

𝜑 (ℎ) 𝑃 {𝜇 ≤ 𝑡} ≤ 𝐸 [𝐼
{𝜇≤𝑡}

𝑉 (𝑥 (𝜇))] ≤ 𝐸𝑉 (𝑥 (𝜇 ∧ 𝑡)) .

(25)

From (21) and (24), we achieve that

𝑃 {𝜇 ≤ 𝑡} ≤ 𝜀. (26)

Letting 𝑡 → +∞, then 𝑃{𝜇 < ∞} ≤ 𝜀; that is,

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
0
. (27)

Therefore, the trivial solution of (6) is stochastically
stable.

Theorem 13. If there exists a positive definite and infinite small
upper bounded function 𝑉(𝑥), such that

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ 0, (28)

then the trivial solution of (6) is stochastically uniformly stable
in probability.

Proof. By the assumptions, there exist 𝜑 ∈ 𝐾 and𝜓 ∈ 𝐾, such
that

𝜑 (|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜓 (|𝑥|) , ∀𝑥 ∈ 𝐷
𝑟
. (29)

Let 𝜀 ∈ (0, 1) and ℎ > 0 be arbitrary. Without loss of
generality, we may assume that ℎ < 𝑟. We define

𝜓 (𝛿) = 𝜑
ℎ
(𝜀) . (30)

Because of 𝜑 ∈ 𝐾, we can obtain 𝛿 = 𝜓−1(𝜑
ℎ
(𝜀)), and it

has nothing to do with 𝑡
0
.

Similar to the proof of Theorem 12, Theorem 13 is estab-
lished.

Remark 14. We note that 𝐸[Δ𝑉(𝑥(𝑡))] ≤ 0 in Theorems 12-13
corresponds toL𝑉(𝑥) ≤ 0 in the Itô systems. InTheorem 13,
𝑉(⋅) is not only a positive function, but it is also an infinite
small upper bounded function; this is because Theorem 13 is
stronger thanTheorem 12.

Theorem 15. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite function 𝑉(𝑥) ∈ 𝐶

2
(𝐷
𝑟
), such that 𝐸[Δ𝑉(𝑥(𝑡)] ≤

−𝐸𝜑(|𝑥(𝑡)|) for all 𝑥(𝑡) ∈ 𝐷
𝑟
, then the trivial solution of (6)

is stochastically asymptotically stable in probability.

Proof. From Theorem 12, we have that the trivial solution of
(6) is stochastically stable. Fix 𝜀 ∈ (0, 1) arbitrarily; then there
is 𝛿
0
= 𝛿
0
(𝜀, 𝑡
0
) > 0, such that

𝑃{|𝑥 (𝑡)| <
𝑟

2
} ≥ 1 −

𝜀

4
, (31)

when 𝑥
0
∈ 𝐷
𝛿0
.
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Fix 𝑥
0
∈ 𝐷
𝛿0
arbitrarily. By the assumptions on function

𝑉(𝑥), we know that 𝑉(0) = 0 and that there exist two func-
tions 𝜑

1
, 𝜑 ∈ 𝐾, such that

𝜑
1
(|𝑥|) ≤ 𝑉 (𝑥) ,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝐸𝜑 (|𝑥 (𝑡)|) , ∀𝑥 ∈ 𝐷
𝑟
.

(32)

Let 0 < 𝛽 < |𝑥
0
| arbitrarily, and choose 0 < 𝛼 < 𝛽, 0 <

𝜂 < 𝛼 sufficiently small; because of 𝑉(𝑥) being continuous,
we can find that 0 < 𝛿 = 𝛿(𝜀, 𝑡

0
) < 𝛿
0
, such that

𝑉 (𝑥) ≤
𝜀

4
𝜑 (𝜂) , ∀𝑥 ∈ 𝐷

𝛿
. (33)

Define the stopping times

𝜇
𝛼
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≤ 𝛼} ,

𝜇
𝑟
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥

𝑟

2
} .

(34)

Choose 𝜃 sufficiently large, such that

𝑃 {𝜇
𝛼
< 𝜃} ≥ 1 −

𝜀

2
. (35)

Let 𝜏 = 𝜇
𝛼
∧ 𝜇
𝑟
∧ 𝑡, for any 𝑡 ≥ 𝑡

0
, we have

0 ≤ 𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥
0
) = 𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥 (𝜏 − 1))

+ 𝑉 (𝑥 (𝜏 − 1)) − 𝑉 (𝑥 (𝜏 − 2))

+ ⋅ ⋅ ⋅ + 𝑉 (𝑥 (𝑡
0
+ 1)) − 𝑉 (𝑥

0
)

=

𝜏−1

∑

𝑡=𝑡0

Δ𝑉 (𝑥 (𝑡)) .

(36)

Taking the expectation on both sides, we can derive that

0 ≤ 𝐸𝑉 (𝑥 (𝜏)) ≤ 𝑉 (𝑥
0
) − 𝜑 (𝛼) (𝜏 − 𝑡

0
) . (37)

Hence,

𝑉 (𝑥
0
)

𝜑 (𝛼)
≥ 𝐸 (𝜇

𝛼
∧ 𝜇
𝑟
∧ 𝑡 − 𝑡

0
)

= 𝐸 (𝜏 − 𝑡
0
) ≥ (𝑡 − 𝑡

0
) 𝑃 {𝜇

𝛼
∧ 𝜇
𝑟
≥ 𝑡} .

(38)

This means that

𝑃 {𝜇
𝛼
∧ 𝜇
𝑟
< ∞} = 1. (39)

By (31), 𝑃{𝜇
𝑟
< ∞} ≤ 𝜀/4. So

𝑃 {𝜇
𝛼
< ∞} +

𝜀

4
≥ 𝑃 {𝜇

𝛼
< ∞} + 𝑃 {𝜇

𝑟
< ∞}

≤ 𝑃 {𝜇
𝛼
∧ 𝜇
𝑟
< ∞} = 1,

(40)

which implies that

1 −
𝜀

4
≤ 𝑃 {𝜇

𝛼
< ∞} . (41)

Hence,

𝑃 {𝜇
𝛼
< 𝜇
𝑟
∧ 𝜃} ≥ 𝑃 ({𝜇

𝛼
< 𝜃} ∩ {𝜇

𝑟
= ∞})

≥ 𝑃 {𝜇
𝛼
< 𝜃} − 𝑃 {𝜇

𝑟
< ∞} ≥ 1 −

3

4
𝜀.

(42)

Define the two stopping times

𝜎 = {
𝜇
𝛼

if 𝜇
𝛼
< 𝜇
𝑟
∧ 𝜃,

∞ otherwise,

𝜇
𝛽
= inf {𝑡 > 𝜎 : |𝑥 (𝑡)| ≥ 𝛽} .

(43)

Similar to the proof of (24), we can show that, for 𝑡 ≥ 𝜃,

𝐸𝑉 (𝑥 (𝜎 ∧ 𝑡)) ≥ 𝐸𝑉 (𝑥 (𝜇
𝛽
∧ 𝑡)) . (44)

If 𝜇
𝛼
≥ 𝜇
𝑟
∧ 𝜃, then we note that |𝑥(𝜇

𝛽
∧ 𝑡)| = |𝑥(𝜎 ∧ 𝑡)| =

|𝑥(𝑡)| = 𝜂, then

𝐸 [𝐼
{𝜇𝛼<𝜇𝑟∧𝜃}

𝑉 (𝑥 (𝜇
𝛼
))] ≥ 𝐸 [𝐼

{𝜇𝛼<𝜇𝑟∧𝜃}
𝑉(𝑥 (𝜇

𝛽
∧ 𝑡))] .

(45)

By (31) and {𝜇
𝛼
< 𝜇
𝑟
∧ 𝜃} ⊃ {𝜇

𝛽
≤ 𝑡}, we have

𝜑
1
(𝜂) 𝑃 {𝜇

𝛽
≤ 𝑡} ≤ 𝐸 [𝐼

{𝜇𝛽∧𝑡}
𝑉(𝑥 (𝜇

𝛽
∧ 𝑡))]

≤ 𝐸𝑉 (𝑥 (𝜇
𝛽
∧ 𝑡)) .

(46)

Together with (33), we get

𝜀

4
≥ 𝑃 {𝜇

𝛽
≤ 𝑡} . (47)

Letting 𝑡 → ∞, we obtain

𝜀

4
≥ 𝑃 {𝜇

𝛽
< ∞} . (48)

By (42), it follows that

1 − 𝜀 ≤ 𝑃 {𝜇
𝛼
< 𝜇
ℎ
∧ 𝜃} − 𝑃 {𝜇

𝛽
< ∞}

≤ 𝑃 {𝜎 < ∞, 𝜇
𝛽
= ∞} .

(49)

This means that

𝑃{ lim
𝑡→∞

sup |𝑥 (𝑡)| ≤ 𝛽} ≥ 1 − 𝜀. (50)

Since 𝛽 is arbitrary, then we have

𝑃{ lim
𝑡→+∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀. (51)

Theorem 16. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite, infinite small upper bounded function𝑉(𝑥), such that
𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝐸𝜑(|𝑥(𝑡)|), for all 𝑥(𝑡) ∈ 𝐷

𝑟
, then the trivial

solution of (6) is stochastically uniformly asymptotically stable
in probability.
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Proof. By the assumptions, there exist 𝜑
1
, 𝜑
2
, and 𝜑 ∈ 𝐾, such

that

𝜑
1
(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜑2 (|𝑥|) ,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝐸𝜑 (|𝑥 (𝑡)|) .

(52)

FromTheorem 13, we know that the trivial solution of (6)
is stochastically uniformly stable. Therefore, for every 𝜀 > 0
and ℎ > 0, there exists 𝛿 = 𝛿(𝜀, ℎ) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
,
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 < 𝛿. (53)

According to Definition 3 we only need to show that, for
every 𝜀 > 0 and ℎ > 0, there exist 𝛿 = 𝛿(𝜀, ℎ) > 0 and𝑇(𝜀) > 0,
such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀) , whenever 󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨 < 𝛿.

(54)

We use a contradiction argument; take 𝑇(𝜀) = 𝜑
2
(𝛿
0
)/

𝜑(𝛿(𝜀, ℎ)); suppose, for any 𝜏, that 𝑡
0
≤ 𝜏 ≤ 𝑡

0
+𝑇(𝜀), such that

|𝑥(𝜏)| ≥ 𝛿(𝜀, ℎ). By 𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝜑(|𝑥(𝑡)|), we can show
that

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝜑 (|𝑥 (𝑡)|) ≤ −𝜑 (𝛿 (𝜀, ℎ)) . (55)

So
𝜏−1

∑

𝑡=𝑡0

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤

𝜏−1

∑

𝑡=𝑡0

−𝜑 (𝛿 (𝜀, ℎ))

= −𝜑 (𝛿 (𝜀, 𝑟)) (𝜏 − 𝑡
0
) .

(56)

That is,

𝐸𝑉 (𝑥 (𝜏)) − 𝑉 (𝑥
0
) ≤ −𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡

0
) . (57)

Thus,

𝐸𝑉 (𝑥 (𝜏)) ≤ 𝑉 (𝑥
0
) − 𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡

0
)

≤ 𝜑
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) − 𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡0)

< 𝜑
2
(𝛿
0
) − 𝜑 (𝛿 (𝜀, ℎ)) (𝜏 − 𝑡

0
) ,

(58)

whenever 𝑡
0
≤ 𝜏 ≤ 𝑡

0
+ 𝑇(𝜀).

Especially, if 𝜏 = 𝑡
0
+ 𝑇(𝜀), it follows that

𝐸𝑉 (𝑥 (𝑡
0
+ 𝑇 (𝜀))) < 𝜑

2
(𝛿
0
) − 𝜑 (𝛿 (𝜀, ℎ)) 𝑇 (𝜀) = 0. (59)

This contradicts the positive definite property of 𝑉(𝑥).
Then, we can prove that there exists 𝑡

1
∈ [𝑡
0
, 𝑡
0
+ 𝑇(𝜀)], such

that
󵄨󵄨󵄨󵄨𝑥 (𝑡1)

󵄨󵄨󵄨󵄨 < 𝛿 (𝜀, ℎ) . (60)

According to Definition 3, we have

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
1
. (61)

Therefore,

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, 𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀) . (62)

The proof is complete.

Remark 17. By comparing Theorems 12–15, we know that
𝐸[Δ𝑉(𝑥(𝑡))] ≤ −𝐸𝜑(|𝑥(𝑡)|) guarantees the system to be
stochastically asymptotically stable. The difference between
Theorems 15 and 16 is that 𝑉(𝑥) is additionally required to
have an infinite small upper bound in Theorem 16, which
ensures the trivial solution of (6) to be stochastically uni-
formly asymptotically stable in probability.

Theorem 18. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite radially unbounded function 𝑉(𝑥) ∈ 𝐶

2
(𝐷
𝑟
), such

that 𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝐸𝜑(|𝑥(𝑡)|), for all 𝑥(𝑡) ∈ 𝐷
𝑟
, then the

trivial solution of (6) is stochastically asymptotically stable in
the large.

Proof. ByTheorem 12, we know that the trivial solution of (6)
is stochastically stable.

Let 𝜀 ∈ (0, 1) be arbitrary, and fix any 𝑥
0
. Since 𝑉(𝑥) is

radially unbounded, then we can choose 𝑟 > |𝑥
0
| sufficiently

large, such that

inf
|𝑥|≥𝑟,𝑡≥𝑡0

𝑉 (𝑥) ≥
4𝑉 (𝑥

0
)

𝜀
. (63)

Define the stopping time

𝜇
𝑟
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑟} . (64)

Similar to the proof of (24), we can obtain that, for any
𝑡 ≥ 𝑡
0
,

𝑉 (𝑥
0
) ≥ 𝐸𝑉 (𝑥 (𝜇

𝑟
∧ 𝑡)) . (65)

From (63), we have

𝑉 (𝑥
0
) ≥ 𝐸𝑉 (𝑥 (𝜇

𝑟
∧ 𝑡)) ≥

4𝑉 (𝑥
0
)

𝜀
𝑃 {𝜇
𝑟
≤ 𝑡} . (66)

Together with (65), it yields that

𝑃 {𝜇
𝑟
≤ 𝑡} ≤

𝜀

4
. (67)

Let 𝑡 → ∞; we have 𝑃{𝜇
𝑟
< ∞} ≤ 𝜀/4. That is to say,

𝑃 {|𝑥 (𝑡)| ≤ 𝑟} ≥ 1 −
𝜀

4
, ∀𝑡 ≥ 𝑡

0
. (68)

In the sameway as that of the proof ofTheorem 15, we can
show that

𝑃{ lim
𝑡→+∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀. (69)

This immediately implies that 𝑃{lim
𝑡→+∞

𝑥(𝑡) = 0} = 1.
The proof is complete.

Theorem 19. If there exist a function 𝜑 ∈ 𝐾 and a positive
definite, infinite small upper bound and radially unbounded
function 𝑉(𝑥), such that 𝐸[Δ𝑉(𝑥(𝑡)] ≤ −𝐸𝜑(|𝑥(𝑡)|), for all
𝑥(𝑡) ∈ 𝐷

𝑟
, then the trivial solution of (6) is stochastically

uniformly asymptotically stable in the large in probability.
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Proof. Under the conditions ofTheorem 19, there exist 𝜑
1
, 𝜑
2
,

and 𝜑 ∈ 𝐾, such that

𝜑
1
(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜑2 (|𝑥|) ,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝐸𝜑 (|𝑥 (𝑡)|) .

(70)

ByTheorem 13, we know that the trivial solution of (6) is
stochastically uniformly stable.

In the following, we first verify that the trivial solution of
(6) is uniformly bounded. Actually, for any 𝛼 > 0, 𝑡

0
≥ 0, due

to 𝜑
1
, 𝜑
2
∈ 𝐾, there exists 𝛽 = 𝛽(𝛼), such that

𝜑
1
(𝛽) = 𝜑

2
(𝛼) , that is, 𝛽 = 𝜑−1

1
(𝜑
2
(𝛼)) . (71)

It is easy to show that

𝐸𝑉 (𝑥 (𝑡)) − 𝑉 (𝑥
0
) =

𝑡−1

∑

𝑡=𝑡0

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ 0, 𝑡 ≥ 𝑡
0
. (72)

When |𝑥
0
| < 𝛼, we have

𝜑
1
(|𝑥 (𝑡)|) ≤ 𝐸𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥

0
)

≤ 𝜑
2
(
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨) < 𝜑2 (𝛼)

= 𝜑
1
(𝛽) .

(73)

Because of 𝜑
1
being strictly increasing, so |𝑥(𝑡)| < 𝛽, a.s.,

𝑡 ≥ 𝑡
0
.This implies that the trivial solution of (6) is uniformly

bounded.
We further show that, for every 𝛼 > 0, 𝜀 > 0, and ℎ > 0,

there exists 𝑇(𝜀, 𝛼) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀,

∀𝑡 ≥ 𝑡
0
+ 𝑇 (𝜀, 𝛼) , whenever 󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨 < 𝛼.

(74)

As previously stated the trivial solution of (6) is stochas-
tically uniformly stable. Therefore, for every 𝜀 > 0 and ℎ > 0,
there exists 𝛿 = 𝛿(𝜀, ℎ) > 0, such that

𝑃 {|𝑥 (𝑡)| < ℎ} ≥ 1 − 𝜀, ∀𝑡 ≥ 𝑡
0
,
󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 < 𝛿. (75)

The rest is similar to the proof of Theorem 16 and is thus
omitted.

Remark 20. Theorems 18 and 19 are stronger versions of
Theorems 15 and 16, respectively, where 𝑉(𝑥) is additionally
required to be a radially unbounded function that is used to
prove the stability in the large.

In what follows, we will discuss the 𝑝th moment expo-
nential stability for (6).

Theorem 21. Suppose that there exist a function 𝑉(𝑥) ∈

𝐶
2
(𝐷
𝑟
) and positive constants 𝑐

1
, 𝑐
2
, and 𝑐

3
, such that

𝑐
1|𝑥|
𝑝
≤ 𝑉 (𝑥) ≤ 𝑐

2|𝑥|
𝑝
,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝑐3𝐸𝑉 (𝑥 (𝑡)) .

(76)

Then

𝐸|𝑥 (𝑡)|
𝑝
≤
𝑐
2

𝑐
1

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

𝑒
−𝑐3(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, ∀𝑥
0
∈ 𝑅
𝑛
. (77)

That is, the trivial solution of (6) is 𝑝th moment exponen-
tially stable.

Proof. Define the stopping time

𝜇
𝑛
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑛} , 𝑛 ≥

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨 . (78)

It is easy to see that 𝜇
𝑛
→ ∞ as 𝑛 → ∞ almost surely.

By 𝐸[Δ𝑉(𝑥(𝑡))] ≤ −𝑐
3
𝐸𝑉(𝑥(𝑡)), we can derive that

𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))] − 𝑉 (𝑥

0
)

= 𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))

− 𝑒
𝑐3(𝑡∧−1−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

+ 𝑒
𝑐3(𝑡∧𝜇𝑛−1−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

− 𝑒
𝑐3(𝑡∧𝜏𝑛−2−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 2))

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3(𝑡0+1−𝑡0)𝑉 (𝑥 (𝑡

0
+ 1))] − 𝑉 (𝑥

0
)

= 𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))

− 𝑉 (𝑥 (𝑡 ∧ 𝜇
𝑛
− 1))

+ 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

− 𝑒
𝑐3(𝑡∧𝜇𝑛−1−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3𝑉 (𝑥 (𝑡

0
+ 1)) ] − 𝑉 (𝑥

0
)

= 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝐸 [Δ𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))]

+ 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1)) (1 −

1

𝑒𝑐3
)

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3𝐸 [Δ𝑉 (𝑥 (𝑡

0
))] + 𝑒

𝑐3𝑉 (𝑥
0
) (1 −

1

𝑒𝑐3
)

≤ 𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0) (−𝑐

3
+ 1 −

1

𝑒𝑐3
)𝐸𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
− 1))

+ ⋅ ⋅ ⋅ + 𝑒
𝑐3 (−𝑐
3
+ 1 −

1

𝑒𝑐3
)𝑉 (𝑥

0
) ≤ 0.

(79)

By 𝑐
1
|𝑥|
𝑝
≤ 𝑉(𝑥) ≤ 𝑐

2
|𝑥|
𝑝, we have that

𝑐
1
𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝐸

󵄨󵄨󵄨󵄨𝑥 (𝑡 ∧ 𝜇𝑛)
󵄨󵄨󵄨󵄨

𝑝

≤ 𝐸 [𝑒
𝑐3(𝑡∧𝜇𝑛−𝑡0)𝑉 (𝑥 (𝑡 ∧ 𝜇

𝑛
))]

≤ 𝑉 (𝑥
0
) ≤ 𝑐
2

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

.

(80)

Letting 𝑛 → ∞, then

𝑐
1
𝑒
𝑐3(𝑡−𝑡0)𝐸|𝑥 (𝑡)|

𝑝
≤ 𝑐
2

󵄨󵄨󵄨󵄨𝑥0
󵄨󵄨󵄨󵄨

𝑝

, (81)

which implies (77).
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As a corollary, Theorem 21 yields a sufficient criterion for
the exponential stability in mean square sense.

Corollary 22. Suppose that there exist a function 𝑉(𝑥) ∈

𝐶
2
(𝐷
𝑟
) and positive constants 𝑐

1
, 𝑐
2
, and 𝑐

3
, such that

𝑐
1|𝑥|
2
≤ 𝑉 (𝑥) ≤ 𝑐

2|𝑥|
2
,

𝐸 [Δ𝑉 (𝑥 (𝑡))] ≤ −𝑐3𝐸|𝑥 (𝑡)|
2
.

(82)

Then the trivial solution of (6) is exponentially stable in mean
square.

4. Illustrative Examples

In this section, we present three simple examples to illustrate
applications of the stability results developed in this paper.We
will let 𝑤(𝑡) be a one-dimensional stochastic process defined
on the complete probability space (Ω, 𝐹, 𝑃), such that𝐸𝑤(𝑡) =
0 and 𝐸[𝑤(𝑡)𝑤(𝑠)] = 𝛿

𝑠𝑡
, where 𝛿

𝑠𝑡
is the Kronecker delta.

Example 1. Consider the following equation:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡) 𝑤 (𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
, (83)

where 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices. Assume that there is a
symmetric positive definite matrix 𝑃, such that

𝐴
𝑇
𝑃𝐴 + 𝐵

𝑇
𝑃𝐵 − 𝑃 ≤ 0. (84)

Now, define the stochastic Lyapunov function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥.
It is obvious that

𝐸 [Δ𝑉 (𝑥 (𝑡))] = 𝐸 [𝑥
𝑇
(𝑡) (𝐴

𝑇
𝑃𝐴 + 𝐵

𝑇
𝑃𝐵 − 𝑃) 𝑥 (𝑡)] ≤ 0.

(85)

ByTheorem 12, we conclude that the trivial solution 𝑥 ≡ 0 of
(83) is stochastically stable in probability.

Example 2. Consider the following stochastic difference
equation:

𝑥 (𝑡 + 1) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑥 (𝑡) 𝑤 (𝑡)

= [𝐴 (𝑡) + 𝐵 (𝑡) 𝑤 (𝑡)] 𝑥 (𝑡)

= 𝐻 (𝑡, 𝑤 (𝑡)) 𝑥 (𝑡) ,

(86)

where 𝐴(𝑡), 𝐵(𝑡), and 𝐻(𝑡, 𝑤(𝑡)) = 𝐴(𝑡) + 𝐵(𝑡)𝑤(𝑡) = (ℎ
𝑖,𝑗
(𝑡,

𝑤(𝑡))) are all 2 × 2 matrix-valued functions defined on 𝑡 =
𝑡
0
, 𝑡
0
+ 1, and 𝑡

0
+ 2, . . . , 𝑥(𝑡

0
) = 𝑥
0
∈ 𝑅
𝑛. Assume that

max
𝑖=1,2

𝐸

{

{

{

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2}

}

}

<
1

2
, (87)

for all 𝑥(𝑡) ∈ 𝑅2.

We define the Lyapunov function 𝑉(𝑥) = max
𝑖=1,2

{|𝑥
𝑖
|
2
}.

It is positive definite and radially unbounded. Moreover,

𝐸𝑉 (𝑥 (𝑡 + 1)) = max
𝑖=1,2

𝐸

{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

∑

𝑗=1

ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡)) 𝑥

𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}

}

}

≤ max
𝑖=1,2

𝐸

{

{

{

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2
2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2}

}

}

≤ max
𝑖=1,2

𝐸

{

{

{

2

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑤 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2}

}

}

×max
𝑗=1,2

𝐸{2
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

}

< max
𝑗=1,2

𝐸 {
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

} = 𝐸𝑉 (𝑥 (𝑡)) .

(88)

That is, 𝐸[Δ𝑉(𝑥(𝑡))] < 0. By Theorem 18, the trivial solution
is stochastically asymptotically stable in the large.

Example 3. Consider a one-dimensional linear stochastic
difference equation

𝑥 (𝑡 + 1) = 𝑎𝑥 (𝑡) + 𝑏𝑥 (𝑡) 𝑤 (𝑡) , (89)

where 𝑎, 𝑏 are all constants, and 𝑎2 < 𝑏2/4. We assume that
there exist positive constants 𝑝 and 𝑐 < 1, such that 5𝑏2 <
4(1 − 𝑐)𝑝.

We define the Lyapunov function 𝑉(𝑥) = 𝑝𝑥2; then

𝐸 [Δ𝑉 (𝑥 (𝑡))] = (
5𝑏
2

4
− 𝑝)𝐸𝑥

2
(𝑡) < −𝑐𝑝𝐸𝑥

2
(𝑡) . (90)

ByCorollary 22, the trivial solution is exponentially stable
in mean square.

5. Conclusions

This paper has discussed the stability in probability for
stochastic discrete-time systems. Using the method of Lya-
punov functionals, some efficient criteria for the stability
are obtained. Some results of the stability [13] for stochastic
differential equations are generalized to stochastic discrete-
time systems.There are some interesting problems such as the
almost sure exponential stability and the stochastic nonlinear
𝐻
∞

control that merit further study.
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