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We establish the existence of infinitely many solutions for a class of fractional boundary value problems with nonsmooth potential.
The technical approach is mainly based on a result of infinitely many critical points for locally Lipschitz functions.

1. Introduction

In the present paper, we are concerned with the existence of
infinitely many solutions for a class of fractional boundary
value problems with the following form:

𝑡
𝐷
𝛼

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡)) ∈ 𝜆𝜕𝐹 (𝑡, 𝑢 (𝑡)) a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(1)

where𝜆 ∈ R is a parameter, and
𝑡
𝐷
𝛼

𝑇
and
0
𝐷
𝛼

𝑡
are the left and

right Riemann-Liouville fractional derivatives of order 0 <

𝛼 ≤ 1, respectively. 𝐹 : [0, 𝑇] × R𝑁 → R is a given function
satisfying some assumptions, and 𝜕𝐹(𝑡, ⋅) is the generalized
gradient in the sense of Clarke [1].

In particular, if 𝛼 = 1, then problem (1) is reduced to the
standard second-order boundary value problem

𝑢̈ (𝑡) ∈ 𝜆𝜕𝐹 (𝑡, 𝑢 (𝑡)) a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0.

(2)

There are many excellent results that have been worked out
on the existence of solutions for second-order BVP (we refer
the reader to see [2, 3] and the references therein).

Recently, fractional differential equations and inclusions
have attracted lots of people’s interests because of their appli-
cations in viscoelasticity, electrochemistry, control, porous

media, and so forth. The existence and multiplicity of solu-
tions for BVP of fractional differential equations and inclu-
sions have been established by some fixed-point theorems; we
refer the readers to see [4–7].

This paper is motivated by the recent papers [8] where
several existence results concerning problem (1) under the
smooth case are obtained by using variational methods. In
their papers, the authors define a suitable space and find
a variational functional for fractional differential equations
with Dirichlet boundary conditions. The aim of the present
paper is to establish the existence of infinitely many solutions
for problem (1) by using a critical points theorem according
to Bonanno and Bisci [9].

It is interesting that the existence of infinitely many
solutions for differential equations can be established without
the symmetry assumption. Recently, Bonanno and Bisci
in [9] established a precise version of the infinitely many
critical points theorem of Marano and Motreanu [10] which
extended the results of Ricceri in [11] for the nondifferentiable
functionals. In applying the theorem, we need to assume
some appropriate oscillating behavior of the nonlinear term
either at infinity or at zero. This methodology has been
usefully used in obtaining the existence of multiple results for
different kinds of problems, such as p-Laplacian problem [12],
quasilinear elliptic system [13, 14], discrete BVP [15], double
Sturm-Liouville problem [16], and elliptic problems with
variable exponent [17]. By using this methodology, to the best
of our knowledge, it seems that no similar results are obtained
in the literature for fractional BVP. Therefore, the purpose
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of our paper is to establish the existence of infinitely many
solutions for problem (1) by using this type of methodology.

Ourmain results are stated as follows. For this matter, put

𝐴 = lim inf
𝜉→+∞

∫
𝑇

0
max
|𝑥|≤𝜉

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝜉2
,

𝐵 = lim sup
|𝑥|→+∞

∫
3𝑇/4

𝑇/4
𝐹 (𝑡, 𝑥) 𝑑𝑡

|𝑥|
2

,

𝐶 (𝑇, 𝛼) = ∫

𝑇/4

0

𝑡
2−2𝛼

𝑑𝑡 + ∫

3𝑇/4

𝑇/4

[𝑡
1−𝛼

− (𝑡 −
𝑇

4
)

1−𝛼

]

2

𝑑𝑡

+ ∫

𝑇

3𝑇/4

[𝑡
1−𝛼

− (𝑡 −
𝑇

4
)

1−𝛼

+ (𝑡 −
3𝑇

4
)

1−𝛼

]

2

𝑑𝑡.

(3)

Our first main result is the following theorem.

Theorem 1. Suppose 𝐹(𝑡, 𝑥) satisfies the following conditions.

(𝐹
0
) For all 𝑥 ∈ R𝑁, the function 𝑡 → 𝐹(𝑡, 𝑥) is measur-
able.

(𝐹
1
) For almost all 𝑡 ∈ [0, 𝑇], the function 𝑥 → 𝐹(𝑡, 𝑥) is
locally Lipschitz and 𝐹(𝑡, 0) = 0.

(𝐹
2
) There exist 𝑎, 𝑏 ∈ 𝐿

1
([0, 𝑇],R+) such that |𝑥∗| ≤ 𝑎(𝑡)+

𝑏(𝑡)|𝑥|
𝑟−1 with 𝑟 ∈ [1, +∞) for all 𝑥∗ ∈ 𝜕𝐹(𝑡, 𝑥), all

𝑥 ∈ R𝑁, and almost all 𝑡 ∈ [0, 𝑇].

(𝐹
3
) 𝐹(𝑡, 𝑥) ≥ 0 for almost all 𝑡 ∈ [0, 𝑇] and all 𝑥 ∈ R𝑁.

(𝐹
4
) 𝐴 < 𝜅𝐵, where 𝜅 = (2𝛼 − 1)𝑇

2
Γ
2
(2 − 𝛼)Γ

2
(𝛼)/

32𝑇
2𝛼−1

𝐶(𝑇, 𝛼).

Then, for each 𝜆 ∈ (16𝐶(𝑇, 𝛼)/𝐵𝑇
2
Γ
2
(2 − 𝛼), (2𝛼 −

1)Γ
2
(𝛼)/2𝐴𝑇

2𝛼−1
), problem (1) admits a sequence of solutions

which is unbounded in𝑋.

Next, we present the other main result. First, put

𝐴
1
= lim inf
𝜉→0
+

∫
𝑇

0
max
|𝑥|≤𝜉

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝜉2
,

𝐵
1
= lim sup
|𝑥|→0

+

∫
3𝑇/4

𝑇/4
𝐹 (𝑡, 𝑥) 𝑑𝑡

|𝑥|
2

.

(4)

Theorem 2. Suppose 𝐹(𝑡, 𝑥) satisfies the conditions (𝐹
0
)–(𝐹
3
),

and

(𝐹
5
) 𝐴
1

< 𝜅𝐵
1
, where 𝜅 = (2𝛼 − 1)𝑇

2
Γ
2
(2 − 𝛼)Γ

2
(𝛼)/

32𝑇
2𝛼−1

𝐶(𝑇, 𝛼).

Then, for each 𝜆 ∈ (16𝐶(𝑇, 𝛼)/𝐵
1
𝑇
2
Γ
2
(2 − 𝛼), (2𝛼 −

1)Γ
2
(𝛼)/2𝐴

1
𝑇
2𝛼−1

), problem (1) admits a sequence of pairwise
distinct solutions which strongly converges to zero in 𝑋.

In order to prove Theorems 1 and 2, we recall the critical
point theorem in [9] here for the readers’ convenience.

Theorem 3. Let 𝑋 be a reflexive real Banach space, and let
Φ,Ψ : 𝑋 → R be two Lipschitz functions such that Φ is
sequentially weakly lower semicontinuous and coercive and Ψ

is sequentially weakly upper semicontinuous. For every 𝑟 >

inf
𝑋
Φ, one puts

𝜑 (𝑟) = inf
𝑢∈Φ
−1
((−∞,𝑟))

supV∈Φ−1((−∞,𝑟))Ψ (V) − Ψ (𝑢)

𝑟 − Φ (𝑢)
,

𝛾 = lim inf
𝑟→+∞

𝜑 (𝑟) , 𝛿 = lim inf
𝑟→ (inf

𝑋
Φ)
+

𝜑 (𝑟) .

(5)

Then,

(a) if 𝛾 < +∞, for each 𝜆 ∈ (0, 1/𝛾), the following
alternative holds: either

(i) 𝐼
𝜆
= Φ − 𝜆Ψ possesses a global minimum, or

(ii) there is a sequence {𝑢
𝑛
} of critical points (local

minimum) of 𝐼
𝜆
such that lim

𝑛→∞
Φ(𝑢
𝑛
) = +∞.

(b) If 𝛿 < +∞, for each 𝜆 ∈ (0, 1/𝛿), the following alterna-
tive holds: either

(i) there is a global minimum of Φ which is a local
minimum of 𝐼

𝜆
, or

(ii) there is a sequence {𝑢
𝑛
} of pairwise distinct

critical points (local minimum) of 𝐼
𝜆

with
lim
𝑛→∞

Φ(𝑢
𝑛
) = inf

𝑋
Φ, whichweakly converges

to a global minimum ofΦ.

The present paper is organized as follows. In Section 2 we
present some basic definitions and facts from the nonsmooth
analysis theory, and we prove a variational principle for
problem (1). Section 3 is devoted to proving Theorems 1 and
2.

2. Preliminaries

2.1. NonsmoothAnalysis. Let𝑋 be a real Banach space and𝑋
∗

its conjugate space; we denote by ‖ ⋅ ‖ and ⟨⋅, ⋅⟩, respectively,
the norm and the duality pairing between𝑋

∗ and𝑋.
For a locally Lipschitz function 𝜑 : 𝑋 → R, we define

the generalized directional derivative of 𝜑 at point 𝑢 in the
direction ℎ ∈ 𝐸 as follows:

𝜑
0
(𝑢; ℎ) = lim sup

V→0,𝑠↓0

𝜑 (𝑢 + V + 𝑠ℎ) − 𝜑 (𝑢 + V)

𝑠
. (6)

The generalized gradient of a locally Lipschitz function
𝜑 at the point 𝑢, denoted by 𝜕𝜑(𝑢), is the set 𝜕𝜑(𝑢) = {𝑤 ∈

𝐸
∗
: ⟨𝑤, V⟩ ≤ 𝜑

0
(𝑢; V), ∀V ∈ 𝑋}. If 𝜑 ∈ 𝐶

1
(𝑋), then 𝜕𝜑(𝑢) =

{𝜑
󸀠
(𝑢)} for all 𝑢 ∈ 𝑋.
A point 𝑢 ∈ 𝑋 is said to be a critical point of a locally

Lipschitz function 𝜑 : 𝑋 → R if 0 ∈ 𝜕𝜑(𝑢). Clearly, if 𝑢 is a
minimum of a locally Lipschitz function 𝜑, then 0 ∈ 𝜕𝜑(𝑢);
that is, 𝑢 is a critical point of 𝜑.
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2.2. Fractional Derivative Space. Throughout this paper, we
denote the norm of the space 𝐿

𝑝
([0, 𝑇],R𝑁) for 1 ≤ 𝑝 ≤ +∞

as ‖𝑢‖
𝐿
𝑝 = (∫

𝑇

0
|𝑢(𝑡)|
𝑝
𝑑𝑡)
1/𝑝 and ‖𝑢‖

∞
= max

𝑢∈[0,𝑇]
|𝑢(𝑡)|.

Definition 4. Let 0 < 𝛼 ≤ 1 and 1 < 𝑝 < ∞. The
fractional derivative space 𝐸

𝛼,𝑝

0
is defined by the closure of

𝐶
∞

0
([0, 𝑇],R𝑁) with respect to the norm

‖𝑢‖
𝛼,𝑝

= (∫

𝑇

0

|𝑢 (𝑡)|
𝑝
𝑑𝑡 + ∫

𝑇

0

󵄨󵄨󵄨󵄨
𝑐

0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡)

1/𝑝

,

∀𝑢 ∈ 𝐸
𝛼,𝑝

0
.

(7)

Remark 5. It is obvious that this fractional derivative space
𝐸
𝛼,𝑝

0
is the space of functions 𝑢 ∈ 𝐿

𝑝
([0, 𝑇],R𝑁) having an

𝛼-order Caputo fractional derivative 𝑐
0
𝐷
𝛼

𝑡
𝑢 ∈ 𝐿

𝑝
([0, 𝑇],R𝑁)

and 𝑢(0) = 𝑢(𝑇) = 0.

The properties of the fractional derivative spaces 𝐸𝛼,𝑝
0

are
listed as the following lemma.

Lemma 6 (see [8]). Let 0 < 𝛼 ≤ 1 and 1 < 𝑝 < ∞.

(1) The fractional derivative spaces 𝐸𝛼,𝑝
0

are a reflexive and
separable Banach space.

(2) If 𝛼 > 1/𝑝, for any 𝑢 ∈ 𝐸
𝛼,𝑝

0
, one has

0
𝐷
−𝛼

𝑡
(
0
𝐷
𝛼

𝑡
𝑢(𝑡)) =

𝑢(𝑡), for any 𝑡 ∈ [0, 𝑇].

(3) If 1 − 𝛼 ≥ 1/𝑝 or 𝛼 > 1/𝑝, one has 𝐸
𝛼,𝑝

0
󳨅→

𝐿
𝑝
([0, 𝑇],R𝑁) is compact and

‖𝑢‖
𝐿
𝑝 ≤

𝑇
𝛼

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩
𝑐

0
𝐷
𝛼

𝑡
𝑢
󵄩󵄩󵄩󵄩𝐿𝑝

. (8)

(4) Assume that 𝛼 > 1/𝑝 and the sequence {𝑢
𝑛
} con-

verges weakly to 𝑢 in 𝐸
𝛼,𝑝

0
; that is, 𝑢

𝑛
⇀ 𝑢. Then

{𝑢
𝑛
} converges strongly to 𝑢 in 𝐶([0, 𝑇],R𝑁); that is,

‖𝑢
𝑛
− 𝑢‖
∞

→ 0, as 𝑛 → +∞. Moreover, if 1/𝑝 +

1/𝑞 = 1, one has

‖𝑢‖
∞

≤
𝑇
𝛼−1/𝑝

Γ (𝛼) ((𝛼 − 1) 𝑞 + 1)
1/𝑞

󵄩󵄩󵄩󵄩
𝑐

0
𝐷
𝛼

𝑡
𝑢
󵄩󵄩󵄩󵄩𝐿𝑝

. (9)

According to (8), we can consider 𝐸𝛼,𝑝
0

with respect to the
following norm:

‖𝑢‖
𝛼,𝑝

=
󵄩󵄩󵄩󵄩
𝑐

0
𝐷
𝛼

𝑡
𝑢
󵄩󵄩󵄩󵄩𝐿𝑝

= (∫

𝑇

0

󵄨󵄨󵄨󵄨
𝑐

0
𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡)

1/𝑝

. (10)

In this paper, the work space for problem (1) is𝐸𝛼,2
0

:= 𝐸
𝛼.The

space 𝐸
𝛼 is a Hilbert space with respect to the norm ‖𝑢‖ =

‖𝑢‖
𝛼,2

given by (10), and the corresponding inner product is
defined by the following:

⟨𝑢, V⟩ = ∫

𝑇

0

(
𝑐

0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝑐

0
𝐷
𝛼

𝑡
V (𝑡)) 𝑑𝑡. (11)

2.3. Variational Framework. We first give the definition for
the solution of problem (1).

Definition 7. A function 𝑢 : [0, 𝑇] → R𝑁 is called a
solution of problem (1) if

𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢(𝑡)) and

0
𝐷
𝛼−1

𝑡
𝑢(𝑡) are

derivatives for almost all 𝑡 ∈ [0, 𝑇] and 𝑢 satisfies (1).

The functional 𝐼
𝜆
: 𝐸
𝛼

→ R corresponding to problem
(1) is defined by the following:

𝐼
𝜆
(𝑢) =

1

2
∫

𝑇

0

󵄨󵄨󵄨󵄨0𝐷
𝛼

𝑡
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

2

𝑑𝑡 − 𝜆∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡. (12)

By the conditions (𝐹
0
)–(𝐹
2
), it is easy to check that 𝐼

𝜆
is

locally Lipschitz on 𝐸
𝛼. Moreover, we can get the variational

principle as follows.

Proposition 8. Every critical point 𝑢 ∈ 𝐸
𝛼 of 𝐼
𝜆
is a solution

of problem (1).

Proof. We assume that 𝑢 ∈ 𝐸
𝛼 is a critical point of 𝐼

𝜆
; that is

0 ∈ 𝜕𝐼
𝜆
(𝑢); then,

∫

𝑇

0

(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

0
𝐷
𝛼

𝑡
V (𝑡)) 𝑑𝑡 − 𝜆∫

𝑇

0

(𝑤 (𝑡) , V (𝑡)) 𝑑𝑡 = 0,

∀V ∈ 𝐸
𝛼

(13)

with some 𝑤 ∈ 𝜕𝐹(𝑡, 𝑢). Noting that 𝑤 ∈ 𝐿
1
([0, 𝑇],R𝑁), then

𝑡
𝐷
−𝛼

𝑇
𝑤 ∈ 𝐿

1
([0, 𝑇],R𝑁). Let 𝑧(𝑡) =

𝑡
𝐷
−𝛼

𝑇
𝑤(𝑡), 𝑡 ∈ [0, 𝑇].

Hence, by the formula of integration by parts for the left and
right Riemann-Liouville fractional derivatives, we have the
following:

∫

𝑇

0

(𝑧 (𝑡) ,
0
𝐷
𝛼

𝑡
V (𝑡)) 𝑑𝑡 = ∫

𝑇

0

(
𝑡
𝐷
𝛼

𝑇
𝑧 (𝑡) , V (𝑡)) 𝑑𝑡

= ∫

𝑇

0

(
𝑡
𝐷
𝛼

𝑇
(
𝑡
𝐷
−𝛼

𝑇
𝑤 (𝑡)) , V (𝑡)) 𝑑𝑡

= ∫

𝑇

0

(𝑤 (𝑡) , V (𝑡)) 𝑑𝑡.

(14)

By (13), for every V ∈ 𝐸
𝛼 and hence for every V ∈ 𝐶

∞

0
([0,

𝑇],R𝑁), we have

∫

𝑇

0

(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝜆𝑧 (𝑡) ,

0
𝐷
𝛼

𝑡
V (𝑡)) 𝑑𝑡 = 0. (15)

Since V ∈ 𝐶
∞

0
([0, 𝑇],R𝑁), we have

0
𝐷
𝛼

𝑡
V(𝑡) =

0
𝐷
𝛼−1

𝑡
V󸀠(𝑡).

By the formula of integration by parts for the left and right
Riemann-Liouville fractional derivatives, we get

∫

𝑇

0

(
𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝜆𝑧 (𝑡)) , V󸀠 (𝑡)) 𝑑𝑡 = 0,

∀V ∈ 𝐶
∞

0
([0, 𝑇] ,R

𝑁
) .

(16)

Since
𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 − 𝜆𝑧) ∈ 𝐿

1
([0, 𝑇],R𝑁), the standard

Fourier series theory implies that

𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝜆𝑧 (𝑡)) = 𝐶

0
, for almost all 𝑡 ∈ [0, 𝑇]

(17)
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for some constant 𝐶
0
∈ R𝑁. Using the properties of the left

and right Riemann-Liouville fractional derivatives, we have

0
𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝜆𝑧 (𝑡) + 𝐶(𝑇 − 𝑡)

𝛼−1
, a.e. 𝑡 ∈ [0, 𝑇] . (18)

Since 𝑤(𝑡) ∈ 𝐿
1
([0, 𝑇],R𝑁), we can identify the equivalence

class
𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢) and its continuous representant

𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡)) = 𝜆∫

𝑇

𝑡

𝑤 (𝑡) 𝑑𝑡 + 𝐶, for 𝑡 ∈ [0, 𝑇] .

(19)

Firstly, we notice that
0
𝐷
𝛼−1

𝑡
𝑢(𝑡) is derivative for almost every

𝑡 ∈ [0, 𝑇] and (
0
𝐷
𝛼−1

𝑡
𝑢(𝑡))
󸀠

=
0
𝐷
𝛼

𝑡
𝑢(𝑡) ∈ 𝐿

2
([0, 𝑇],R𝑁) as 𝑢 ∈

𝐸
𝛼. On the other hand,

𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢(𝑡)) is derivative a.e. on

[0, 𝑇] and (
𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢(𝑡)))

󸀠

∈ 𝐿
1
([0, 𝑇],R𝑁).

By (19), we have

𝑡
𝐷
𝛼

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡)) =− (

𝑡
𝐷
𝛼−1

𝑇
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡)))

󸀠

= 𝜆𝑤 (𝑡) ,

a.e. 𝑡 ∈ [0, 𝑇] .

(20)

Moreover, 𝑢 ∈ 𝐸
𝛼 implies that 𝑢(0) = 𝑢(𝑇) = 0. The proof is

completed.

3. Proof of Main Results

Throughout this section, for 𝑢 ∈ 𝑋 := 𝐸
𝛼, we denote 𝐼

𝜆
(𝑢) =

Φ(𝑢) − 𝜆Ψ(𝑢), where 𝜆 ∈ (16𝐶(𝑇, 𝛼)/𝐵𝑇
2
Γ
2
(2 − 𝛼), (2𝛼 −

1)Γ
2
(𝛼)/2𝐴𝑇

2𝛼−1
), and

Φ (𝑢) =
1

2
‖𝑢‖
2
, Ψ (𝑢) = ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡. (21)

Clearly, Φ is Gâteaux differentiable and sequentially weakly
lower semicontinuous and coercive; Ψ is locally Lipschitz
continuous on 𝑋; by standard argument, Ψ is sequentially
weakly continuous. We denote

𝐴 := lim inf
𝜉→+∞

∫
𝑇

0
max
|𝑥|≤𝜉

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝜉2
,

𝐵 := lim sup
|𝑥|→+∞

∫
𝑇

0
𝐹 (𝑡, 𝑥) 𝑑𝑡

|𝑥|
2

.

(22)

Proof of Theorem 1. First, we verify that 𝛾 < +∞. By (𝐹
4
), let

{𝑎
𝑛
} be a real sequence such that lim

𝑛→∞
𝑎
𝑛
= +∞ and

lim
𝑛→∞

∫
𝑇

0
max
|𝑥|≤𝑎
𝑛

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝑎2
𝑛

= 𝐴. (23)

Put 𝑟
𝑛
= ((2𝛼−1)Γ

2
(𝛼)/2𝑇

2𝛼−1
)𝑎
2

𝑛
for all 𝑛 ∈ N. From (9), one

has ‖𝑢‖
∞

≤ 𝑎
𝑛
for all 𝑢 ∈ 𝑋 such that ‖𝑢‖2 ≤ 2𝑟

𝑛
. Take into

account that ‖𝑢
0
‖ = 0 and ∫

𝑇

0
𝐹(𝑡, 0)𝑑𝑡 = 0, where 𝑢

0
(𝑡) = 0

for all 𝑡 ∈ [0, 𝑇]. For all 𝑛 ∈ N, we have

𝜑 (𝑟
𝑛
) = inf
‖𝑢‖
2
<2𝑟
𝑛

sup
‖V‖2≤2𝑟

𝑛

∫
𝑇

0
𝐹 (𝑡, V (𝑡)) 𝑑𝑡 − ∫

𝑇

0
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

𝑟
𝑛
− ‖𝑢‖
2
/2

≤

sup
‖V‖2≤2𝑟

𝑛

∫
𝑇

0
𝐹 (𝑡, V (𝑡)) 𝑑𝑡

𝑟
𝑛

≤
2𝑇
2𝛼−1

(2𝛼 − 1) Γ
2
(𝛼)

∫
𝑇

0
max
|𝑥|≤𝑎
𝑛

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝑎2
𝑛

.

(24)

Since from assumption (𝐹
4
) one has 𝐴 < +∞, then we have

𝛾 ≤ lim inf
𝑛→+∞

𝜑 (𝑟
𝑛
) ≤

2𝑇
2𝛼−1

(2𝛼 − 1) Γ
2
(𝛼)

𝐴 < +∞. (25)

Now fix 𝜆 ∈ (16𝐶(𝑇, 𝛼)/𝐵𝑇
2
Γ
2
(2 − 𝛼), (2𝛼 − 1)Γ

2
(𝛼)/

2𝐴𝑇
2𝛼−1

). We claim that the functional 𝐼
𝜆
is unbounded from

below.
By (𝐹
4
), let {𝑏

𝑛
} be a sequence ofR𝑁 such that |𝑏

𝑛
| → +∞

and

lim
𝑛→+∞

∫
3𝑇/4

𝑇/4
𝐹 (𝑡, 𝑏

𝑛
) 𝑑𝑡

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2
= 𝐵. (26)

For each 𝑛 ∈ N, we define a sequence {𝑤
𝑛
} as follows:

𝑤
𝑛
(𝑡) =

{{{{{{{{

{{{{{{{{

{

4𝑏
𝑛

𝑇
𝑡, 𝑡 ∈ [0,

𝑇

4
) ,

𝑏
𝑛
, 𝑡 ∈ [

𝑇

4
,
3𝑇

4
] ,

4𝑏
𝑛

𝑇
(𝑇 − 𝑡) , 𝑡 ∈ (

3𝑇

4
, 𝑇] .

(27)

It is easy to check that𝑤
𝑛
(0) = 𝑤

𝑛
(𝑇) = 0 and𝑤

𝑛
∈ 𝐿
2
([0, 𝑇]).

Moreover, 𝑤
𝑛
(𝑡) is Lipschitz continuous on [0, 𝑇], and hence

𝑤
𝑛
(𝑡) is absolutely continuous on [0, 𝑇]. By calculations, we

get

0
𝐷
𝛼

𝑡
𝑤
𝑛
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

4𝑏
𝑛

𝑇Γ (2 − 𝛼)
𝑡
1−𝛼

, 𝑡 ∈ [0,
𝑇

4
) ,

4𝑏
𝑛

𝑇Γ (2 − 𝛼)
[𝑡
1−𝛼

− (𝑡 −
𝑇

4
)

1−𝛼

] ,

𝑡 ∈ [
𝑇

4
,
3𝑇

4
] ,

4𝑏
𝑛

𝑇Γ (2 − 𝛼)
[𝑡
1−𝛼

− (𝑡 −
𝑇

4
)

1−𝛼

+(𝑡 −
3𝑇

4
)

1−𝛼

] ,

𝑡 ∈ (
3𝑇

4
, 𝑇] .

(28)
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Obviously,
0
𝐷
𝛼

𝑡
𝑤
𝑛
(𝑡) is continuous on [0, 𝑇] and

∫

𝑇

0

󵄨󵄨󵄨󵄨0𝐷
𝛼

𝑡
𝑤
𝑛
(𝑡)

󵄨󵄨󵄨󵄨

2

=
16

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2

𝑇2Γ2 (2 − 𝛼)

× {∫

𝑇/4

0

𝑡
2−2𝛼

𝑑𝑡

+ ∫

3𝑇/4

𝑇/4

[𝑡
1−𝛼

− (𝑡 −
𝑇

4
)

1−𝛼

]

2

𝑑𝑡

+ ∫

𝑇

3𝑇/4

[𝑡
1−𝛼

− (𝑡 −
𝑇

4
)

1−𝛼

+(𝑡 −
3𝑇

4
)

1−𝛼

]

2

𝑑𝑡}

:=
16

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2

𝑇2Γ2 (2 − 𝛼)
𝐶 (𝑇, 𝛼) ,

(29)

where 𝐶(𝑇, 𝛼) depends on 𝑇 and 𝛼.
By condition (𝐹

3
), we have

∫

𝑇

0

𝐹 (𝑡, 𝑤
𝑛
(𝑡)) 𝑑𝑡 ≥ ∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑏
𝑛
) 𝑑𝑡 (30)

for all 𝑛 ∈ N. Then,

𝐼
𝜆
(𝑤
𝑛
) = Φ (𝑤

𝑛
) − 𝜆Ψ (𝑤

𝑛
)

≤
16

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2

𝑇2Γ2 (2 − 𝛼)
𝐶 (𝑇, 𝛼)

− 𝜆∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑏
𝑛
) 𝑑𝑡

(31)

for every 𝑛 ∈ N.
If 𝐵 < +∞, let 𝜀 ∈ (16𝐶(𝑇, 𝛼)/𝜆𝐵𝑇

2
Γ
2
(2 − 𝛼), 1); by (26)

there exists𝑁
𝜀
> 0 such that

∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑏
𝑛
) 𝑑𝑡 ≥ 𝜀𝐵

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2 (32)

for all 𝑛 ≥ 𝑁
𝜀
. Hence, by (31) and (32), we obtain

𝐼
𝜆
(𝑤
𝑛
) ≤ [

16

𝑇2Γ2 (2 − 𝛼)
𝐶 (𝑇, 𝛼) − 𝜆𝜀𝐵]

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2 (33)

for all 𝑛 ≥ 𝑁
𝜀
. Choosing suitable 𝜀, we have

lim
𝑛→+∞

𝐼
𝜆
(𝑤
𝑛
) = −∞. (34)

On the other hand, if 𝐵 = +∞, we fix 𝑀 > 16𝐶(𝑇, 𝛼)/𝜆𝑇
2
Γ
2

(2 − 𝛼), and again from (26) there exists𝑁
𝑀

∈ N such that

∫

3𝑇/4

𝑇/4

𝐹 (𝑡, 𝑏
𝑛
) 𝑑𝑡 ≥ 𝑀

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2 (35)

for all 𝑛 > 𝑁
𝑀
. Therefore, from (31) and (35), we have

𝐼
𝜆
(𝑤
𝑛
) ≤ [

16

𝑇2Γ2 (2 − 𝛼)
𝐶 (𝑇, 𝛼) − 𝜆𝑀]

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

2 (36)

for all 𝑛 > 𝑁
𝑀
. From the choice of𝑀, we have

lim
𝑛→+∞

𝐼
𝜆
(𝑤
𝑛
) = −∞. (37)

Hence, our claim is proved.
Since all the assumptions of the case (a) of Theorem 3

are verified, for each 𝜆 ∈ (16𝐶(𝑇, 𝛼)/𝐵𝑇
2
Γ
2
(2 − 𝛼), (2𝛼 −

1)Γ
2
(𝛼)/2𝐴𝑇

2𝛼−1
), the functional 𝐼

𝜆
admits an unbounded

sequence of critical points. The conclusion follows from
Proposition 8.

Proof of Theorem 2. The proof is the same as Theorem 1 by
using the case (b) of Theorem 3 instead of the case (a).

Example 9. We give an example to illustrate Theorem 1.
Set

𝑎
𝑛
= 𝑛!𝑛, 𝑏

𝑛
= 𝑛! (𝑛 +

1

2
) (38)

for every 𝑛 ∈ N. Define the nonnegative function 𝐹(𝑡, 𝑥) :

[0, 𝑇] ×R𝑁 → R as follows:

𝐹 (𝑡, 𝑥) =

{{{

{{{

{

(|𝑥| −
𝑛!

2
)

2

e−|1/((|𝑥|−𝑛!𝑛−𝑛!/2)
2
−(𝑛!/2)

2
)| cos 𝜋

2𝑇
𝑡,

if 𝑛!𝑛 < |𝑥| < (𝑛 + 1)!,

0, otherwise.
(39)

Obviously, 𝐹(𝑡, 𝑥) satisfies the conditions (𝐹
0
)–(𝐹
3
). Next, we

show that (𝐹
4
) is true. Indeed, by direct computation, we get

lim
𝑛→∞

∫
𝑇

0
max
|𝑥|≤𝑎
𝑛

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝑎2
𝑛

= 0,

lim
𝑛→∞

∫
3𝑇/4

𝑇/4
𝐹 (𝑡, 𝑏

𝑛
) 𝑑𝑡

𝑏2
𝑛

=
𝜋

2𝑇
(sin 3𝜋

8
− sin 𝜋

8
) .

(40)

Hence, we see that

𝐴 = lim inf
𝜉→+∞

∫
𝑇

0
max
|𝑥|≤𝜉

𝐹 (𝑡, 𝑥) 𝑑𝑡

𝜉2
= 0,

0 < 𝐵 = lim sup
|𝑥|→+∞

∫
3𝑇/4

𝑇/4
𝐹 (𝑡, 𝑥) 𝑑𝑡

|𝑥|
2

< +∞.

(41)

Therefore, (𝐹
4
) is verified.
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