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The consideration of uncertainty in differential equations leads to the emergent area of random differential equations. Under
this approach, inputs become random variables and/or stochastic processes. Often one assumes that inputs are independent, a
hypothesis that simplifies themathematical treatment although it could not bemet in applications. In this paper, we analyse, through
the Airy equation, the influence of statistical dependence of inputs on the output, computing its expectation and standard deviation
by Fröbenius and Polynomial Chaos methods. The results are compared with Monte Carlo sampling. The analysis is conducted by
the Airy equation since, as in the deterministic scenario its solutions are highly oscillatory, it is expected that differences will be
better highlighted. To illustrate our study, and motivated by the ubiquity of Gaussian random variables in numerous practical
problems, we assume that inputs follow a multivariate Gaussian distribution throughout the paper. The application of Fröbenius
method to solve Airy equation is based on an extension of the method to the case where inputs are dependent. The numerical
results show that the existence of statistical dependence among the inputs and its magnitude entails changes on the variability of
the output.

1. Introduction and Motivation

Deterministic differential equations (ddes) have demon-
strated to be powerful tools for modelling numerous prob-
lems appearing in different areas including physics, chem-
istry, economy, engineering, and epidemiology. Their prac-
tical application requires knowing their inputs (coefficients,
forcing terms, initial/boundary conditions, etc.). This task
can only be done after accurate measurements that usually
contain uncertainty due to measuring errors or the inherent
complexity or ignorance of the phenomena under study.This
approach leads us to consider the inputs of such models as
random variables (rvs) or stochastic processes (sps) rather
than deterministic constants or functions, respectively. Dif-
ferential equations containing in their formulation random-
ness are usually referred to as random differential equations
(rdes) or stochastic differential equations (sdes) depending
on the kind of uncertainty therein. When randomness is
just considered through the white noise process (i.e., the
generalized derivative of theWiener process), they are usually

called sdes Then, Itô calculus is required in order to conduct
the study. Otherwise, the term rde is used (see, [1, page 66],
[2]).

Rdes constitute a natural extension of ddes. Generalized
Polynomial Chaos (usually denoted by gPC) andMonteCarlo
sampling (MCs) are probably the most popular techniques
to deal with rdes (see for instance [3, 4], resp.). In addition
to these approaches, the extension of some deterministic
techniques to the random scenario, based on the so-called
𝑝-stochastic calculus, also constitutes useful tools to solve
rdes (see [5, 6] and the references therein). In particular, a
random power series Fröbenius method has been recently
proposed by some of the authors to study some significant
rdes by assuming that random inputs are independent [7, 8].
Although independence assumption simplifies the mathe-
matical treatment of the models, it should not be assumed in
many practical situations. Apart from few contributions such
as [9, 10] where the authors study the dependent scenario by
taking advantage of gPC approach, most methods developed
to study rdes rely on independence of random inputs. In
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particular, to the best of our knowledge, applications of the
random Fröbenius method considering dependent rvs have
not been studied yet. As a consequence, the study of rdes
with dependent inputs is currently an active research area,
mainly stimulated by the necessity of providingmore realistic
approaches and more accurate answers in mathematical
modelling.

In this paper, we present a comparative study about the
capability of previous approaches to deal with rdes containing
dependent random inputs. To conduct the study, we will
consider the Airy random differential equation:

𝑋̈ (𝑡) + 𝑡𝐴𝑋 (𝑡) = 0, 𝑡 > 0,

𝑋 (0) = 𝑌
0
, 𝑋̇ (0) = 𝑌

1
,

(1)

where 𝐴, 𝑌
0
, 𝑌
1
are assumed to be Gaussian dependent rvs

on a probability space (Ω,F, 𝑃). We point out that the Airy
equation has been selected since, as it is well-known, in
the deterministic scenario its solutions are highly oscillatory
[11]; therefore, it is expected that differences among gPC,
Fröbenius method, and MCs will be better highlighted.

Specifically, we will compare, bymeans of several illustra-
tive examples, the quality of the numerical approximations
provided by the three approaches to compute the average
and standard deviation of the solution sp to the initial
value problem (ivp) (1). These examples will allow us to
elucidate, through the random Airy differential equation,
whether the statistical independence between the random
inputs (initial conditions and coefficients), usually assumed
in many applications, has a significant influence on the
output.

The paper is organized as follows. Section 2 is divided in
two parts.The first one is devoted to construct a mean square
convergent random power series solution to the ivp (1) using
the random Fröbenius method including approximations
of the average and the variance of the solution sp In the
second part, we summarize the main features of the gPC
method to study rdes, and we apply gPC to the particular
case where inputs are Gaussian dependent rvs. In Section 3
we will present several illustrative examples.The aim of these
examples is twofold. First, to highlight the similarities and
differences between the three approaches in dealingwith both
dependent/independent (Gaussian) rvs; second, to reveal,
through the Airy rde, the importance of setting appropriately
the statistical dependence of random inputs in dealing with
mathematical models. Conclusions are drawn in the last
section.

2. Development

In this section, we present the main results required to con-
struct using Fröbenius and gPCmethods the approximations
of the mean and standard deviation of the solution sp to the
ivp (1) when inputs 𝐴, 𝑌

0
, 𝑌
1
are assumed to be dependent

rvs.We point out that the description of Fröbeniusmethod in
this scenario is presented briefly deliberately since it follows
in broad outline that of independent case, which has been
developed by some of the authors previously [7]. Foundations

and further details about gPCmethod can be found in [3], for
instance.

2.1. Tackling Random Dependence Using Fröbenius Method.
Random Fröbenius method consists of constructing a power
series solution to the ivp (1), say, 𝑋(𝑡) = ∑

𝑛≥0
𝑋
𝑛
𝑡
𝑛 which is

mean square convergent on a certain 𝑡-domain. The rigorous
construction of such a mean square convergent random
infinite series requires 𝐿𝑝 = 𝐿

𝑝
(Ω,F, 𝑃)-calculus with 𝑝 =

2, 4, where convergence is defined in the 𝑝-norm: ‖𝑋‖
𝑝

=

(E[|𝑋|
𝑝
])
1/𝑝 [5, 7]. Convergence with 𝑝 = 2/𝑝 = 4-

norm is usually referred to as mean square (ms)/fourth (mf)
convergence. By the Schwarz inequality, it is straightforward
to proof that mean fourth convergence implies mean square
convergence. Based on the ideas developed in [7], now
we assume that the following joint absolute moments with
respect to the origin increase at most exponentially; that is,
there is a nonnegative integer 𝑛

0
and positive constants 𝐻

𝑖

and𝑀
𝑖
, 𝑖 ∈ {0, 1} such that

𝐸 [|𝐴|
𝑛󵄨󵄨󵄨󵄨𝑌𝑖

󵄨󵄨󵄨󵄨
4
] ≤ 𝐻

𝑖
(𝑀
𝑖
)
𝑛
< ∞, 𝑖 = 0, 1, ∀𝑛 ≥ 𝑛

0
. (2)

In the case of ivp (1), the random power series solution is
given by [7]

𝑋(𝑡) = 𝑌
0
+ ∑

𝑛≥1

(−1)
𝑛
(3𝑛 − 2)!!!𝐴

𝑛
𝑌
0

(3𝑛)!
𝑡
3𝑛

+ 𝑌
1
𝑡 + ∑

𝑛≥1

(−1)
𝑛
(3𝑛 − 1)!!!𝐴

𝑛
𝑌
1

(3𝑛 + 1)!
𝑡
3𝑛+1

.

(3)

Under hypothesis (2) mf convergence (and hence ms conver-
gence) of the first series appearing in (3) follows straightfor-
wardly:
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(−1)
𝑛
(3𝑛 − 2)!!!𝐴

𝑛
𝑌
0

(3𝑛)!
𝑡
3𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩4
=
󵄩󵄩󵄩󵄩𝐴
𝑛
𝑌
0

󵄩󵄩󵄩󵄩4

(3𝑛 − 2)!!!

(3𝑛)!
|𝑡|
3𝑛

= (𝐸 [|𝐴|
4𝑛󵄨󵄨󵄨󵄨𝑌0

󵄨󵄨󵄨󵄨
4
])
1/4

×
(3𝑛 − 2)!!!

(3𝑛)!
|𝑡|
3𝑛

≤ 𝐿
0
(𝑀
0
)
𝑛 (3𝑛 − 2)!!!

(3𝑛)!
|𝑡|
3𝑛
,

(4)

where 𝐿
0
= 4√𝐻

0
> 0. As a consequence, for 𝑛 ≥ 𝑛

0
we have

obtained as a majorant series

∑

𝑛≥𝑛
0

𝛼
𝑛
, where 𝛼

𝑛
= 𝐿
0
(𝑀
0
)
𝑛 (3𝑛 − 2)!!!

(3𝑛)!
|𝑡|
3𝑛
, (5)

that is convergent for all 𝑡 ∈ R as it can be directly checked
by D’Alembert test:

𝛼
𝑛+1

𝛼
𝑛

= 𝑀
0

(3𝑛 + 1)

(3𝑛 + 3) (3𝑛 + 2) (3𝑛 + 1)
|𝑡|
3

󳨀→
𝑛→∞

0, 𝑡 ∈ R.

(6)

The mf convergence for the second series in (3) follows anal-
ogously.
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Remark 1. By assuming that there are positive constants 𝐻

and 𝑀 > 0 such that 𝐸[|𝐴|
𝑛
] ≤ 𝐻𝑀

𝑛
< ∞ for every 𝑛 ≥ 𝑛

0

and 𝑌
𝑖
∈ 𝐿
8 for 𝑖 ∈ {0, 1}, m.s. convergence of series (3) can

also be established analogously as we have shown previously.
In fact, this follows immediately from the Schwarz inequality

𝐸 [|𝐴|
𝑛󵄨󵄨󵄨󵄨𝑌𝑖

󵄨󵄨󵄨󵄨
4
] ≤ (𝐸 [|𝐴|

2𝑛
])
1/2

(𝐸 [
󵄨󵄨󵄨󵄨𝑌𝑖

󵄨󵄨󵄨󵄨
8
])
1/2

≤ 𝐻
𝑖
𝑀
𝑛
, (7)

where 𝐻
𝑖
= √𝐻𝐾

𝑖
, being 𝐾

𝑖
= 𝐸[|𝑌

𝑖
|
8
] < ∞, 𝑖 ∈ {0, 1}.

However, notice that this condition is stronger than (2).

Taking advantage of m.s. convergence of series appearing
in right-hand side of (3) together with the following property
([2, page 88]):

{𝑋
𝑛
: 𝑛 ≥ 0} ∈ 𝐿

2
: 𝑋
𝑛

m.s.
󳨀→
𝑛→∞

𝑋

󳨐⇒
{

{

{

𝐸 [𝑋
𝑛
] 󳨀→
𝑛→∞

𝐸 [𝑋] ,

Var [𝑋
𝑛
] 󳨀→
𝑛→∞

Var [𝑋] ,

(8)

we can obtain approximations for the average, 𝐸[𝑋(𝑡)], and
variance, Var[𝑋(𝑡)], (or equivalently standard deviation) by
truncating the random power series of𝑋(𝑡) given by (3). For
the approximation of the average one gets

𝐸 [𝑋
𝑁
(𝑡)] = 𝐸 [𝑌

0
] +

𝑁

∑

𝑛=1

(−1)
𝑛
𝐸 [𝐴
𝑛
𝑌
0
]
(3𝑛 − 2)!!!

(3𝑛)!
𝑡
3𝑛

+ 𝐸 [𝑌
1
] 𝑡 +

𝑁

∑

𝑛=1

(−1)
𝑛
𝐸 [𝐴
𝑛
𝑌
1
]
(3𝑛 − 1)!!!

(3𝑛 + 1)!
𝑡
3𝑛+1

.

(9)

In order to obtain approximations of the standard deviation
of 𝑋(𝑡), we will take into account the well-known represen-
tation of the variance in terms of the two first moments,
Var[𝑋(𝑡)] = 𝐸[(𝑋(𝑡))

2
] − (𝐸[𝑋(𝑡)])

2. Therefore, it is enough
to approximate the second moment:

𝐸 [(𝑋
𝑁
(𝑡))
2
] = 𝐸 [(𝑌

0
)
2
]

+ 2

𝑁

∑

𝑛=1

(−1)
𝑛
𝐸 [𝐴
𝑛
(𝑌
0
)
2
]
(3𝑛 − 2)!!!

(3𝑛)!
𝑡
3𝑛

+

𝑁

∑

𝑛=1

𝐸 [𝐴
2𝑛
(𝑌
0
)
2
] (

(3𝑛 − 2)!!!

(3𝑛)!
)

2

𝑡
6𝑛

+ 2

𝑁

∑

𝑛=2

𝑛−1

∑

𝑚=1

(−1)
𝑛+𝑚

𝐸 [𝐴
𝑛+𝑚

(𝑌
0
)
2
]

×
(3𝑛 − 2)!!! (3𝑚 − 2)!!!

(3𝑛)! (3𝑚)!
𝑡
3(𝑛+𝑚)

+ 𝐸 [(𝑌
1
)
2
] 𝑡
2

+ 2

𝑁

∑

𝑛=1

(−1)
𝑛
𝐸 [𝐴
𝑛
(𝑌
1
)
2
]
(3𝑛 − 1)!!!

(3𝑛 + 1)!
𝑡
3𝑛+2

+

𝑁

∑

𝑛=1

𝐸 [𝐴
2𝑛
(𝑌
1
)
2
] (

(3𝑛 − 1)!!!

(3𝑛 + 1)!
)

2

𝑡
6𝑛+2

+ 2

𝑁

∑

𝑛=2

𝑛−1

∑

𝑚=1

(−1)
𝑛+𝑚

+ 𝐸 [𝐴
𝑛+𝑚

(𝑌
1
)
2
]

×
(3𝑛 − 1)!!! (3𝑚 − 1)!!!

(3𝑛 + 1)! (3𝑚 + 1)!
𝑡
3(𝑛+𝑚)+2

+ 2𝐸 [𝑌
0
𝑌
1
] 𝑡

+ 2

𝑁

∑

𝑛=1

(−1)
𝑛
𝐸 [𝐴
𝑛
𝑌
0
𝑌
1
]
(3𝑛 − 1)!!!

(3𝑛 + 1)!
𝑡
3𝑛+1

+ 2

𝑁

∑

𝑛=1

(−1)
𝑛
𝐸 [𝐴
𝑛
𝑌
0
𝑌
1
]
(3𝑛 − 2)!!!

(3𝑛)!
𝑡
3𝑛+1

+ 2

𝑁

∑

𝑛=1

𝑁

∑

𝑚=1

(−1)
𝑛+𝑚

𝐸 [𝐴
𝑛+𝑚

𝑌
0
𝑌
1
]

×
(3𝑛 − 2)!!! (3𝑚 − 1)!!!

(3𝑛)! (3𝑚 + 1)!
𝑡
3(𝑛+𝑚) +1

.

(10)

Remark 2. In order to legitimate the use of the previous
approximations to the average and the standard deviation,
condition (2) must be checked in practice. However, there
is a lack of explicit formulae for the absolute moments with
respect to the origin of some rvs. This aims us to look for a
general approach to deal with a wide range of random inputs
taking advantage of the so-called censuring method (see [12,
chapter V]). Let us assume that rvs 𝐴, 𝑌

𝑖
, 𝑖 ∈ {0, 1} satisfy

𝑎
1
≤ 𝑎 = 𝐴 (𝜔) ≤ 𝑎

2
, 𝑦
𝑖,1

≤ 𝑦
𝑖
= 𝑌
𝑖
(𝜔) ≤ 𝑦

𝑖,2
, ∀𝜔 ∈ Ω.

(11)

Then

𝐸 [|𝐴|
𝑛󵄨󵄨󵄨󵄨𝑌𝑖

󵄨󵄨󵄨󵄨
4
] = ∫

𝑎
2

𝑎
1

∫

𝑦
𝑖,2

𝑦
𝑖,1

|𝑎|
𝑛󵄨󵄨󵄨󵄨𝑦𝑖

󵄨󵄨󵄨󵄨
4
𝑓
𝐴𝑌
𝑖

(𝑎, 𝑦
𝑖
) d𝑦
𝑖
d𝑎 ≤ 𝐻

𝑖
𝑀
𝑛
,

(12)

where 𝑓
𝐴𝑌
𝑖

(𝑎, 𝑦
𝑖
) denotes the joint probability density func-

tion (p.d.f.) of rvs 𝐴, 𝑌
𝑖
and 𝑀 = max(|𝑎

1
|, |𝑎
2
|), 𝐻
𝑖
= (ℎ
𝑖
)
4,

being ℎ
𝑖
= max(|𝑦

𝑖,1
|, |𝑦
𝑖,2
|), 𝑖 ∈ {0, 1}. Indeed, in the case that

𝐻
𝑖
,𝑀 > 1, 𝑖 ∈ {0, 1} one gets

∫

𝑎
2

𝑎
1

∫

𝑦
𝑖,2

𝑦
𝑖,1

|𝑎|
𝑛󵄨󵄨󵄨󵄨𝑦𝑖

󵄨󵄨󵄨󵄨
4
𝑓
𝐴𝑌
𝑖

(𝑎, 𝑦
𝑖
) d𝑦
𝑖
d𝑎

≤ 𝐻
𝑖
𝑀
𝑛
∫

𝑎
2

𝑎
1

∫

𝑦
𝑖,2

𝑦
𝑖,1

𝑓
𝐴𝑌
𝑖

(𝑎, 𝑦
𝑖
) d𝑦
𝑖
d𝑎 = 𝐻

𝑖
𝑀
𝑛
.

(13)

Notice that in the last step the double integral is just 1,
since 𝑓

𝐴𝑌
𝑖

(𝑎, 𝑦
𝑖
) is a pdf The other cases can be analyzed
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analogously. Substituting the integral by a sum in (12),
previous reasoning remains true when 𝐴 and/or 𝑌

𝑖
, 𝑖 ∈ {0, 1}

are discrete rvs. As a consequence, important rvs such as
binomial, hypergeometric, uniform or beta satisfy condition
(2), which is related to joint absolute moments of 𝐴, 𝑌

𝑖
, 𝑖 ∈

{0, 1}. It is worthwhile to point out that there are significant
rvs that do not satisfy condition (2) such as the exponential
rv, for instance. In fact, taking 𝑌

𝑖
≡ 1, 𝑖 = 0, 1 in (2), if

𝐴 ∼ Exp(𝜆), 𝜆 > 0, then 𝐸[|𝐴|
𝑛
] = 𝑛!/𝜆

𝑛. As a consequence,
in this case condition (2) does not fulfill. Although other
unbounded rvs can also verify condition (2), we do not
need to check it each time, since if we censure its codomain
suitably, we are legitimated to compute approximations to
the mean and standard deviation according to formulae (9)-
(10), respectively. The larger the censured interval, the better
the approximations. However, in practice, intervals relatively
short provide very good approximations. For instance, as an
illustrative example notice that the truncated interval [𝜇 −

3𝜎, 𝜇 + 3𝜎] contains the 99.7% of the probability mass of a
Gaussian rv with mean 𝜇 and standard deviation 𝜎 > 0.

2.2. Tackling Random Dependence by Generalized Polynomial
Chaos Method. As it has been underlined in Section 1, gPC
constitutes a powerful method to deal with randomness in
differential equations, say

D (𝑡, 𝜂 (𝜔) ; 𝑋) = 𝑓 (𝑡, 𝜂 (𝜔)) , (14)

where D denotes a differential operator; 𝑋 = 𝑋(𝑡, 𝜂(𝜔)) is
the solution sp to be determined and 𝑓(𝑡, 𝜂(𝜔)) is a forcing
term. Notice that in the rde (14) uncertainty is represented by
𝜂, and it just enters through its coefficients and forcing term,
although in practice it could also be considered via initial
and/or boundary conditions. For the sake of clarity, in the
following each scalar random input will be denoted by 𝜂.

gPC permits to represent spectrally each 𝜂 in the random
dimension, and the solution sp, 𝑋(𝑡), in 𝐿

2
= 𝐿
2
(Ω,F, 𝑃).

These representations are given by infinite random series
defined in terms of certain orthogonal polynomial expan-
sions {Φ

𝑖
} which depend on a number of rvs 𝜁(𝜔) =

(𝜁
1
(𝜔), 𝜁
2
(𝜔), . . .), 𝜔 ∈ Ω,

𝜂 =

∞

∑

𝑖=0

𝜂
𝑖
Φ
𝑖
(𝜁 (𝜔)) , 𝑋 (𝑡) =

∞

∑

𝑖=0

𝑋
𝑖
(𝑡) Φ
𝑖
(𝜁 (𝜔)) . (15)

This set {Φ
𝑖
} constitutes a complete orthogonal basis in 𝐿

2
(Ω,

F, 𝑃) with the inner product

⟨Φ
𝑖
, Φ
𝑗
⟩ = ⟨Φ

2

𝑖
⟩ 𝛿
𝑖𝑗
, (16)

where 𝛿
𝑖𝑗
is the Kronecker delta and ⟨⋅⟩ denotes the ensemble

average defined as follows:

⟨𝑔 (𝜁) , ℎ (𝜁)⟩ = ∫
supp(𝜁)

𝑔 (𝜁) ℎ (𝜁) 𝑓𝜁 (𝜁) d𝜁, (17)

being 𝑓𝜁(𝜁) the joint pdf of 𝜁 and supp(𝜁) its support.
The choice of the trial basis {Φ

𝑖
} is crucial in dealing with

rdes. In [3], authors provide a comprehensive way to choose

the trial basis according to the statistical distribution of the
random input 𝜂 in order to achieve optimal convergence in
(15). For instance, if rv 𝜂 follows a binomial, negative bino-
mial, hypergeometric, Poisson, beta, or gamma distribution,
then {Φ

𝑖
} should be taken as Krawtchouk, Meixner, Hahn,

Charlier, Jacobi, Laguerre orthogonal polynomials belonging
to the Wiener-Askey scheme, respectively. In the significant
case that 𝜂 is aGaussian rv,Hermite polynomials are required.
This particular case is referred to as Polynomial Chaos rather
than gPC. Throughout this paper only PC will be used. The
key connection to do an adequate selection of the trial basis
lies in the close relationship between the pdf 𝑓𝜁(𝜁) of some
standard rvs and the weight function that defines the inner
product (17) with respect towhich some classical polynomials
are orthogonal.

In order to keep the computations affordable in dealing
with rdes, each random model parameter 𝜂 as well as the
solution sp𝑋(𝑡) is represented by truncated series of the form
(15),

𝜂 ≈

𝑃

∑

𝑖=0

𝜂
𝑖
Φ
𝑖
(𝜁 (𝜔)) ,

𝑋 (𝑡) ≈

𝑃

∑

𝑖=0

𝑋
𝑖
(𝑡) Φ
𝑖
(𝜁 (𝜔)) ,

(18)

where the number of components of random vector 𝜁(𝜔)
also needs to be truncated at a number 𝑠 called the order of
chaos, 𝜁(𝜔) = (𝜁

1
(𝜔), 𝜁
2
(𝜔), . . . , 𝜁

𝑠
(𝜔)). The truncation order

𝑃 is made so that all expansion polynomials up to a certain
maximum degree, 𝑝, are included. This entails the following
relationship between the number of terms 𝑃 + 1 in the series
expansions, the maximum degree 𝑝, and the order of chaos 𝑠:

𝑃 =
(𝑝 + 𝑠)!

𝑝!𝑠!
− 1. (19)

In this context, solving the rde (14) consists of computing
coefficients 𝑋

𝑖
(𝑡) appearing in (18) which also allows to

compute approximations of the expectation and the standard
deviation to the solution sp 𝑋(𝑡) as follows:

𝐸 [𝑋 (𝑡)] ≈ 𝜇
𝑃

𝑋(𝑡)
= 𝑋
0
(𝑡) 𝐸 [Φ

0
(𝜁)] ,

√Var [𝑋 (𝑡)] ≈ 𝜎
𝑃

𝑋(𝑡)
= √

𝑃

∑

𝑖=1

(𝑋
𝑖 (𝑡))
2
𝐸 [(Φ

𝑖 (𝜁))
2
].

(20)

To achieve this goal, first the expansion of 𝑋(𝑡) given by (18)
is substituted into the rde (14). Second, a Galerkin projection
is done by multiplying the rde by every polynomial of the
expansion basis {Φ

𝑖
}, and then, the ensemble average is taken.

This leads to

⟨D(𝑡, 𝜁;
𝑃

∑

𝑖=0

𝑋
𝑖 (𝑡) Φ𝑖 (𝜁)) ,Φ

𝑗 (𝜁)⟩ = ⟨𝑓 (𝑡, 𝜁) , Φ𝑗 (𝜁)⟩ ,

𝑗 = 0, 1, . . . , 𝑃,

(21)
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that corresponds to a deterministic system of 𝑃 + 1 coupled
differential equations whose unknowns are the node func-
tions 𝑋

𝑖
(𝑡). These unknowns can be computed by standard

numerical techniques such as Runge-Kutta scheme.
Most of the contributions based on gPC assume that rvs

𝜁
𝑖
(𝜔), 1 ≤ 𝑖 ≤ 𝑠 are independent which facilitates the

study. The case in which random parameters are assumed
to be dependent is currently a topic under study. In [9, 10],
authors present methods based on gPC to tackle dependence
in differential equations. Both contributions provide general
techniques that can be applied whenever the joint pdf of the
random inputs is known. However, in practice the availability
of this joint pdf can be very difficult even impossible. In
the particular case where the inputs are dependent Gaussian
rvs, an alternative method can be applied to conduct the
corresponding study taking advantage that uncorrelation
and independence are equivalent notions for Gaussian rvs
together with Cholesky matrix decomposition. To exhibit
how the method is going to be applied in our case, let us
remember the following basic result.

Proposition 3. Let 𝜁 = (𝜁
1
, . . . , 𝜁

𝑛
)
⊤ be a Gaussian vector

with mean 𝜇𝜁 and variance-covariance matrix Σ𝜁: 𝜁 ∼

𝑁(𝜇𝜁;Σ𝜁) (the symbol ⊤ denotes the usual matrix transpose
operator). For each deterministic vector ^ ∈ R𝑛 and determin-
istic matrixΛ ∈ 𝑀

𝑛×𝑛
(R), the random vector 𝜉 = (𝜉

1
, . . . , 𝜉

𝑛
)
⊤

defined by the linear transformation: 𝜉 = ^ + Λ𝜁 follows the
Gaussian distribution: 𝜉 ∼ 𝑁(^ + Λ𝜇𝜁;ΛΣ𝜁Λ

⊤
).

On the other hand, let 𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
) be a Gaussian

random vector. As Σ
𝜂
is a variance-covariance matrix, it is

Hermitian and positive definite. Hence, there is a matrix,
say H, such that Σ

𝜂
= HH⊤. For instance, Cholesky

decomposition provides a well-known procedure to compute
matrixH [13].

Keeping the notation of the previous context, we apply
Proposition 3 to the particular case where 𝜁 = Z ∼ 𝑁(0; I

𝑛
)

(so, 𝜇𝜁 = 0 and Σ𝜁 = I
𝑛
, being I

𝑛
the identity matrix of size

𝑛); ^ = 𝜇
𝜂
and Λ = H. Then

𝜇
𝜂
+HZ ∼ 𝑁(𝜇

𝜂
;HH⊤) = 𝑁(𝜇

𝜂
; Σ
𝜂
) . (22)

As Z = (𝑍
1
, . . . , 𝑍

𝑛
)
⊤

∼ 𝑁(0; I
𝑛
), then 𝑍

𝑗
, 1 ≤ 𝑗 ≤ 𝑛 are

Gaussian and uncorrelated r.v.’s and, therefore, independent.
As a consequence, expression (22) provides a direct way
to represent a Gaussian random vector 𝜂 with components
statistically dependent by means of a linear transformation
of a Gaussian vector Z whose components are independent:
𝜂 = 𝜇
𝜂
+HZ.

Now we detail how the previous development can be
applied to transform the ivp (1), where random inputs
𝐴, 𝑌
0
, 𝑌
1
are assumed to beGaussian dependent into another

one with Gaussian independent random inputs. Let 𝜂 =

(𝐴, 𝑌
0
, 𝑌
1
)
⊤
∼ 𝑁(𝜇

𝜂
;Σ
𝜂
) be the multivariate Gaussian distri-

bution of the random data, and let us denote byH = (ℎ
𝑖𝑗
) the

Cholesky decomposition of variance-covariance matrix Σ
𝜂
of

𝜂. According to (22), we define the linear transformation:

𝜂 = (

𝐴

𝑌
0

𝑌
1

) = 𝜇
𝜂
+HZ

= (

𝜇
𝐴

𝜇
𝑌
0

𝜇
𝑌
1

) + (

ℎ
11

ℎ
12

ℎ
13

ℎ
21

ℎ
22

ℎ
23

ℎ
31

ℎ
32

ℎ
33

)(

𝑍
1

𝑍
2

𝑍
3

) ,

(23)

where (𝜇
𝐴
, 𝜇
𝑌
0

, 𝜇
𝑌
1

)
⊤ denotes the mean of vector 𝜂 = (𝐴, 𝑌

0
,

𝑌
1
)
⊤ and Z = (𝑍

1
, 𝑍
2
, 𝑍
3
)
⊤, being 𝑍

𝑗
independent and

identically distributed standard Gaussian rvs, that is, 𝑍
𝑗

∼

𝑁(0; 1), 1 ≤ 𝑗 ≤ 3. By (23), ivp (1) can be recast as follows:

𝑋̈ (𝑡) + 𝑡(𝜇
𝐴
+

3

∑

𝑗=1

ℎ
1𝑗
𝑍
𝑗
)𝑋(𝑡) = 0, 𝑡 > 0,

𝑋 (0) = 𝜇
𝑌
0

+

3

∑

𝑗=1

ℎ
2𝑗
𝑍
𝑗
,

𝑋̇ (0) = 𝜇
𝑌
1

+

3

∑

𝑗=1

ℎ
3𝑗
𝑍
𝑗
,

(24)

where random inputs𝑍
𝑗
, 1 ≤ 𝑗 ≤ 3, are independent standard

Gaussian rvs. This allows us to compute approximations
of the expectation and standard deviation functions by PC
according to (20).

3. Examples

In this section we will present several illustrative examples
based on ivp (1) in order to compare the approximations
provided by Polynomial Chaos, Fröbenius, and Monte Carlo
simulation. The comparison is performed by computing the
average and standard deviation functions of the solution
of ivp (1). As we pointed out in the Introduction section,
the study is conducted through Airy differential equation
since, as in the deterministic case its solutions are highly
oscillatory, it is expected that differences among the three
previous approaches will be better highlighted in the ran-
dom framework. Computations have been carried out with
Mathematica package [14]. In particular, the coupled systems
of differential equations obtained after applying gPC in each
example are numerically solved with this software.

The examples have been designed to explore both the
marginal influence of randomness on the output when it is
assumed that only some inputs of ivp (1) are rvs (see Examples
1 and 2, where (𝑌

0
, 𝑌
1
) and (𝑌

0
, 𝐴) are assumed to follow

a bivariate Gaussian rvs, resp.), and the cases presented in
Examples 3 and 4 where all the random inputs (𝑌

0
, 𝑌
1
, 𝐴)

are assumed to follow a multivariate Gaussian distribution.
In the two first examples, we also investigate the influence of
the numerical value of the correlation coefficient of the two-
dimensional random input changes. Examples 3 and 4 seek to
illustrate the different qualitative behaviour of the solution sp
of ivp (1) depending on rv 𝐴.

Example 1. This first example has been devised to investigate
whether statistical dependence between the initial conditions
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entails a substantial change in the output with respect to
independence assumption. In addition, it permits to highlight
some significant advantages of Fröbenius and PC methods
in comparison with MCs. Let us consider the ivp (1) where
𝐴 = 1 and the initial conditions 𝜂 = (𝑌

0
, 𝑌
1
)
⊤ are assumed to

be dependent on a Gaussian r.v.’s: 𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
), where

𝜇
𝜂
= (

𝜇
𝑌
0

𝜇
𝑌
1

) , Σ
𝜂
= (

(𝜎
𝑌
0

)
2

𝜌
𝑌
0
𝑌
1

𝜎
𝑌
0

𝜎
𝑌
1

𝜌
𝑌
0
𝑌
1

𝜎
𝑌
0

𝜎
𝑌
1

(𝜎
𝑌
1

)
2 ) . (25)

In this case, we can directly monitor the influence of the
statistical dependence between 𝑌

0
and 𝑌

1
, measured through

its correlation coefficient 𝜌
𝑌
0
𝑌
1

, in the computations of the
average and the standard deviation when these moments
are calculated using anyone of the three methods. For the
Fröbenius method, taking into account that 𝐴 = 1 and
expression (10), we observe that dependence only contributes
through the term: 𝐸[𝑌

0
𝑌
1
] = 𝜌
𝑌
0
𝑌
1

𝜎
𝑌
0

𝜎
𝑌
1

+ 𝜇
𝑌
0

𝜇
𝑌
1

. In case of
PCmethod,monitoring dependence ismade directly over the
resulting ivp:

𝑋̈ (𝑡) + 𝑡𝑋 (𝑡) = 0, 𝑡 > 0,

𝑋 (0) = 𝜇
𝑌
0

+

2

∑

𝑗=1

ℎ
1𝑗
𝑍
𝑗
,

𝑋̇ (0) = 𝜇
𝑌
1

+

2

∑

𝑗=1

ℎ
2𝑗
𝑍
𝑗
,

(26)

since some coefficients ℎ
𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 2 depend on 𝜌

𝑌
0
𝑌
1

.
Specifically, ℎ

𝑖𝑗
are the entries of the Cholesky decomposition

of variance-covariance matrix Σ
𝜂

= HH⊤. In this case one
gets

H = (

𝜎
𝑌
0

0

𝜌
𝑌
0
𝑌
1

𝜎
𝑌
1

𝜎
𝑌
1

√1 − (𝜌
𝑌
0
𝑌
1

)
2) . (27)

Notice that in (26), 𝑍
1
and 𝑍

2
are independent standard

Gaussian rvs: 𝑍
1
, 𝑍
2

∼ 𝑁(0; 1). With respect to MC sim-
ulation, it is obvious that dependence is monitored directly
through the bivariate pdf which depends on 𝜌

𝑌
0
𝑌
1

:

𝑓 (𝑌
0
, 𝑌
1
) =

1

√2𝜋 (1 − (𝜌
𝑌
0
𝑌
1

)
2

)𝜎
𝑌
0

𝜎
𝑌
1

× exp
{{

{{

{

−
1

2 (1 − (𝜌
𝑌
0
𝑌
1

)
2

)

× [(
𝑌
0
− 𝜇
𝑌
0

𝜎
𝑌
0

)

2

− 2𝜌
𝑌
0
𝑌
1

(
𝑌
0
− 𝜇
𝑌
0

𝜎
𝑌
0

)

× (
𝑌
1
− 𝜇
𝑌
1

𝜎
𝑌
1

) + (
𝑌
1
− 𝜇
𝑌
1

𝜎
𝑌
1

)

2

]

}}

}}

}

.

(28)

The random samples needed to apply MC method
have been sampled with the Mathematica instruction:
“RandomVariate[MultinormalDistribution[, ]].”

Notice that Fröbenius and PC approaches turn out much
more fruitful than MCs in this particular example. In the
case of Fröbenius method, the series representation of the
solution sp 𝑋(𝑡) given by (3) permits not only to compute
reliable approximations of the average and standard deviation
but also to determine its full statistical distribution, which
in general is a major challenge. Firstly, notice that under
condition (2), we have proven that the infinite series (3)
converges in the mean square sense for each 𝑡; therefore, it
also converges in distribution for every 𝑡. In accordance with
(3), the truncated approximation of𝑋(𝑡) is given by

𝑋
𝑁
(𝑡) = 𝑌

0
𝑓
𝑁
(𝑡) + 𝑌

1
𝑔
𝑁
(𝑡) ,

𝑓
𝑁
(𝑡) =

𝑁

∑

𝑛=0

(−1)
𝑛
(3𝑛 − 2)!!!

(3𝑛)!
𝑡
3𝑛
,

𝑔
𝑁 (𝑡) =

𝑁

∑

𝑛=0

(−1)
𝑛
(3𝑛 − 1)!!!

(3𝑛 + 1)!
𝑡
3𝑛+1

,

(29)

where we adopt the convention 𝑘!!! = 1 for 𝑘 < 0. Note that

lim
𝑁→∞

𝑓
𝑁
(𝑡) =
0
𝐹
1
(;

2

3
; −

𝑡
3

9
) ,

lim
𝑁→∞

𝑔
𝑁
(𝑡) =
0
𝐹
1
(;

4

3
, −

𝑡
3

9
) ,

(30)

where
𝑝
𝐹
𝑞
[𝑎
1
, . . . , 𝑎

𝑝
; 𝑏
1
, . . . , 𝑏

𝑞
; 𝑧] denotes the confluent hy-

pergeometric function of order 𝑝 and 𝑞 evaluated at the point
𝑧.

Since the vector (𝑌
0
, 𝑌
1
)
⊤ has a bivariate Gaussian dis-

tribution, 𝑋
𝑁
(𝑡) follows a univariate Gaussian distribution

whose average and variance are given by

𝐸 [𝑋
𝑁
(𝑡)] = 𝐸 [𝑌

0
] 𝑓
𝑁
(𝑡) + 𝐸 [𝑌

1
] 𝑔
𝑁
(𝑡) , (31)

Var [𝑋
𝑁
(𝑡)] = Var [𝑌

0
] (𝑓
𝑁
(𝑡))
2

+ Var [𝑌
1
] (𝑔
𝑁
(𝑡))
2

+ 2Cov [𝑌
0
𝑓
𝑁
(𝑡) , 𝑌
1
𝑔
𝑁
(𝑡)]

= Var [𝑌
0
] (𝑓
𝑁
(𝑡))
2
+ Var [𝑌

1
] (𝑔
𝑁
(𝑡))
2

+ 2𝑓
𝑁 (𝑡) 𝑔𝑁 (𝑡) 𝜌𝑌

0
𝑌
1

𝜎
𝑌
0

𝜎
𝑌
1

,

(32)

respectively. By property (8), these expressions converge as
𝑁 → ∞ to the exact average, 𝐸[𝑋(𝑡)], and variance
Var[𝑋(𝑡)], respectively. This determines completely the sta-
tistical distribution of𝑋(𝑡) for every 𝑡.
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On the other hand, PC method also provides, in this
example, a useful series representation of the solution sp
𝑋(𝑡) that permits to obtain its statistical distribution. It is
straightforward to check that the PC series representation
obtained from ivp (26) has the following finite linear form:

𝑋 (𝑡) = 𝑋
0
(𝑡) Φ
0
(𝜉) + 𝑋

1
(𝑡) Φ
1
(𝜉) + 𝑋

2
(𝑡) Φ
2
(𝜉) , (33)

where 𝜉 = (𝑍
1
, 𝑍
2
)
⊤, 𝑍
𝑖
∼ 𝑁(0; 1) independent, 𝑖 = 1, 2

and Φ
0
(𝜉) = (𝑍

1
)
0
(𝑍
2
)
0

= 1, Φ
1
(𝜉) = (𝑍

1
)
1
(𝑍
2
)
0

=

𝑍
1
and Φ

2
(𝜉) = (𝑍

1
)
0
(𝑍
2
)
1

= 𝑍
2
. Hence, following an

analogous reasoning as in the previous case, we deduce the
full distribution of𝑋(𝑡).With respect toMC approach, it only
provides a set of numerical values to the solution at some
selected time instants fromwhich only rough approximations
of the statistical distribution of the solution𝑋(𝑡) can be given.

In Tables 1 and 2, we compare the approximations of
the expectation and standard deviation at different time
instants 𝑡 and correlation values: 𝜌

𝑌
0
𝑌
1

= −0.5, 0, 0.5, 0.9,
respectively. Notice that these values correspond to aver-
age negative dependence; independence; average positive
dependence; and strong positive dependence, respectively.
We assume 𝜇

𝑌
0

= 1, 𝜇
𝑌
1

= 1, 𝜎
𝑌
0

= 0.2, 𝜎
𝑌
1

= 0.2.
𝐸[𝑋
𝑁
(𝑡)](𝜎[𝑋

𝑁
(𝑡)]), 𝜇𝑃

𝑋
(𝑡) (𝜎𝑃
𝑋
(𝑡)) and 𝜇

𝑚

𝑋
(𝑡)(𝜎̃𝑚
𝑋
(𝑡)) denote

the approximate expectation (and standard deviation) at time
𝑡 obtained by Fröbenius (see expressions (9) and (10), or
equivalently, (31) and (32)) with truncation orden𝑁, PC (see
expression (20)) of order 𝑃 and MCs using 𝑚 simulations,
respectively. The values of 𝑁 and 𝑃 show in Tables 1 and 2
are those obtained when the numerical stabilization at six
significant digits is achieved.

We observe the numerical results provided by Fröbenius
and PC approaches match while MCs captures about three
significant digits. From Tables 1 and 2, we realize that the
correlation value 𝜌

𝑌
0
,𝑌
1

between 𝑌
0
and 𝑌

1
does not influence

the average, but it does decisively influuence the standard
deviation of the solution.This indicates to us that it is crucial
to know not only the existence of statistical dependence
between initial conditions but also quantifying, as accurate as
possible, its value by the correlation coefficient 𝜌

𝑌
0
,𝑌
1

. Notice
that these numerical conclusions agree with formulae (31)-
(32).

Example 2. In the previous example, uncertainty entered
in the equation just through initial conditions 𝑌

0
and 𝑌

1
.

Although both rvs are dependent, we have showed that it does
not influence the expectation of the solution but its standard
deviation. Does this answer change in case that randomness
is considered through coefficient 𝐴 and an initial condition?
In order to answer this question let us consider the ivp (1)
where 𝜂 = (𝐴, 𝑌

0
)
⊤ are assumed to be dependent Gaussian

rvs: 𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
), where

𝜇
𝜂
= (

𝜇
𝐴

𝜇
𝑌
0

) ,

Σ
𝜂
= (

(𝜎
𝐴
)
2

𝜌
𝐴𝑌
0

𝜎
𝐴
𝜎
𝑌
0

𝜌
𝐴𝑌
0

𝜎
𝐴
𝜎
𝑌
0

(𝜎
𝑌
0

)
2 ) .

(34)

1 2 3 4 5

𝜇
[X

(t
)]

−1.0

−0.5

0.5

1.0

1.5

t

𝜌 = 0

𝜌 = 0.5

𝜌 = 0.9

𝜌 = −0.5

Figure 1: Comparison of the approximations for the expectation
𝜇[𝑋(𝑡)] on the time-interval 𝑡 ∈ [0, 5] for different correlation
values 𝜌 = 𝜌

𝐴,𝑌0
∈ {−0.5, 0, 0.5, 0.9} in Example 2 by using

Fröbenius, Polynomial Chaos, and Monte Carlo simulations. Since
the numerical values are indistinguishable graphically, for the sake
of clarity in the presentation, nonlabel has been introduced. We
assume that 𝑌

1
= 1 and 𝜂 = (𝐴, 𝑌

0
)
⊤ follows a bivariate Gaussian

distribution: 𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
) where, according to (34), 𝜇

𝐴
= 1,

𝜇
𝑌0

= 1, 𝜎
𝐴
= 0.2, 𝜎

𝑌0
= 0.2.

To perform the computations of the average (𝜇[𝑋(𝑡)]) and
standard deviation (𝜎[𝑋(𝑡)]) shown in Figures 1 and 2,
respectively, we have taken 𝜇

𝐴
= 𝜇
𝑌
0

= 1, 𝜎
𝐴
= 𝜎
𝑌
0

= 0.2, and
𝜌
𝐴𝑌
0

∈ {−0.5, 0, 0.5, 0.9}. The initial condition 𝑌
1
is assumed

to be deterministic: 𝑌
1
= 1. Computations for Fröbenius and

PC have been carried out until the numerical stabilization at
six significant digits is achieved. This stabilization is got for
Fröbenius method with 𝑁 = 15 for the average and 𝑁 = 16

for the standard deviation. The corresponding values for PC
are 𝑃 = 5 and 𝑃 = 7.These results for𝑁 and 𝑃 do not depend
on the correlation coefficient 𝜌

𝐴𝑌
0

. Results obtained by MCs
have been carried out with 𝑚 = 500 000 simulations. As a
reference of the computational burden required by each one
of the three methods, we indicate the CPU seconds to carry
out the standard deviation plotted in Figure 2 in an Intel Core
𝑖7 with 2.7GHz: Fröbenius (1.3 s), PC (0.8 s), andMC (385 s).

Although similar numerical differences between MCs
and the other techniques (Fröbenius and PC) could be
reported in a table as we did in the foregoing example, for
both the average and the standard deviation, now we present
the numerical approximations in Figures 1 and 2 without
labelling eachmethod since they are indistinguishable graph-
ically. We underline that numerical results for Fröbenius and
PCmethodsmatch with the six significant digits.While,MCs
captures three of these digits.

In contrast to what happened in Example 1, we now
observe that average changes, but slightly, when 𝜌

𝐴𝑌
0

does
(see Figure 1). These changes are greater when computing
standard deviation (see Figure 2). Both conclusions agree
with formulae (9)-(10). Again, these results indicate that
independence between random parameters (in this case,
between coefficient 𝐴 and the initial condition 𝑌

0
) must be

checked previously since the existence of statistical depen-
dence influences significantly on the output.
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rö
be
ni
us

m
et
ho

d
w
ith

at
ru
nc
at
ed

se
rie

sw
ith

𝑁
+
1
te
rm

s(
𝐸
[𝑋
𝑁
(𝑡
)]
),
Po

ly
no

m
ia
lC

ha
os

of
or
de
r𝑃

(𝜇
𝑃 𝑋
(𝑡
))
,a
nd

M
on

te
Ca

rlo
w
ith

𝑚
sim

ul
at
io
ns

(𝜇
𝑚 𝑋
(𝑡
))
.W

ea
ss
um

et
ha
t𝐴

=
1
an
d
th
ei
ni
tia

lc
on

di
tio

n:
𝜂
=
(𝑌
0
,
𝑌
1
)⊤

fo
llo

w
sa

bi
va
ria

te
G
au
ss
ia
n
di
st
rib

ut
io
n:

𝜂
∼

𝑁
(𝜇
𝜂
;
Σ
𝜂
)
w
he
re
,a
cc
or
di
ng

to
(2
5)
,𝜇
𝑌
0
=
1
,𝜇
𝑌
1
=
1
,𝜎
𝑌
0
=
0
.2
,𝜎
𝑌
1
=
0
.2
.

𝑡

𝜌
𝑌
0
,𝑌
1
=
−
0
.5

𝜌
𝑌
0
,𝑌
1
=
0

𝜌
𝑌
0
,𝑌
1
=
0
.5

𝜌
𝑌
0
,𝑌
1
=
0
.9

𝐸
[
𝑋
𝑁
(
𝑡
)
]

𝑁
=
1
4

𝜇
𝑃 𝑋
(
𝑡
)

𝑃
=
1

𝜇
𝑚 𝑋
(
𝑡
)

𝑚
=
5
0
0
0
0
0

𝐸
[
𝑋
𝑁
(
𝑡
)
]

𝑁
=
1
4

𝜇
𝑃 𝑋
(
𝑡
)

𝑃
=
1

𝜇
𝑚 𝑋
(
𝑡
)

𝑚
=
5
0
0
0
0
0

𝐸
[
𝑋
𝑁
(
𝑡
)
]

𝑁
=
1
4

𝜇
𝑃 𝑋
(
𝑡
)

𝑃
=
1

𝜇
𝑚 𝑋
(
𝑡
)

𝑚
=
5
0
0
0
0
0

𝐸
[
𝑋
𝑁
(
𝑡
)
]

𝑁
=
1
4

𝜇
𝑃 𝑋
(
𝑡
)

𝑃
=
1

𝜇
𝑚 𝑋
(
𝑡
)

𝑚
=
5
0
0
0
0
0

0.
00

1.
1.

0.
99
99
45

1.
1.

0.
99
97
23

1.
1.

0.
99
98
38

1.
1.

0.
99
96
15

0.
25

1.2
47
07

1.2
47
07

1.2
47
05

1.2
47
07

1.2
47
07

1.2
46

89
1.2

47
07

1.2
47
07

1.2
46

81
1.2

47
07

1.2
47
07

1.2
46

61
0.
50

1.4
74
06

1.4
74
06

1.4
74
08

1.4
74
06

1.4
74
06

1.4
73
97

1.4
74
06

1.4
74
06

1.4
73
71

1.4
74
06

1.4
74
06

1.4
73
53

0.
75

1.6
54
57

1.6
54
57

1.6
54
62

1.6
54
57

1.6
54
57

1.6
54
57

1.6
54
57

1.6
54
57

1.6
54
13

1.6
54
57

1.6
54
57

1.6
53
98

1.0
0

1.7
57
44

1.7
57
44

1.7
57
52

1.7
57
44

1.7
57
44

1.7
57
54

1.7
57
44

1.7
57
44

1.7
56
94

1.7
57
44

1.7
57
44

1.7
56
83

2.
00

0.
88
42
01

0.
88
42
01

0.
88
43
27

0.
88
42
01

0.
88
42
01

0.
88
45
35

0.
88
42
01

0.
88
42
01

0.
88
38
5

0.
88
42
01

0.
88
42
01

0.
88
39
24

3.
00

−
1.2

05
38

−
1.2

05
38

−
1.2

05
41

−
1.2

05
38

−
1.2

05
38

−
1.2

05
37

−
1.2

05
38

−
1.2

05
38

−
1.2

05
06

−
1.2

05
38

−
1.2

05
38

−
1.2

04
95

4.
00

−
0.
35
32
52

−
0.
35
32
52

−
0.
35
33
44

−
0.
35
32
52

−
0.
35
32
52

−
0.
35
35
23

−
0.
35
32
52

−
0.
35
32
52

−
0.
35
30
62

−
0.
35
32
52

−
0.
35
32
52

−
0.
35
31
56

5.
00

1.2
13
43

1.2
13
43

1.2
13
52

1.2
13
43

1.2
13
43

1.2
13
63

1.2
13
43

1.2
13
43

1.2
13
04

1.2
13
43

1.2
13
43

1.2
13
02



Abstract and Applied Analysis 9

Ta
bl
e
2:
C
om

pa
ris

on
of

th
e
ap
pr
ox
im

at
io
ns

fo
rt
he

st
an
da
rd

de
vi
at
io
n
at
di
ffe
re
nt

tim
e
in
sta

nt
s𝑡

an
d
co
rr
el
at
io
n
va
lu
es

𝜌
𝑌
0
,𝑌
1
in

Ex
am

pl
e1

by
us
in
g
Fr
öb
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Figure 2: Comparison of the approximations for the standard
deviation 𝜎[𝑋(𝑡)] on the time-interval 𝑡 ∈ [0, 5] for different
correlation values 𝜌 = 𝜌

𝐴,𝑌0
∈ {−0.5, 0, 0.5, 0.9} in Example 2 by

using Fröbenius, Polynomial Chaos, and Monte Carlo simulations.
Since the numerical values are indistinguishable graphically, for the
sake of clarity in the presentation, nonlabel has been introduced.We
assume that 𝑌

1
= 1 and 𝜂 = (𝐴, 𝑌

0
)
⊤ follows a bivariate Gaussian

distribution: 𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
) where, according to (34), 𝜇

𝐴
= 1,

𝜇
𝑌0

= 1, 𝜎
𝐴
= 0.2, 𝜎

𝑌0
= 0.2.

Example 3. Now, we consider the case where all the data
involved in ivp (1) are rvs. We will assume that the random
vector 𝜂 = (𝐴, 𝑌

0
, 𝑌
1
)
⊤ follows a multivariate Gaussian

distribution. The aim of this example is twofold: first, to
confirm the conclusions drawn in the two previous examples
and, second, to show and compare the capabilities of the three
methods under analysis to tackling satisfactorily full ran-
domness in the ivp (1). Computations have been performed
taking as average: 𝜇

𝜂
= (4, 3, 6)

⊤ and, Σ1
𝜂
and Σ2

𝜂
as the

variance-covariance matrices given by (35) that correspond
to statistical independence and dependence, respectively,

Σ
1

𝜂
= (

0.4 0 0

0 0.3 0

0 0 0.25

) ,

Σ
2

𝜂
= (

0.4 −0.2 0.15

−0.2 0.3 0.1

0.15 0.1 0.25

) .

(35)

Computations for Fröbenius and PC have been carried
out until the numerical stabilization at six significant digits
is achieved. This stabilization is got for Fröbenius method
with 𝑁 = 28 for the average and 𝑁 = 33 for the standard
deviation. The corresponding values for PC are 𝑃 = 7 and
𝑃 = 12. As it happened in the foregoing example, the obtained
results for𝑁 and𝑃 do not depend on the variance-covariance
matrix. Numerical values obtained byMCs have been carried
out with 𝑚 = 500 000 simulations. Again, as in the previous
example the numerical results provided by Fröbenius and PC
methods coincide with the six significant digits, while MCs
only captures three of these digits.

Figures 3 and 4 show the results for the average and
the standard deviation on the time interval 0 ≤ 𝑡 ≤ 5,

1 2 3 4 5

−4

−2 t

𝜇
[X

(t
)]

2

4

6

Dependent
Independent

Figure 3: Comparison of the approximations for the expectation
𝜇[𝑋(𝑡)] on the time-interval 𝑡 ∈ [0, 5] in Example 3 by using
Fröbenius, Polynomial Chaos, and Monte Carlo simulations. Since
the numerical values are indistinguishable graphically, for the sake of
clarity in the presentation, nonlabel has been introduced.We assume
that 𝜂 = (𝐴, 𝑌

0
, 𝑌
1
)
⊤ follows a multivariate Gaussian distribution:

𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
) where 𝜇

𝜂
= (4, 3, 6)

⊤ and Σ1
𝜂
and Σ2

𝜂
are given

by (35) corresponding to statistical independence and dependence,
respectively.

1 2 3 4 5

Dependent
Independent

𝜎
[X

(t
)]

t

0.5

1.0

1.5

2.0

2.5

Figure 4: Comparison of the approximations for the standard
deviation 𝜎[𝑋(𝑡)] on the time-interval 𝑡 ∈ [0, 5] in Example 3 by
using Fröbenius, Polynomial Chaos, and Monte Carlo simulations.
Since the numerical values are indistinguishable graphically, for the
sake of clarity in the presentation, nonlabel has been introduced.
We assume that 𝜂 = (𝐴, 𝑌

0
, 𝑌
1
)
⊤ follows a multivariate Gaussian

distribution: 𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
) where 𝜇

𝜂
= (4, 3, 6)

⊤ and Σ1
𝜂
and

Σ2
𝜂
are given by (35) corresponding to statistical independence and

dependence, respectively.

respectively. Analogous comments as we did in Example 2
can be done: one presents changes for both the expectation
and standard deviation of the solution depending on the
statistical dependence of the input, being these changes
greater on the standard deviation.

Example 4. The aim of this example is to show that the
qualitative behaviour of the solution sp of the random Airy
differential (1) is different depending on the random input𝐴.
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Figure 5: Comparison of the approximations for the expectation
𝜇[𝑋(𝑡)] on the time-interval 𝑡 ∈ [0, 2] in Example 4 by using
Fröbenius and Polynomial Chaos. The numerical values obtained
by both techniques are indistinguishable graphically. We assume
that 𝜂 = (𝐴, 𝑌

0
, 𝑌
1
)
⊤ follows a multivariate Gaussian distribution:

𝜂 ∼ 𝑁(𝜇
𝜂
;Σ
𝜂
) where 𝜇

𝜂
= (−2, 3, 6)

⊤ and Σ1
𝜂
and Σ2

𝜂
are given

by (35) corresponding to statistical independence and dependence,
respectively.

To illustrate this fact, we will assume that the random vector
𝜂 = (𝐴, 𝑌

0
, 𝑌
1
)
⊤ follows a multivariate Gaussian distribution

with average: 𝜇
𝜂

= (−2, 3, 6)
⊤ and the same variance-

covariance matrices as the ones considered in Example 3
(see expression (35)). Note that we are assuming that most
part of the probability mass of rv 𝐴 is on the negative real
line which implies a different behaviour of the solution with
respect to previous examples. Figure 5 shows the mean of the
solution in both cases, that is, when the random inputs are
independent and dependent. Although both plots are quite
similar, in Figure 6 we see in contrast to what happens in
previous examples that now standard deviations as well as
their difference increase over time.

4. Conclusions

The consideration of uncertainty in models based on dif-
ferential equations leads to random differential equations.
Over the last few decades, these types of random continuous
models have demonstrated to be powerful tools in dealing
with mathematical modelling. However, for simplicity, most
of these contributions rely on the assumption that random
inputs are statistically independent, a hypothesis that could
not be met in many applications. The study of differential
equations whose inputs are statistically dependent constitutes
currently a topic under development.

In this paper we have studied two methods for solving
differential equations whose parameters are assumed to be
Gaussian dependent, namely, Fröbenius and Polynomial
Chaos. The numerical results, for the average and stan-
dard deviation of the solution, provided by both methods
have been compared with those computed by Monte Carlo
simulations, which can be considered the most common

0.5 1.0 1.5 2.0

5

10

15

𝜎
[X
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)]

t

Dependent
Independent

(a)

0.5 1.0 1.5 2.0
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0.7

𝜎
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)]

t

Dep-indep

(b)

Figure 6: (a) Comparison of the approximations for the standard
deviation 𝜎[𝑋(𝑡)] on the time-interval 𝑡 ∈ [0, 2] in Example 4
by using Fröbenius and Polynomial Chaos. We assume that 𝜂 =

(𝐴, 𝑌
0
, 𝑌
1
)
⊤ follows a multivariate Gaussian distribution: 𝜂 ∼

𝑁(𝜇
𝜂
;Σ
𝜂
) where 𝜇

𝜂
= (−2, 3, 6)

⊤ and Σ1
𝜂
and Σ2

𝜂
are given by

(35) corresponding to statistical independence and dependence,
respectively. (b) Difference between the approximations showed in
the figure on (a).

approach to deal with random differential equations. The
study has been performed through the Airy equation, which
is expected to be an excellent test model to highlight
differences among previous approaches, due to the highly
oscillatory behaviour of its solutions in the deterministic case.
The examples reveal that Fröbenius and Polynomial Chaos
perform better than Monte Carlo simulations since both are
more accurate. Amajor conclusion drawn from the study case
performed through the examples is the significant influence
of statistical dependence among the random inputs on the
variability of the output. As a consequence, the usual hypoth-
esis of statistical independence for the random parameters
should be checked carefully inmodelling. Furthermore, when
dependence is assumed, its numerical value (measured, for
example, by the correlation coefficient) must be determined
as accurately as possible, since it has been shown that it also
influences both the average and the variability of the output.
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Notice that in order to conduct the study, we have had
to extend the Fröbenius method presented by some of the
authors in the previous contribution [7] to the case where
random inputs are dependent. Although we have focused
the study on the case in which random variables are just
Gaussian, notice that Fröbenius approach does not depend
on the statistical type of the involved random variables, while
tackling statistical dependence with Polynomial Chaos has
been carried out through a direct approach based on nice
properties of Gaussian random variables. This approach has
allowed us to transform the random initial value problem (1)
into another having independent Gaussian random variables,
which has facilitated the study.

Solving random differential equations mainly consists
of computing the average and standard deviation of the
solution stochastic process. Amajor challenge is to determine
its statistical distribution. Example 1 shows, by means of a
simple but still illustrative scenario, the potentiality of both,
Fröbenius and gPC methods, to deal with this issue when
other random differential equations appear in modelling. We
think that the combined application of the novel theory of
copulas [15] and previous methods constitutes a promising
approach that will be considered in the forthcoming works.
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