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A systematic research on the structure-preserving controller is investigated in this paper, including its applications to the second-
order, first-order, time-periodic, or degenerated astrodynamics, respectively. The general form of the controller is deduced for the
typical Hamiltonian system in full feedback and position-only feedback modes, which is successful in changing the hyperbolic
equilibrium to an elliptic one. With the poles assigned at any different positions on imaginary axis, the controlled Hamiltonian
system is Lyapunov stable. The Floquet multiplier is employed to measure the stability of time-dependent Hamiltonian system,
because the equilibrium of periodic system may be unstable even though the equilibrium is always elliptic. One type of periodic
orbits is achieved by the resonant conditions of control gains, and another type is making judicious choice in the foundational
motions with different frequencies. The control gains are selected from the viewpoint of both the local and global optimizations
on fuel cost. This controller is applied to some astrodynamics to achieve some interesting conclusions, including stable lissajous
orbits in solar sail’s three-body problem and degenerated two-body problem, quasiperiodic formation flying on a 𝐽

2
-perturbed

mean circular orbit, and controlled frozen orbits for a spacecraft with a high area-to-mass ratio.

1. Introduction

It is well known that most of the astrodynamical problems
could be classified as hyperbolic Hamiltonian systems, for
example, circular restricted 3-body problem (CR3BP). There
are the hyperbolic equilibria which have stable, unstable, and
centremanifolds for hyperbolic Hamiltonian system, just like
the collinear libration points 𝐿

1
, 𝐿
2
, and 𝐿

3
in CR3BP [1],

of which the unstable manifolds may cause instability in the
Lyapunov sense.

Some astronautical missions, requiring increasing the
coverage rate to the object (ground station or target space-
craft) or avoiding communication signals being lost in the
sun, are preferring bounded motions near hyperbolic equi-
libria, such as lissajous (or halo) orbit generated in CR3BP
[1, 2]. There presented two different approaches to generate
bounded relative trajectories, of which one is obtaining the
bounded orbits by making judicious choice in initial con-
ditions. Certain zero-steady controllers could be applied to

stabilize the nominal trajectories, owing to the hyperbolicity
inheriting from the topological type of the equilibrium.

However, for the other case without a natural trajectory
to track, some station keeping maneuvers are necessary to
implement modification of the topology of the equilibrium.
This paper proposes a structure-preserving controller to
generate bounded trajectories around the equilibrium, which
has many potential applications in astrodynamics. Firstly, a
simple structure-preserving controller was constructed by
Scheeres et al. [3], in which involved only the instantaneous
stable and unstable manifolds, and the manifold’s gains are
constrained to be equal. By choosing the proper manifolds’
gains,M. Xu and S. Xu [4] have demonstrated that the poles of
the typical second-orderHamiltonian system can be allocated
to any position along the imaginary axis and then obtained a
new quasiperiodic orbit type referred to as a stable lissajous
orbit. Therefore, the controller was powerful enough to work
out some famous and difficult problems in sail’s restricted
three-body problem that there exist the bounded trajectories



2 Journal of Applied Mathematics

near the off-axis solar sail equilibrium [4], and inmaintaining
the eccentricity in the neighborhood of the unstable fixed
point. Besides, the controller implemented the stabilization
on a saddle-node bifurcation point for the degenerated case,
which makes the modified elliptic equilibrium unique for the
controlled system to change the instability of the equilibrium
[5]. Further work was implemented on the stabilization
of the equilibrium for time-periodic system, which has
time varying topological types and no fixed-dimensional
unstable/stable/center manifolds [6]. The 2-dimensions tem-
porally independent systems possess fixed-dimensions of
unstable/stable/center manifolds and a permanent pair of
hyperbolic eigenvalues. Tabuada and Pappas [7] focused
on local accessibility preserving abstractions, and provided
conditions under which local accessibility properties of the
abstracted Hamiltonian system are equivalent to the local
accessibility properties of the original Hamiltonian control
system.

A systematic investigation on the structure-preserving
controller is presented in this paper, including some applica-
tions in second-order, first-order, time-periodic, and degen-
erated Hamiltonian astrodynamics, respectively. The general
formof the controller is designed for the typical second-order
Hamiltonian system, which can work as full feedback and
position-onlymodes.The controller is successful in changing
the hyperbolic equilibrium (saddle) to an elliptic one (center)
with the poles on the imaginary axis (marginal stability),
and then the controlled Hamiltonian system can achieve
the Lyapunov stability by means of the Morse lemma. In
contrast to the time-independent Hamiltonian system, the
equilibrium of periodic system may be unstable even though
the equilibrium is always elliptic during its period.Therefore,
it is necessary to check whether the Floquet multipliers lie
on the unit circle in the complex plane, or whether the
moduli of all the multipliers are equal to 1. Two different
approaches to generate the periodic orbits are discussed, one
of which is achieved by the resonant conditions of control
gains for the resonant periodic orbits, and another is making
judicious choice in the foundational motions with different
frequencies. Furthermore, some selection techniques on the
gains are considered from the point view of both the local and
global optimizations.

This controller is applied to some astrodynamics to
achieve some interesting conclusions, including stable lis-
sajous orbits in solar sail’s three-body problem and degener-
ated two-body problem, quasiperiodic formation flying on a
𝐽
2
-perturbed mean circular orbit, controlled frozen orbits for

a spacecraft with high area-to-mass ratio.

2. Hamiltonian System and
Hyperbolic Equilibrium

2.1. Typical Hamiltonian System in Astrodynamics. For the
typical Hamiltonian system in astrodynamics, the Hamilto-
nian function has the following form as [4]:

𝐻 =
1

2
p𝑇p + 𝜔p𝑇Jq − 𝑉 (q, 𝑡) , (1)

𝐿3
𝑚1

𝐿4

𝐿1

𝐿5

𝑚2

𝐿2

Figure 1: Hyperbolic equilibria in circular restricted three-body
problem: The three collinear equilibria are hyperbolic, labeled as
𝐿
1
, 𝐿
2
, and 𝐿

3
. The equilibria in CR3BP are renamed as libration

points.

where𝑉 is the general form of pseudopotential function rely-
ing only on the coordinate q and time; 𝜔 is the characteristic
parameter introduced by theCoriolis acceleration, such as the
mean angular motion of the synodic frame used in CR3BP,
and Local Vertical-Local Horizontal (LVLH) frame used in
formation flying.

In general, the variables (q, p) can be expressed by the
physical variables (r, ṙ) from the Legendre transformation:

[
q
p] = [

I 0

−𝜔J I] [
r
ṙ] , (2)

where I is the identical matrix, and J is the symplectic matrix.
The astrodynamics in physical variables can be expressed as

𝑥̈ − 2𝜔𝑦̇ =
𝜕𝑉

𝜕𝑥
,

𝑦̈ + 2𝜔𝑥̇ =
𝜕𝑉

𝜕𝑦
.

(3)

For a hyperbolic Hamiltonian system, there exist hyperbolic
equilibria that have stable, unstable, and center manifolds
[1], which are similar to the collinear libration points 𝐿

1
, 𝐿
2
,

and 𝐿
3
in CR3BP. Hence, the equilibrium of the typical 2-

dimensional Hamiltonian system in astrodynamics can be
obtained from the following equations:

r = r0, ṙ = 0

𝜕𝑉

𝜕r

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r0
= 0.

(4)

Denote 𝑉rr as the second derivative matrix of the pseudopo-
tential function 𝑉 about the position vector r = [𝑥, 𝑦], and
the elements of the matrix have the general expression as
𝑉
𝑚𝑛

= 𝜕
2
𝑉/𝜕𝑚𝜕𝑛, (𝑚, 𝑛) = (𝑥, 𝑦). And then a hyperbolic

(saddle) equilibrium results from 𝑉
𝑥𝑥

⋅ 𝑉
𝑦𝑦

− 𝑉
2

𝑥𝑦
< 0.

Generally, unstable manifolds of the hyperbolic equilib-
riummay cause instability.The spacecraft needs to be located
in the unstable region around the hyperbolic equilibrium in
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Figure 2: Section of the level surfaces in Sun-Earth/Moon system. 𝛽
0
= 0.5059.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
×10−4

Re
al

 p
ar

t

Time (orbit)

(a)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
×10−3

Im
ag

in
ar

y 
pa

rt

Time (orbit)

(b)

Figure 3: Topological type of the equilibrium in the modified uncontrolled system: (a) the time history of real part of the equilibrium during
the orbital period; (b) the time history of imaginary part of the equilibrium during the orbital period.

order to meet the requirements of some missions. Thus, it is
necessary to establish a stabilizing strategy for the hyperbolic
equilibrium.

2.2. TypicalHyperbolic Equilibrium inAstrodynamics. For the
typical second-order Hamiltonian system, different 𝑉 and
𝜔 can be used to define different astrodynamical problems,
illustrated in the following section.

𝜔 = 1 and 𝑉 = (1/2)(𝑥
2
+ 𝑦
2
) + 𝜇/𝑟

1
+ (1 − 𝜇)/𝑟

2

define the circular restricted three-body problem (CR3BP)
[8], where 𝜇 is the mass ratio between the primaries, 𝑟

1
and

𝑟
2
, are, respectively, the distances between the spacecraft and

the two primaries, that is,𝑚
1
and𝑚

2
. There are five libration

points, three collinear ones of which are hyperbolic, labeled
as 𝐿
1
, 𝐿
2
, and 𝐿

3
shown in Figure 1.

𝜔 = 1 and𝑉 = (1/2)(𝑥
2
+𝑦
2
)+𝜇/𝑟

1
+((1−𝜇)/𝑟

2
) + 𝑎⋅(𝑛

𝑥
⋅

𝑥 + 𝑛
𝑦
⋅ 𝑦) define the planar solar sail three body problem [4],

where 𝑎 is the solar pressure acceleration and n = [𝑛
𝑥

𝑛
𝑦
]
𝑇

is the sail surface normal vector. There are infinite equilibria
existing in this system,which can be parameterized by the sail
lightness number 𝛽:

𝛽 =
𝑟
4

1

1 − 𝜇
⋅

‖−∇𝑉‖
3

(r
1
⋅ −∇𝑉)

2
, (5)
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Figure 4: Hyperbolic regime in the eccentricity-𝜙 phase space
evolution under the effects of 𝐽

2
+ SRP: the bold lines represent

the separatrices in correspondence of the saddle point and zero
eccentricity Hamiltonian function.

where 𝛽 is the sail lightness number which is the ratio of the
radiation pressure acceleration to gravitational acceleration.
This parameterization for Sun-Earth/Moon system generates
level surfaces as demonstrated in Figure 2.

𝜔 = 0 and 𝑈 = ℎ
2

𝑧
/2𝜌
2
− 1/𝑟 − 𝜅 ⋅ 𝑧 define the solar sail’s

two-body problem [1], where 𝜅 is the constant determined by
solar pressure; the polar coordinates (𝑧, 𝜌) are parallel to the
sun line and the minimal radius from the 𝑧 axis, respectively;
ℎ
𝑧
= ℎ

max
𝑧

is the constant angular momentum directed along
the sun line; 𝑟 = √𝜌2 + 𝑧2. 𝜔 = 0 indicates that this
Hamiltonian system is degenerated for the absence of the
Coriolis acceleration and a unique double equilibrium due to
ℎ
𝑧
= ℎ

max
𝑧

.
Considering the formation flying on a 𝐽

2
-perturbed

mean circular orbit, the linearized relative dynamics can be
deduced as [6, 9]

Δr̈ + 2F−1ḞΔṙ + F−1F̈Δr = − (∇
Δr ⋅ ∇) 𝑈𝐹

󵄨󵄨󵄨󵄨Δr= 0 ⋅ Δr, (6)

where Δr = [𝑥 𝑦 𝑧]
𝑇 is the relative position in the chief ’s

LVLH rotating frame,𝑈 is the gravitational potential function
of the deputy including 𝐽

2
perturbation, F is the coordinate

transformation matrix from the LVLH to inertial frames,
and ∇ is the gradient vector described in orthogonal or
spherical coordinates. Due to the osculating orbital elements,
the relative dynamics on a 𝐽

2
-perturbed mean circular orbit

is time-periodic Hamiltonian system. This time-periodic
system has the fixed equilibrium Δr = [0, 0, 0]

𝑇, that is,
the location of chief; however, the equilibrium of the system
has time-varying topological types and no fixed dimen-
sional unstable/stable/center manifolds, which are quite dif-
ferent from the two-dimensional time-independent system
with a permanent pair of hyperbolic eigenvalues and fixed
dimensions of unstable/stable/center manifolds, as shown in
Figure 3.

Some averaging techniques can be used to reduce the
typical astrodynamics into a first-order Hamiltonian system.
For a spacecraft with high area-to-mass ratio orbiting the
Earth, its dynamics is strongly perturbed by the term of the
gravitational field due to the Earth’s oblateness and by the
effect of solar radiation pressure (SRP). The secular rate of
the orbital elements due to SRP and 𝐽

2
term can be written as

[10]

̇𝑒 = −𝐶 sin𝜙√1 − 𝑒2

𝜙̇ =
−𝐶 cos𝜙√1 − 𝑒2

𝑒
+

𝑊

(1 − 𝑒2)
2
− 1,

(7)

where 𝐶 and 𝑊 are the constant parameters measuring the
solar radiation pressure and the oblateness. The reduced
system exists three equilibria, that is, (𝑒

1
, 0), (𝑒

2
, 0) and

(𝑒
3
, 𝜋) (𝑒

1
< 𝑒
2
< 𝑒
3
), where (𝑒

2
, 0) is hyperbolic and the

others are elliptic, as shown in Figure 4.

3. Structure-Preserving Stabilization for
Hamiltonian System

3.1. Controller Design Preserving Hamiltonian Structure. For
the typical second-order Hamiltonian system, the variation
equation around the equilibrium is:

𝛿r̈ − 2𝜔J𝛿ṙ − 𝑈rr𝛿r = 0. (8)

For this unstable system, there exist hyperbolic eigenvalues
±𝜎 associated with the stable and unstable manifolds u

±
, and

elliptic eigenvalues ±𝛾𝑖 associated with the centre manifolds
u and u.

The Hamiltonian structure-preserving controller then is
constructed as

T = −𝜎
2
[𝐺
1
u
+
u𝑇
+
+ 𝐺
2
u
−
u𝑇
−
] − 𝛾
2
𝐺
3
[uu𝑇 + uu𝑇] , (9)

K = 2ΔJ,

T
𝐶
= T𝛿r + K𝛿ṙ,

(10)

where Δ is used to change the Coriolis acceleration, 𝐺
1
, 𝐺
2

and 𝐺
3
are, respectively, the gains of unstable, stable, and

centre manifolds. The symmetry of matrix T and the skew
symmetry of matrix K guarantee the linear feedback con-
troller preserves the Hamiltonian structure [3].

3.2. Stability Analysis. For the 2-dimensional and time-
independent Hamiltonian system, some theorem and propo-
sition about the stability of the controller can be deduced as
follows.

Theorem 1. Thepoles can be assigned at any different positions
in imaginary axis, and𝐺

1
, 𝐺
2
, and𝐺

3
required are not unique.
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Figure 5: Floquet multipliers of the Periodic Hamiltonian System: (a) the relationship between the moduli of Floquet multipliers and the
controller gain 𝐺; (b) the Floquet multipliers and the unit circle in the complex plane.
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Figure 6: Topological type of the uncontrolled equilibrium: (a) the time history of real part of the equilibrium during the orbital period; (b)
the time history of imaginary part of the equilibrium during the orbital period.

Proof. Define the matrix as

A =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜎
2

1 + 𝑢2
+

𝜎
2

1 + 𝑢2
−

2𝛾
2

1 + 𝑢𝑢

𝜎
2
𝑢
2

+

1 + 𝑢2
+

𝜎
2
𝑢
2

−

1 + 𝑢2
−

2𝛾
2
𝑢𝑢

1 + 𝑢𝑢

𝜎
2
𝑢
+

1 + 𝑢2
+

𝜎
2
𝑢
−

1 + 𝑢2
−

𝛾
2
(𝑢 + 𝑢)

1 + 𝑢𝑢

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (11)

where 𝑢
+
and 𝑢

−
are composing the stable and unstable

manifolds of the hyperbolic eigenvalues ±𝜎 as

u
±
=

1

√1 + 𝑢2
±

[
1

𝑢
±

] (12)

and 𝑢 and 𝑢 are composing the centermanifolds of the elliptic
eigenvalues ±𝛾𝑖 as

u =
1

√1 + 𝑢𝑢
[
1

𝑢
] . (13)
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Thus𝑉
𝑥𝑥
, 𝑉
𝑦𝑦
, and 𝑉

𝑥𝑦
will be transformed by the controller:

[
[

[

𝑉̃
𝑥𝑥

𝑉̃
𝑦𝑦

𝑉̃
𝑥𝑦

]
]

]

= [

[

𝑉
𝑥𝑥

𝑉
𝑦𝑦

𝑉
𝑥𝑦

]

]

− A[

[

𝐺
1

𝐺
2

𝐺
3

]

]

, (14)

where 𝑉̃
𝑥𝑥
, 𝑉̃
𝑦𝑦
, and 𝑉̃

𝑥𝑦
can be assigned arbitrarily to satisfy

the linearly stable conditions, so long as matrix A is not
regular. Obviously, A cannot be regular due to the fact that
𝑢
+
is different from 𝑢

−
for the different eigenvalues +𝜎 and

−𝜎.
Denote 𝜆

2

1
and 𝜆

2

2
as the solutions to the characteristic

equation of the second-order dynamics, and then 𝐵 and 𝐶

can be expressed as

𝐵 = − (𝜆
2

1
+ 𝜆
2

2
) ,

𝐶 = 𝜆
2

1
⋅ 𝜆
2

2
.

(15)

Consequently, 𝑉̃
𝑥𝑥
, 𝑉̃
𝑦𝑦
, and 𝑉̃

𝑥𝑦
can be solved from 𝐵 =

4𝜔
2
− 𝑉
𝑥𝑥

− 𝑉
𝑦𝑦

and 𝐶 = 𝑉
𝑥𝑥

⋅ 𝑉
𝑦𝑦

− 𝑉
2

𝑥𝑦
.

Furthermore, 𝜆2
1
and 𝜆

2

2
are restricted by

0 > 𝜆
2

1
≥ −

1

2
𝐵 ≥ 𝜆

2

2
, (16)

but if one sets

𝜆
2

1
= 𝜆
2

2
= −

1

2
𝐵 (17)

then (𝜆 + 𝑖√𝐵/2)
2

(𝜆 − 𝑖√𝐵/2)
2

= 0. Since this system has
second-order elementary factors, the Jordan form of [ 0 I

𝑉rr 2𝜔J ]

will have long-term dispersions because thematrix cannot be
diagonalized.

Because of the nonuniqueness of 𝑉̃
𝑥𝑥
, 𝑉̃
𝑦𝑦
, and 𝑉̃

𝑥𝑦

solved from (9),𝐺
1
, 𝐺
2
, and𝐺

3
are nonunique. Suppose that

sets of 𝑉̃
𝑥𝑥
, 𝑉̃
𝑦𝑦
, 𝑉̃
𝑥𝑦

and 𝑉
𝑥𝑥
, 𝑉
𝑦𝑦
, 𝑉
𝑥𝑦

generate the same
values of 𝐵 and 𝐶 in (9), and the two sets have the following
relationships as

𝑉
𝑥𝑥

+ 𝑉
𝑦𝑦

= 𝑉̃
𝑥𝑥

+ 𝑉̃
𝑦𝑦
,

𝑉
𝑥𝑥

⋅ 𝑉
𝑦𝑦

− 𝑉
2

𝑥𝑦
= 𝑉̃
𝑥𝑥

⋅ 𝑉̃
𝑦𝑦

− 𝑉̃
2

𝑥𝑦
.

(18)

It is obtained from (7) that

𝑉
2

𝑥𝑥
− (𝑉̃
𝑥𝑥

+ 𝑉̃
𝑦𝑦
)𝑉
𝑥𝑥

+ (𝑉
2

𝑥𝑦
+ 𝑉̃
𝑥𝑥
𝑉̃
𝑦𝑦

− 𝑉̃
2

𝑥𝑦
) = 0 (19)

then the real solution is:

(𝑉̃
𝑥𝑥

− 𝑉̃
𝑦𝑦
)
2

+ 4 (𝑉̃
2

𝑥𝑦
− 𝑉
2

𝑥𝑦
) ≥ 0 (20)

we can fix 𝑉̃
2

𝑥𝑦
< 𝑉
2

𝑥𝑦
to get two different sets generated

from 𝐵 and 𝐶. Besides, the fact that there exist different sets
generating the same values of 𝐵 and 𝐶 indicate 𝐺

1
, 𝐺
2
, and

𝐺
3
are nonunique.
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Figure 7: Stable Lissajous orbit and Lyapunov orbits near the sail
equilibrium: 𝐺

1
= 20, 𝐺

2
= 10, 𝐺

3
= 10.

Hence, the controlled Hamiltonian can be expressed as

𝐻 =
1

2
p𝑇p + 𝜔̃p𝑇Jq +

1

2
𝜔̃
2q𝑇q − 𝑉 (q) − 1

2
𝛿q𝑇T𝛿q. (21)

Expand𝐻 around the equilibrium region to get

𝐻 = 𝐻
0
+
1

2
[𝛿q𝑇 𝛿p𝑇] [𝜔

2I − 𝑉rr −𝜔̃J
𝜔̃J I ] [

𝛿q
𝛿p]

−
1

2
𝛿q𝑇T𝛿q + 𝑂 (3) ,

(22)

where𝐻
0
represents theHamiltonian value at the equilibrium

and the first-order polynomial disappears because of the
equilibrium.

Proposition 2. The Coriolis acceleration can be modified by
𝜔̃ = 𝜔+Δ, which cannot stabilize the system independently for
2Δ ⋅ J𝛿ṙ does not change 𝑈

𝑥𝑥
, 𝑈
𝑦𝑦
, and 𝑈

𝑥𝑦
.

The controller developed here can transform the hyper-
bolic equilibrium (saddle) to an elliptic one (center) accord-
ing to the theorems and propositions.The elliptic equilibrium
has a linear symplectic transformation, which transforms 𝐻
to the following form:

𝐻̃ (q̃, p̃) = 𝐻
0
+
1

2
𝜆
1
(𝑞̃
2

1
+ 𝑝̃
2

1
) +

1

2
𝜆
2
(𝑞̃
2

2
+ 𝑝̃
2

2
) + 𝑂 (3) .

(23)

According to Morse lemma, there exists an analytic diffeo-
morphism around the equilibrium, which transforms 𝐻̃ to
the following form:

𝐾 (q, p) = 𝐾 (q
0
, p
0
) + q𝑇q + p𝑇p; (24)
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Figure 8: Resonant periodic orbits near the sail equilibrium.

thus the energy surfaces are locally diffeomorphic to a
family of spheres which shrink down to the equilibria:
𝐾 → 𝐾(q

0
, p
0
). The Lyapunov stability follows because the

trajectories are tangent to the energy surfaces [11]. Therefore,
we have obtained that the nonlinear full dynamics is also
Lyapunov stable.

Theorem3. Thegains can be chosen large enough to guarantee
the modified elliptic equilibrium is the only equilibrium for the
controlled system.

Proof. Since it is easy to demonstrate that T is negative
definite, the geometric structure of the Hill’s region for the
controlled systemwill be changed by adding−(1/2)(q − q

0
)
𝑇
⋅

T ⋅ (q − q
0
) to the Hill’s region which depends on 𝑉.

Another equilibrium 𝐿
𝑐
of the controlled system (if exist)

will stay in Island or Mainland [1] because it must stay in the
region where 𝜕

𝑥
𝑉 < 0 and 𝜕

𝑦
𝑉 < 0 for the negative definition

of T.
Here it is just illustrated that the equilibrium 𝐿

𝑐
cannot

stay inMainland, and the negative inclusion for Island can be
obtained by the similar way. We can verify whether 𝜕r𝑉 = 0

is true by increasing 𝑥 and 𝑦, since 𝐿
𝑐
is the bottom point

of Mainland; moreover, we need to test which one descends
faster between (1/2)(q − q

0
)
𝑇
⋅ T ⋅ (q − q

0
) and 𝑉. The

comparison is very tedious but simply, thus it will be ignored
here.

For the controlled system, there exists only the modified
elliptic equilibrium, which means the equilibrium has the
global minimumpseudopotential. So the controller’s stabiliz-
ing region is the whole phase space.

Furthermore, the equilibrium of time-periodic system
may be unstable even if the equilibrium is always elliptic dur-
ing its period, compared with the independent Hamiltonian
system. Consequently, it is necessary to verify if the modules
of all the multipliers are 1, or if the Floquet multipliers lie on
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Figure 9: Quasiperiodic orbits by the controller near the degener-
ated equilibrium: 𝐺

1
= 0, 𝐺

2
= 0, 𝐺

3
= 0.3, Δ = 0.0005.

the unit circle in the complex plane. Considering the relative
dynamics on a 𝐽

2
-perturbed mean circular orbit, the Floquet

stability of the periodic Hamiltonian system is obtained by
the larger controller gain rather than the critical gain (𝐺

1
=

𝐺
2
= 𝐺, 𝐺

3
= Δ = 0), as shown in Figure 5.

3.3. Resonant Condition. A resonance happens when the
eigenvalues of a controlled system have relation 𝜆

1
: 𝜆
2
= 𝑚 :

𝑛, where𝑚 < 𝑛 and𝑚 and 𝑛 are reducedwith each other.Thus
the trajectories will be periodic for any initial condition of
spacecraft.Wewill give a particular solution for the resonance
in the following section.

Suppose 𝜆
1
: 𝜆
2
= 𝑚 : 𝑛, and then:

𝑚
2
(𝐵 + √𝐵2 − 4𝐶) = 𝑛

2
(𝐵 − √𝐵2 − 4𝐶) (25)

hence,

𝑚𝑛 (4𝜔̃
2
− 𝑉̃
𝑥𝑥

− 𝑉̃
𝑦𝑦
) = (𝑚

2
+ 𝑛
2
)√𝑉̃
𝑥𝑥
𝑉̃
𝑦𝑦

− 𝑉̃
2

𝑥𝑦
. (26)

A particular solution can be constructed as

𝑉̃
𝑥𝑥

= 𝑉̃
𝑦𝑦

= 𝜔̃
2
,

𝑉̃
𝑥𝑦

= ±𝜔̃
2
⋅
𝑛
2
− 𝑚
2

𝑚2 + 𝑛2
.

(27)

If 𝜔̃ = 0, a particular solution can be constructed as

𝑉̃
𝑥𝑥

= 𝑉̃
𝑦𝑦

= −𝜔̂
2

𝑉̃
𝑥𝑦

= ±𝜔̂
2
⋅
𝑛
2
− 𝑚
2

𝑚2 + 𝑛2
,

(28)

where 𝜔̂ is an arbitrary parameter.
Compared with the osculating frequencies of the con-

trolled elliptic equilibrium for the global investigation during
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its period, the characteristic frequencies defined by the
Floquet multipliers have more applications for the time-
periodic Hamiltonian system. Floquet multipliers 𝑒±𝜃𝑘𝑖 (𝑘 =

1, 2, 3) are the eigenvalues of the linear Poincaré mapping
[Δr, Δṙ]𝑇(𝑡) → [Δr, Δṙ]𝑇(𝑡 + 𝑇

𝑑
) with the unit eigenvectors

𝜈
1
𝜈
1
, 𝜈
2
𝜈
2
, and 𝜈

3
𝜈
3
. Characteristic frequencies 𝜃

2
and 𝜃

3

are approximately equal to zeros inheriting from two of
osculating frequencies around 𝜛, while 𝜃

1
depends on the

controller gain. The linear combinations of eigenvectors,
(𝜈
1
+ 𝜈
1
), (𝜈
1
− 𝜈
1
)𝑖, (𝜈

2
+ 𝜈
2
), (𝜈
2
− 𝜈
2
)𝑖, (𝜈

3
+ 𝜈
3
),

and (𝜈
3
− 𝜈
3
)𝑖, are utilized to generate six different types of

near-periodic relative orbits with their periods of (2𝜋/𝜃
1
)𝑇
𝑑

and 𝑇
𝑑
, respectively. The six different types of bounded

relative orbits generated by the linear combinations can
be then regarded as the foundational motions around the
equilibrium.

Particularly, the linear combinations (𝜈
1
+ 𝜈
1
) and (𝜈

1
−

𝜈
1
)𝑖 can be used as the initial values to generate the periodic

relative orbits with their periods of𝑁⋅𝑇
𝑑
when 𝜃

1
satisfies the

resonant condition𝑁 ⋅ 𝜃
1
= 2𝜋. To be stricter, all the relative

periodic orbits, which produced by the judicious choice
combined of the eigenvectors, are near periodic only for the
nonlinear term that ignored by the linearized differential
equations describing the relative dynamics.

It is worth mentioning that the six eigenvectors of the
Floquet multipliers span the entire space of the relative
position and velocity [Δr𝑇, Δṙ𝑇]𝑇. Therefore, any initial rel-
ative positions and velocity vectors can be decomposed as
[Δr𝑇, Δṙ𝑇]𝑇 = ∑

6

𝑖 = 1
𝛼
𝑖
𝜈
𝑖
, where 𝛼

𝑖
is constant coefficients,

and 𝜈
𝑖
is chosen among (𝜈

1
+𝜈
1
), (𝜈
1
−𝜈
1
)𝑖, (𝜈

2
+𝜈
2
), (𝜈
2
−

𝜈
2
)𝑖, (𝜈

3
+ 𝜈
3
), and (𝜈

3
− 𝜈
3
)𝑖. Hence, all the initial relative

position and velocity can generate a bounded trajectory
around the controlled elliptic equilibrium, which depends on

the topological type of the equilibrium.Moreover, all the gen-
eral trajectories are quasiperiodic for the different frequencies
between the foundational motions and all the bounded
trajectories are involved in the foundational motions caused
by the eigenvectors.

3.4. Cost and Optimization. Because 𝐺
1
, 𝐺
2
, 𝐺
3
, and Δ are

nonunique, it is necessary to investigate the rule of choosing
𝐺
1
, 𝐺
2
, 𝐺
3
, and Δ to stabilize the system. Denote 𝑈

𝜆1 ,𝜆2
as

the collection of 𝐺
1
, 𝐺
2
, 𝐺
3
, and Δ which will allocate the

controlled system with the expected poles 𝜆
1
and 𝜆

2
.

The controller’s output can be then determined as

T
𝐶
= T ⋅ 𝛿r + K ⋅ 𝛿ṙ = [

T 0
0 K] [

𝛿r
𝛿ṙ] . (29)

Define z = [𝛿r𝑇 𝛿ṙ𝑇]𝑇 to specify the sensitivity of the
controller as 𝜅 = ‖T

𝐶
‖
2
/‖z‖
2
.

The Frobenius norm which is consistent to the Euclidean
norm of the vector, can be used to measure the controller’s
sensitivity as

𝜅 =

󵄩󵄩󵄩󵄩T𝐶
󵄩󵄩󵄩󵄩2

‖z‖2
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[
T 0
0 K]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹
= √tr (T𝑇T) + 8Δ2. (30)

Define

G
𝑚
= [

𝐺
1
𝐺
2
𝐺
3
𝐺
1
𝐺
2
𝐺
3

𝐺
1
𝐺
2
𝐺
3
𝐺
1
𝐺
2
𝐺
3

]

𝑇

,

A
𝑚
= [

A
11

A
12

A
13

A
31

A
32

A
33

A
31

A
32

A
33

A
21

A
22

A
23

]

(31)

and then deduce the matrix T from G
𝑚
and A

𝑚
as

T =

[
[
[
[
[

[

𝐺
1
⋅

𝜎
2

1 + 𝑢2
+

+ 𝐺
2
⋅

𝜎
2

1 + 𝑢2
−

+ 𝐺
3
⋅

2𝛾
2

1 + 𝑢𝑢
𝐺
1
⋅
𝜎
2
𝑢
+

1 + 𝑢2
+

+ 𝐺
2
⋅
𝜎
2
𝑢
−

1 + 𝑢2
−

+ 𝐺
3
⋅
𝛾
2
(𝑢 + 𝑢)

1 + 𝑢𝑢

𝐺
1
⋅
𝜎
2
𝑢
+

1 + 𝑢2
+

+ 𝐺
2
⋅
𝜎
2
𝑢
−

1 + 𝑢2
−

+ 𝐺
3
⋅
𝛾
2
(𝑢 + 𝑢)

1 + 𝑢𝑢
𝐺
1
⋅
𝜎
2
𝑢
2

+

1 + 𝑢2
+

+ 𝐺
2
⋅
𝜎
2
𝑢
2

−

1 + 𝑢2
−

+ 𝐺
3
⋅
2𝛾
2
𝑢𝑢

1 + 𝑢𝑢

]
]
]
]
]

]

= A
𝑚
⋅ G
𝑚

(32)

which has the following relationship as:

‖T‖2
𝐹
= [tr (T𝑇T)]

2

≤
󵄩󵄩󵄩󵄩A𝑚

󵄩󵄩󵄩󵄩
2

𝐹
⋅
󵄩󵄩󵄩󵄩G𝑚

󵄩󵄩󵄩󵄩
2

𝐹

=
󵄩󵄩󵄩󵄩A𝑚

󵄩󵄩󵄩󵄩
2

𝐹
⋅ 4 (𝐺
2

1
+ 𝐺
2

2
+ 𝐺
2

3
) .

(33)

Thus, put it into (33) and (30) to obtain:

𝜅 ≤ √󵄩󵄩󵄩󵄩A𝑚
󵄩󵄩󵄩󵄩
2

𝐹
⋅ 4 (𝐺2
1
+ 𝐺2
2
+ 𝐺2
3
) + 8Δ2, (34)

where ‖A
𝑚
‖
𝐹
can be calculated directly from the constant

matrix A
𝑚

according to the invariant manifolds of the
equilibrium.

For full feedback, 𝐿 = ‖A
𝑚
‖
2

𝐹
⋅ 4(𝐺
2

1
+ 𝐺
2

2
+ 𝐺
2

3
) + 8Δ

2 can
be treated as the optimization index to select more suitable

values for the manifolds gains; however, for the position
feedback, the optimization index can be set as 𝐿 = 𝐺

2

1
+ 𝐺
2

2
+

𝐺
2

3
. With the constraint equation (15), the selection for con-

troller’s gains can be considered as a nonlinear constrained
optimization, as:

min
(𝐺1 ,𝐺2 ,𝐺3,Δ)∈𝑈𝜆1,𝜆2

𝐿,

s.t. 𝐵 + (𝜆
2

1
+ 𝜆
2

2
) = 0,

𝐶 − 𝜆
2

1
⋅ 𝜆
2

2
= 0.

(35)

The programming functions “fmincon” and “confuneq” in
MATLAB can solve this optimization problem.
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Figure 10: Quasiperiodic orbits by the controller in the 3D physical space: 𝐺
1
= 0, 𝐺

2
= 0, 𝐺

3
= 0.3, Δ = 0.0005.

As confirmed by zero real part of the eigenvalues in
Figure 6, the equilibrium is elliptic during the period for
time-periodic Hamiltonian system. Therefore, there exist
three osculating imaginary eigenvalues ±𝜔

1
(𝑡)𝑖, ±𝜔

2
(𝑡)𝑖, and

±𝜔
3
(𝑡)𝑖 for the controlled equilibrium. The quasiperiodic

relative trajectories around the equilibrium comprise three
different oscillating motions with the osculating frequencies
of 𝜔
1
, 𝜔
2
, and 𝜔

3
, which can be verified by the second-order

term in the new Hamiltonian function yielded by a linear
symplectic transformation:

𝐻̃ (q̃, p̃, 𝑡) = 𝐻̃
0
(0, 0, 𝑡) + 1

2
𝜔
1
(𝑡) (𝑞̃
2

1
+ 𝑝̃
2

1
)

+
1

2
𝜔
2
(𝑡) (𝑞̃
2

2
+ 𝑝̃
2

2
) +

1

2
𝜔
3
(𝑡) (𝑞̃
2

3
+ 𝑝̃
2

3
)

+ 𝑂 (3) .

(36)

According to the local optimization, less cost is obtained
by small controller gain illustrated by (34); however, the
smaller gain cannot maintain the relative position Δr in a
domain closer to the equilibrium, which may consume more
fuels.

According to the global optimization, an averaging
quadratic cost function is defined to measure the fuel con-
sumption during [0, 𝑡

𝑓
] for the continuous thrust engine [12]:

𝐽 =
1

2𝑡
𝑓

∫

𝑡𝑓

0

T𝑇
𝑐
T
𝑐
𝑑𝑡 =

1

2𝑡
𝑓

∫

𝑡𝑓

0

[Δr𝑇G𝑇C𝑇 (𝑡)C (𝑡)GΔr] 𝑑𝑡

=
1

2𝑡
𝑓

6

∑

𝑖 = 1

6

∑

𝑗 = 1

𝛼
𝑖
𝛼
𝑗
∫

𝑡𝑓

0

[𝜁
𝑖
(𝑡)
𝑇G𝑇C𝑇 (𝑡)C (𝑡)G𝜁

𝑖
(𝑡)] 𝑑𝑡,

(37)

where 𝜁
𝑖
(𝑡) is the position component of the periodic orbit

which is developed by the eigenvector 𝜈
𝑖
. The component in

the 𝑖th row and 𝑗th column of the measuring matrixM(𝐺) is
M
𝑖𝑗
= (1/𝑡

𝑓
) ∫
𝑡𝑓

0
[𝜁
𝑖
(𝑡)
𝑇G𝑇C𝑇(𝑡)C(𝑡)G𝜁

𝑖
(𝑡)]𝑑𝑡, which inherits

the near-periodicity from the characteristic frequencies and
depends only on the controlled elliptic equilibrium. There-
fore,M inherited from the longest period of the characteristic
frequency 𝜃

1
, that is, 𝑡

𝑓
= (2𝜋/𝜃

1
)𝑇
𝑑
, can serve as the

foundational measuring matrix that can be obtained offline
(or on the ground) from the linearized dynamics for the fast
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Figure 11: Quasiperiodic relative trajectories generated by the optimal gain of 0.31 during 30 days: presented is the relative orbit during the
first orbital period in every day; the black thicker line indicates the initial formation configuration.

and approximative estimation. The consumption function
during [0, (2𝜋/𝜃

1
)𝑇
𝑑
] has the form as:

𝐽 (𝐺,𝛼) =
1

2
𝛼
𝑇M (𝐺)𝛼, (38)

where M is symmetric and positive-definite and 𝛼 =

[𝛼
1
𝛼
2
𝛼
3
𝛼
4
𝛼
5
𝛼
6
]
𝑇. Generally, there exists a unitary

matrix U from Singular Value Decomposition (SVD) to
transform the function as 𝐽 = (1/2)∑

6

𝑖 = 1
𝜆
𝑖
𝛽
2

𝑖
, where 𝜆

𝑖

represents the eigenvalues of M and 𝛽
𝑖
is the 𝑖th column

element of the intermediate variable 𝛽 = U𝛼.
The identified gain can be derived to minimize 𝐽 if

we know the initial relative position and velocity. The
specific gain satisfying the minimal trace of M(𝐺), that is,
trM = ∑

6

𝑖 = 1
𝜆
𝑖
, is however preferable to minimize 𝐽 for

the maximum likelihood, for an unknown case on the initial
conditions.

4. Application to Nonlinear Astrodynamics

4.1. Stable Lissajous Orbits of Solar Sail: Application to Second-
Order Hamiltonian System. A solar sail is a new type of

spacecraft with no fuel, and its orbital control is realized
by the solar radiation pressure by means of orientating its
attitude relative to the Sun. Therefore, we can neglect the
control consumption and implement the complicated control
law, which is incomparable to the low-trust ion propulsion or
the impulse propulsion.

We noticed the fact that there exists quasiperiodic or
periodic orbits near the sail’s equilibria, and several peri-
odic orbits have been proposed in the solar sail restricted
three-body problem. A survey [13] aimed to summarize the
combined wealth of literature concerned with the dynamics,
stability and control of highly non-Keplerian orbits for
various low thrust propulsion devices, and to demonstrate
some of these potential applications, like Capturing near
earth objects [14]. McInnes [15] is the first person who
applied the classical libration point orbit theory to generate
the halo orbit around the on-axis sail’s equilibrium. Baoyin
and McInnes [16] achieved two different halo orbits types
around the on-axis sail’s equilibrium. McInnes [15] has tried
to generate lissajous orbits near the equilibrium as well, but
failed to keep a bounded trajectory for a long time.Waters and
McInnes [17] applied the classical theory to generate some
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Figure 12: Topological type of the equilibrium in the controlled system: (a) the time history of real part of the equilibrium during
the orbital period; (b) the time history of imaginary part of the equilibrium during the orbital period; on the mean circular orbit with
𝑎 = 7178.137 km, 𝑖 = 80∘, and an initial argument of latitude of 0∘.
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Figure 13: Stable regions of the controller in the (𝐺
+
-𝐺
−
) space: the

hyperbolic-like curve 𝐶
1
is the boundary keeping the topological

type of the equilibriumelliptic; the line-like curve𝐶
2
is the boundary

keeping the Floquet multipliers lying on the unit circle in the
complex plane; the closed curves labeled by numbers are contour
curves of the averaging values of 𝜅; the circle𝐶

3
is the approximation

of the contour curve.

halo orbits that is only available for the off-axis sail equilibria
in some specified regions. What is more, all the interesting
orbits presented by researchers are unstable and have one-
dim unstable manifolds, hence the station-keeping strategies
becomes quite necessary.

The sail associated with the Sun and Earth-Moon system,
(where the Earth and Moon are regarded as a whole celestial
body, denoted as Earth/Moon), is regarded as the solar sail
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Figure 14: Trace of the measuring matrix: compared with the trace
of the critical gain of 0.27 obtained from local optimization, the gain
of 0.31 can achieve the minimal trace.

restricted three-body system. In this section we suppose that
the Sun-Earth/Moon system revolves around a circular orbit.

The structure-preserving controller is proposed to gener-
ate stable lissajous orbits and Lyapunov orbits for nonreso-
nance shown in Figure 7, and resonant periodic orbits shown
in Figure 8 (1 : 2, 1 : 3, 1 : 4, 2 : 3, resp.).

The feedback gains are initially chosen with 𝐺
1

= 20,

𝐺
2

= 10, 𝐺
3

= 10 and Δ = 0 in view of the local
optimization, and then the gains will be optimized so as to
obtain the same poles. The gains refined by optimization are
𝐺
1
= 13.0147, 𝐺

2
= 13.0147, 𝐺

3
= 12.0063, and Δ = 0,

with the optimization index improved from 600 to 483
(80.5%) for the position feedback. While for full feedback,
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Figure 15: Controlled frozen orbits generated by the controller in 𝑒-𝜙 space.

the gains refined by optimization are 𝐺
1
= 11.3253, 𝐺

2
=

11.3254, 𝐺
3
= 14.4533, and Δ = −0.5956, with the opti-

mization index improved from 2.0058 × 10
3 to 1.5587 × 10

3

(77.71%).

4.2. Bounded Orbits by Degenerated Solar Sail: Applica-
tion to Degenerated Hamiltonian System. McInnes [18] has
researched the displaced non-Keplerian orbits above the Sun.
Similar steps have been taken by Bookless and McInnes [19,
20] to the displaced non-Keplerian orbits above the planet.
Nevertheless, just as the stability analysis for motions around
the equilibrium, Bookless’ analysis for the dynamics and
control is linear and local. There presented the nonlinear
dynamical analysis for a displaced orbit above a planet, and
there also investigated the motions around the equilibria for
the nonresonance case with the help of the Birkhoff normal
form and dynamical system techniques. M. Xu and S. Xu [1]
has obtained two important contributions to derive necessary
and sufficiency conditions for the motion stability around
the equilibria, and to illustrate numerically that the non-
transition critical KAM torus is filled with the Lyapunov (1,1)-
homoclinic orbits. ℎ

𝑧
= ℎ

max
𝑧

defines the degradation case for
the two body problem of solar sails, which is the saddle-node
bifurcation point.

For the degenerated system, there exists only one double
equilibrium, and the frequencies for the liberalized motion
are, respectively, 𝜔

1
= 0 and 𝜔

2
> 0. What is more,

it is demonstrated from the variation equation around the
equilibrium that the equilibrium has no stable or unstable
manifolds but centre manifolds. Owing to Theorem 1, it
guarantees that the stabilization for the degenerated ℎmax

𝑧
can

be achieved by the equilibrium centre manifolds.
Similar to the nondegradation case, the suitable gains can

be chosen to guarantee themodified elliptic equilibrium is the
only equilibrium for the controlled system. So the controller’s
stabilizing region is all the phase space. The quasiperiodic
orbits generated by the controller are shown in Figure 9, and
their positions in 3D physical space are shown in Figure 10.

4.3. Quasiperiodic Formation Flying: Application to Time-
Periodic Hamiltonian System. Roughly, we can classify the
relative motion control approaches into two branches: con-
tinuous control that using low-thrust electric propulsion and
impulsive control that relying on chemical thrusters. While
the former approaches used mostly full-state feedback of
the Cartesian relative position and velocity to develop high-
accuracy tracking control laws, thus capable to maintain
small steady-state errors under a myriad of orbital perturba-
tions [21–25]; however, the maintenance of the later assumes
that the tracking reference orbital elements are known and
attempts to generate control commands that will match the
osculating orbital elements to the expected values [12, 26, 27].

The initial relative position of 𝑥
0
= 𝑦
0
= 𝑧
0
= 1 km

and the relative velocity generated from the classical 𝐶-𝑊
equations 𝑦̇

0
= −2𝜛𝑥

0
, 𝑥̇
0

= 𝜛𝑦
0
/2, 𝑧̇
0

= 0 for the
formation flying on a 𝐽

2
-perturbed mean circular orbit, are

applied to generate the quasiperiodic relative trajectories
with the preferred gain 0.31 illustrated in Figure 11. More
rapid changes in configuration are obtained by the controller
developed in this paper, rather than by the change in 𝐽

2

invariant relative orbits caused by the secular term of perigee
argument, from the projection of the configuration on the
𝑥-𝑧 or 𝑦-𝑧 plane. Therefore, the mission that requires rapid
changes in formation configuration, like on-orbit inspection
and repair could potentially use the addressed controller.
Furthermore, the quasiperiodic relative trajectories which
comprise six foundational motions with different frequencies
have no reference relative configuration to track for the
continuous thrust, make the trajectory prediction difficult by
other nonallied spacecrafts.

Figure 12 illustrates the topological type of the equilib-
rium of the controlled system, which is elliptic during the
period, as confirmed by zero real part of the eigenvalues,
for the mean circular orbit whose mean inclination is 80∘,
mean semi-major axis is 7178.137 km, and initial argument of
latitude is 0∘.

𝐺
+

should share its value with 𝐺
−

to minimize the
controller outputs from view of local optimization, according
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to the contour curves of 𝜅 illustrated in Figure 13. The
specific gain owning the minimal trace of M(𝐺), that is,
trM = ∑

6

𝑖 = 1
𝜆
𝑖
, is preferable to minimize 𝐽 for the maximum

likelihood if the initial conditions are unknown.The optimiz-
ing result obtained from local optimization is illustrated in
Figure 14 that the optimal gain of 0.31 has a smaller trace than
the critical gain of 0.27.

4.4. Controlled Frozen Orbits: Application to First-Order
Hamiltonian System. The high area-to-mass spacecraft’s
orbital evolution behaves strangely under the influence of
the solar radiation pressure and the perturbation due to the
oblateness of the Earth. Since 1960, there have been observed
long-term oscillations of the eccentricity in the satellites’
orbital behaviours, like Vanguard and the ECHO balloon.
The two variables, the osculating orbital eccentricity and the
solar angle 𝜙 between the orbit pericentre and the Sun-line
[10, 28], can be used to describe this dynamical system with
low inclinations through a Hamiltonian function.

All spacecrafts around the hyperbolic eccentricity cannot
be maintained on such an orbit; on the contrary, they will
move on the unstable manifold towards higher eccentricities,
or on the unstable manifold towards lower eccentricities
based on the quite small change of the orbital elements. Con-
trolled frozen trajectories can be obtained in the phase space
around the hyperbolic eccentricity by means of applying the
Hamiltonian structure-preserving controller, such as the one
illustrated by red dotted line in Figure 15.

The mission illustrated in Figure 15(a) comprises three
phases: (i) transferring (blue line) from a circular orbit to the
hyperbolic equilibrium, (ii) stabilizing near the hyperbolic
equilibrium (red line), and (iii) transferring (dotted blue line)
beyond the critical eccentricity. While the mission illustrated
in Figure 15(b) comprises three phases as well: (i) transferring
from a circular orbit to the hyperbolic equilibrium (blue line),
(ii) stabilizing (red line) near the hyperbolic equilibrium, and
(iii) transferring (the dotted blue line) back to the circular
orbit.

5. Conclusion

Bounded motions near hyperbolic equilibria have been
broadly applied to various astronauticalmissions.TheHamil-
tonian structure-preserving controller can change the hyper-
bolic equilibrium (saddle) to an elliptic one (center), and
then some quasiperiodic bounded trajectories will emerge
naturally from the KAM tori generated by the controller.

In this paper, a systematic investigation is presented
on the general form for full feedback and position-only
feedbackmodes, Lyapunov and Floquet stability analysis, and
control gain selection of the structure-preserving controller,
in the context of second-order, first-order, time-periodic,
and degenerated Hamiltonian system, respectively. One type
of periodic trajectories is achieved by the resonant condi-
tions of control gains for the resonant periodic orbits, and
another type is making judicious choice in the foundational
motions with different frequencies. Therefore, the controller
has potential applications in stable lissajous orbits for solar

sail’s three-body problem and degenerated two-body prob-
lem, quasiperiodic formation flying on a 𝐽

2
-perturbed mean

circular orbit, or the controlled frozen orbits for a spacecraft
with high area-to-mass ratio.

Furthermore, some further researches can be imple-
mented, including how to use unfixed dimensional center
manifolds to feedback the controller, the further investigation
for the global Floquet stable controller gain for quasiperiodic
Hamiltonian system, and the relationships between the dif-
ferent frequencies and the critical gain for Floquet stability or
the optimal gain.
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