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An SO
2
emission episode at coal-fired power station occurs when the series of bihourly average of SO

2
concentration, taken at 5-

minute intervals, is greater than a specific value. Advance prediction of these episodes of pollution is very important for companies
generating electricity by burning coal since it allows them to take appropriate preventivemeasures. In order to forecast SO

2
pollution

episodes, three different methods were tested: Elman neural networks, autoregressive integratedmoving average (ARIMA)models,
and a hybridmethod combining both.The threemethods were applied to a time series of SO

2
concentrations registered in a control

station in the vicinity of a coal-fired power station. The results obtained showed a better performance of the hybrid method over
the Elman networks and the ARIMA models. The best prediction was obtained 115 minutes in advance by the hybrid model.

1. Introduction

Coal-fired power stations are a major source of atmospheric
pollutants, SO

2
being one of the most significant. Mixed with

rain, with SO
2
is transformed into sulfuric acid producing

acid rain.The wind helps to transport this element thousands
of kilometers until it settles on the ground causing various
negative effects. Sulfuric acid causes respiratory irritation,
sometimes leading to damage to lung tissue.

European legislation on air pollution from coal-fired
power stations establishes limits for the emissions of SO

2
.

Specifically, it imposes a limit on the average of 24 consec-
utive concentrations of SO

2
taken at 5-minute intervals. An

emission episode is said to occur when the series of biannual
averages is greater than a threshold set by current regulations.
The interest is in predicting emission episodes with at least
one hour in advance.

Forecasting SO
2
levels can be addressed through math-

ematical models such as autoregressive-moving-average
(ARMA) or artificial neural networks (ANNs) models. An
ARMA model was used by Hassanzadeh et al. in 2009 [1]

to forecast SO
2
levels for five stations. According to their

results, an ARMA (2,2) model provides reliable predictions.
Kandya and Mohan [2] study the forecasting of SO

2
(and

other pollutants) using five statistical techniques. Although
each technique has its own advantages and limitations, they
found that the one-day prediction autoregressive integrated
moving average (ARIMA) [3] technique scores well over the
other techniques. Goyal et al. [4] pointed out that linear
models such as multilinear regression MLR and ARIMA fail
to predict extreme concentrations of pollutants.

Neural networks have also been used to predict concen-
trations of SO

2
and other pollutants emitted by a power plant.

Mok and Tam [5] used three-layered feed-forward artificial
neural networks to predict the daily SO

2
concentration 5

days in advance. Nunnari et al. [6] compared multilayer
perceptron (MLP)modelswith a neurofuzzy approach and an
autoregressive-moving-averagemodel with exogenous inputs
(ARMAX) model. The results confirmed the superiority of
the MLP model over the other. Pérez et al. [7] compared
the forecasting produced by three different methods (MLP,
multiple linear regression (MLR), and persistence methods).
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They concluded that the MLP models achieved more accu-
rate regression results and better predictions. Fernández de
Castro et al. [8] found good results for predicting SO

2
levels

half an hour in advance in the neighborhood of a power plant
using neural networks. Cortina et al. (2008) compared an
adaptive linear neural network (ADALINE) and a generalized
regression neural network (GRNN) for the prediction of
pollution levels due to the chemical industry and electricity
generation in Salamanca (Spain). Prediction experiments
were carried out for 1, 12, and 24 hours in advance. They
concluded that a linear regression network needs less adjust-
ment of parameters than a nonlinear regression network,
thus facilitating its implementation; however, to obtain better
results with a linear regression network, they need to search
for a pattern scheme. Abdul-Wahab and Al-Alawi [9] used a
neural network model to forecast SO

2
concentration levels

at a refinery in Oman; they also analyzed the effect of
five meteorological parameters that were expected to affect
the SO

2
concentrations. Zhang et al. [10] compared the

performance of several statisticalmethods in SO
2
forecasting.

The results showed that all the methods mentioned can be
used in time series analysis of air pollutants although the
denoising BP neural network has some advantages, mainly
relating to its strong memory and learning ability.

Hybrid ARIMA-ANN models have also been applied in
atmospheric pollutant forecasting. Tseng et al. [11] showed
that the hybrid performed better than ARIMA or ANN
alone. Dı́az-Robles et al. [12] developed a hybrid model
combining ARIMA and ANN to predict extreme events of
particle emission in a city in Chile. They concluded that the
hybrid model performs better than either of the models used
separately.

In this study we analyzed the usefulness of Elman recur-
rent neural networks in forecasting SO

2
emission episodes

in a coal-fired power station, given the capacity of this ANN
to work with temporary data and compared to an ensemble
method that improves the prediction of an ARIMA model
using Elman recurrent neural networks. The method pro-
posed is completely different from those combining ARIMA
and ANN models previously exposed. The differences are
twofold: (1) the kind of neural network used is different
(Elman neural network instead of back-propagation recur-
rent neural network) and (2) the way the network is used, not
for an adjustment of the ARIMA model residuals but for the
prediction of SO

2
concentration in half an hour before the

time of interest.

2. Materials and Methods

2.1. The Database. The data for the present research was
obtained from a coal-fired power station in northern Spain.
It contains the average 5-minute concentrations of SO

2
mea-

sured during the year 2012 in a control station located in the
neighborhood of the power station. Figure 1 shows the time
series for the whole year. As be appreciated, there are some
SO
2
peaks in the line representing the SO

2
concentrations

registered in the control station, some of them corresponding
to emission episodes.
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Figure 1: Time series of SO
2
concentrations registered on the

control station. Data from July and December were used to validate
the models.

The data corresponding from January 1 to June 30 was
used to construct one model, while that corresponding to
July was used for the referredmodel validation. Also, another
test was carried out. For this test, models were trained with
data from January 1 to November 30 and SO

2
records for

December were used for validation. The purpose of using
these two sets of data for the models training was to compare
the results obtained with different amounts of training infor-
mation and also to perform the SO

2
concentration prediction

in two different seasons (summer and winter, resp.).

2.2. Methods

2.2.1. The ARIMAModels. ARIMAmodels are the most gen-
erally used class of models for forecasting time series that can
be stationarized by transformations such as differencing and
logging [13]. The acronym ARIMA stands for auto-regressive
integrated moving average. lags of the differenced series
appearing in the forecasting equation are called autoregressive
terms, while lags of the forecast errors are called moving
average terms. A time series which needs to be differenced
to be made stationary is said to be an integrated version of a
stationary series.

A nonseasonal ARIMA model [13] is classified as an
ARIMA (𝑝, 𝑑, 𝑞) model, where

(i) 𝑝 is the number of autoregressive terms,

(ii) 𝑑 is the number of non-seasonal differences,

(iii) 𝑞 is the number of lagged forecast errors in the
prediction equation.

The generalized form of ARIMA can be described as follows
[14]:

0 (𝐵) ⋅ Φ (𝐵
𝑆
) ⋅ (1 − 𝐵)

𝑑
⋅ (1 − 𝐵)

𝐷
⋅ 𝑌
𝑡
= 𝜃 (𝐵) ⋅ Θ (𝐵

𝑆
) ⋅ 𝑍
𝑡
,

(1)

where 𝐵 is the backward shift operator, 𝑑 is non-seasonal
order of differences, 𝐷 is seasonal order of differences, and
0, Φ, 𝜃, and Θ are polynomials in 𝐵 and 𝐵𝑆.
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Figure 2: Scheme of a recursive Elman neural network with one hidden layer.

Forecasting based on ARIMA (autoregressive integrated
moving averages) models, commonly known as the Box-
Jenkins approach, comprises the following stages:

(i) model identification,
(ii) parameter estimation,
(iii) diagnostic checking.

These stages are repeated until a suitable model for the
given data has been identified. In this research we have used
a variation of the Hyndman and Khandakar algorithm [15]
which combines unit root tests and minimization of the AIC
and MLE to obtain the ARIMA models. The use of these
algorithms speeds up the model identification process.

2.2.2. Recurrent Neural Networks Models. For the present
research a kind of partially recurrent neural network (RNN)
called an Elman network [16] was employed. An Elman RNN
is a network with an initial configuration based on a regular
feedforward neural network.

An Elman network has a layer called a context layer.
The neurons in the context layer, which are called context
neurons, hold a copy of the output given by the neurons of
the hidden layer to the output one (Figure 2). In the following
computing step, information that was given as an output by
the hidden layer is used as a new input information for this
layer.

The strength of the relationships between neurons in an
Elman RNN is indicated by their weights. For this kind of
neural network, the weight values of the neurons are chosen
randomly when the process is initiated, and their values are
changed during themodel training in order to optimize them,
with the exception of theweights from the hidden layer which
do not change during the training process because the values
of the context neurons need to receive the output information
of the hidden layer as it is calculated.

The dynamics of the Elman RNN are described by the
following equations [17]:

𝑋
ℎ
⋅ (𝑘 + 1) = 𝑆 ⋅ [𝑊

𝑐
⋅ 𝑋
𝑐
(𝑘 + 1) ⋅ 𝑊

1
⋅ 𝑈 (𝑘)] ,

𝑋
𝑐
⋅ (𝑘 + 1) = 𝑊

𝑡
⋅ 𝑋
ℎ
,

𝑌 ⋅ (𝑘 + 1) = 𝑊
𝑜
⋅ 𝑋
ℎ
(𝑘 + 1) ,

(2)

where 𝑆 is hyperbolic tangent function,𝑈(𝑘) is an input of the
network at a discrete time 𝑘, 𝑌(𝑘) is output of the network at a
discrete time 𝑘, 𝑋

𝑐
is nodes of the context layer, 𝑋

ℎ
nodes of

the hidden layer,𝑊
𝑐
is weight matrix of the context-hidden

layer, 𝑊
𝐼
is weight matrix of the input-hidden layer, 𝑊

𝑟
is

weight matrix of the hidden-context layer, and𝑊
𝑜
is weight

matrix of the hidden-output layer.
The training of the Elman recurrent neural networks

models wasmade using the Levenberg-Marquardt algorithm.
This procedure is a modification of Gauss-Newton’s method,
which was designed in order to minimize the sum of
squares of nonlinear functions combining this techniquewith
the steepest-descent algorithm. The Levenberg-Marquardt
algorithm, whose application is currently very common for
RNN, was chosen as it does not suffer the slow convergence
problems that were reported in the methods [18] from which
it is derived.

2.2.3. The Proposed Hybrid Model. Since their introduction
in the 1970s [3], ARIMA models have been used for the
forecasting of linear time series. As has already been reported
in the previous studies, these kinds of models have a poor
performance as regards prediction in nonlinear problems
[19]. In order to overcome their limitations, a hybrid model is
proposed in the present research. This hybrid model consists
of two main steps:

(i) training of an Elman recurrent neural network in
order to mimic the temporal linear behavior of the
SO
2
time series, predicting some output values that

will be the input of the ARIMA model,
(ii) selection of anARIMAmodel thatwillmodel the time

variation of the SO
2
concentration, using as input

values the prediction of the recurrent neural network.

Therefore, as may be observed in Figure 3, the proposed
hybrid model uses the SO

2
concentrations predicted by the

Elman recurrent neural network model two to three hours in
advance as input for an ARIMA model in order to achieve a
more accurate prediction of the SO

2
concentration.Themain

goal of this hybridmodel is not only to achieve a generalmore
accurate prediction of the SO

2
concentration at all times, but

also to improve the detection of pollution incidents. In other
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Figure 3: Scheme of the hybrid model.

words, this hybrid model was chosen in order to improve
the capability of the previous model to detect incidences
of pollution as early as possible. The SO

2
concentration in

each moment is calculated as the sum of the concentration
5minutes before (𝑡5) and in thementionedmoment (𝑡) given
by the recurrent neural network, plus the increase in the SO

2

concentration from the previous moment, and divided by
two.

3. Results and Discussion

3.1. Results of the ARIMAModel. Thebest model found using
the Hyndman and Khandakar algorithm was the ARIMA
(5, 0, 3). Figure 4 shows the autocorrelation functions (a)
and the residual partial autocorrelation (b). The root-mean-
square error (RMSE) obtained for the set of training data
(data from January to November) applying the mentioned
ARIMA model was 8.7446. The Ljung-Box statistic [20] was
used to check the adequacy of model. The 𝑃 value for the
Ljung-Box statistic was 0.9821, and therefore it can be stated
that the data in the residuals were independently distributed
or, in other words, that the residuals from the ARIMAmodel
have no correlation. The error obtained when the ARIMA
(5, 0, 3) model was applied to the set of validation data set
corresponding to themonth of December was of 8.9629. Sim-
ilarly, when the equivalent model with data from January to
June was trained, the RMSE obtained was 8.9101. In this case,
the 𝑃 value of the Ljung-Box statistic was 0.8347 while the
RMSE value of the model applied to the data of July gave a
value of 10.60121. As it can be observed in Figure 5, the main
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Figure 4: Autocorrelation function variable SO
2
(a) and residual

partial correlation (b).
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Figure 5: ARIMA (5,0,3): December 2012. Predicted SO
2
concen-

tration.

weakness of the ARIMA model is that in spite of its good
average, it seems to be unable to predict pollution incidents
because it is unable to reproduce the real peaks of SO

2
con-

centration (see Figure 1).

3.2. Results of the Recurrent Neural Network Model. Some
Elman recurrent neural networks architectures were tested
in order to find the best generalization characteristics of the
data. The input variables employed were the SO

2
concentra-

tions 2 and 3 hours before the current time and recorded each
five minutes.

The best configuration resulted in an Elman neural
network with 11 neurons in the hidden layer. The activation
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Figure 6: Hybrid model: December 2012. Real SO
2
concentration

(a) versus predicted concentration (b).

function employed was the hyperbolic tangent [21], while
the learning rate was 0.1 and the momentum 0.9. The results
obtained using the information from January to November
as training data gave us an RMSE of 5.5225 while convergence
was achieved after 934 epochs in the case of themodel trained
with data from January to June; convergence was achieved
after 632 epochs with an RMSE of the training data set of
7.8013. The validation results corresponding to the dataset of
December, trained with the data from January to November
were 7.6121 while the results of the data corresponding to the
month of July using the model trained with the data from
January to June gave us an RMSE result of 8.0347.

3.3. Results of the Hybrid Model. The proposed hybrid model
was applied to the same database. First of all, a hybrid model
using the values of the SO

2
concentration from January to

November as input data was trained. The RMSE value of
the training data set was 5.0238 while the RMSE obtained
using the validation subset corresponding to the month of
December was 6.6850. Finally, another model was trained
using data from January to June, obtaining anRMSE of 6.6014
while the RMSE obtained when the model was validated
with data from the month of July, the value obtained was
6.5356. In this case, the number of epochs that were necessary
for the Elman recurrent neural networks convergence was
from 1023 and 712, respectively. Figure 6 shows the results
obtained of the application of the hybrid model to the

month of December. This figure represents a total of 8,928
measurements, showing their real value and the predicted
one. It can be observed how the hybrid model is able to
predict the SO

2
pollution incidences although in some cases

it is not able to predict their maximum values.

4. Conclusions

In the present research, the utility of three different mathe-
matical models (ARIMA, Elman recurrent neural network,
and a hybrid model) to predict SO

2
emission episodes of

a coal-fired station was analyzed. Emission episodes corre-
spond to peaks in the time series of SO

2
concentration.

The ARIMA model was not able to reproduce emission
episodes, just the general trend of the time series. The Elman
recurrent neural network performed better given its capacity
to detect emission episodes. However, the best results were
obtained with a hybrid model that applies the ARIMAmodel
to the Elman neural network output.

The results obtained with the hybrid model made it poss-
ible to predict emission episodes 115 minutes in advance,
which is a sufficient response time to take preventive mea-
sures.

We would like to remark that the main advantages of
the method proposed in the present research are, on the one
hand, linked with the capability of Elman recurrent neural
networks to perform sequence prediction that is beyond the
power of a standard backpropagation recurrent neural net-
work, and, on the other hand, with how its capabilities are
used in our hybrid model. Therefore, in the proposed hybrid
model, the predictions obtained from the Elman recurrent
neural network are used as input values for an ARIMA
model that, having information corresponding from 30 to 5
minutes in advance, is able to predict the SO

2
concentration

55 minutes in advance.
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