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With the help of computer symbolic computation software (e.g., Maple), abundant interaction
solutions of sine-Gordon equation are obtained by means of a constructed Wronskian form
expansion method. The method is based upon the forms and structures of Wronskian solutions
of sine-Gordon equation, and the functions used in the Wronskian determinants do not satisfy
linear partial differential equations. Such interaction solutions are difficultly obtained via other
methods. And the method can be automatically carried out in computer.

1. Introduction

To search for the exact solutions of the soliton equations, many different methods were
developed, such as Bäcklund transformation [1], Darboux transformation [2], the inverse
scattering transformation [3], bilinear method [4], the special mapping relations method [5],
andWronskian technique [6]. Among them, theWronskian is a powerful tool. One advantage
of the Wronskian formulation is that solutions may be verified by direct substitution into
the bilinear equations or by inductive use of its bilinear Bäcklund transformations. The
key to constructing Wronskian solutions is the suitable choices and determinations of the
functions used in the Wronskian determinants φi (1 � i � N). Generally, these functions
φi (1 � i � N) satisfy the linear partial differential equations.

In mathematics, a natural question to ask is whether there exist solutions in the
Wronskian form if the functions used in the Wronskian determinants φi (1 � i � N) do
not satisfy linear partial differential equations. How to obtain Wronskian form solutions if
they exist?
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In physics, the solitary waves, which can pass through each other and preserve their
individual shapes and velocities with only a small change in their phases after the collision
with other solitary waves, were called solitons to indicate these remarkable quasiparticle
properties. Since the solitary wave is a limited case of the elliptic function (special function)
wave, what happens after a elliptic wave collides with other elliptic waves?

So it is very interesting in both mathematics and physics to search for the interaction
solutions between elliptic wave and solitary wave, which will be more helpful to a better
understanding of objective laws described by the nonlinear evolution equation. However,
up to now, there are few works in the previous literatures to study the interaction behaviors
between elliptic wave and solitary wave, or between elliptic wave and other elliptic wave.
It is very difficult to search for such interactions although solitary wave is a limited case of
elliptic wave. The reason is that the ansatz of the interaction solutions between elliptic wave
and solitary wave is difficult to be determined.

In this paper, we present a Wronskian form expansion method to construct new
interaction solutions between elliptic wave and solitary wave to the sine-Gordon equation.
Our method is based upon forms and structures of Wronskian solutions of the sine-Gordon
equation, but it does not require that the functions used in theWronskian determinants satisfy
linear partial differential equations.

2. Wronskian Form Expansion Method and
Abundant Interaction Solutions

The sine-Gordon equation (SG) reads

uxt = sinu. (2.1)

It has a wide range of applications in almost all the branches of physics and other scientific
fields [1–9], not only in relativistic quantum field theories [10] but also in solid-state physics
[11], nonlinear optics [12], the theory of long Josephson junctions [13] and liquid crystals
[14], and so forth.

The SG has bilinear form

DxDt f · f =
1
2

(
f2 − f∗2

)
(2.2)

under a variable transformation

u = 2i ln
f∗

f
, (2.3)

where f∗ is the complex conjugate of f and D is the well-known Hirota’s bilinear operators,
defined by

Dm
x D

n
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∂
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− ∂

∂x′

)m( ∂
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− ∂

∂t′

)n

a(x, t)b
(
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t=t′

. (2.4)
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To take advantage of the Wronskian technique, one can use the compact Freeman and
Nimmo’s notation [6]

(
̂N − 1

)
= W

(
φ1, φ2, . . . , φN

)
=

∣∣∣∣∣∣∣

φ1 φ
(1)
1 · · · φ

(N−1)
1

· · · · · · · · · · · ·
φN φ

(1)
N · · · φ

(N−1)
N

∣∣∣∣∣∣∣
, (2.5)

where

φ
(j)
i =

∂j

∂xj
φi, j � 1, (1 � i � N). (2.6)

If f = (̂N − 1) and the functions used in the Wronskian determinants φi (1 � i � N) satisfy
the linear partial differential equations [6]

φi,xx = k2
i φi, φi,tt =

(
16 k2

i

)−1
φi, (2.7)

or

φi,x = kiφ
∗
i , φi,t = (4 ki)

−1φ∗
i ,

(
2.7′
)

where ki are arbitrary real constants, then such an f solves the bilinear SG equation (2.2).
Therefore, u = 2i ln f∗/f in (2.3) gives an exact solution of the SG equation (2.1).

A general solution to the system of linear partial differential equation (2.7) is given by

φi = αi exp
(
kix +

1
4ki

t

)
+ iβi exp

(
−kix − 1

4ki
t

)
, (2.8)

where αi, βi, and ki are arbitrary real constants.
In particular, forN = 2, αi = βi, and f = fr + ifI , the following

u = 2i ln
f∗

f
= 4 arctan

fI
fr

= 4 arctan
(k1 + k2) sinh

(
(k1 − k2)

(
x − (4 k1 k2)

−1 t
))

(k1 − k2) cosh
(
(k1 + k2)

(
x + (4 k1 k2)

−1 t
))

(2.9)

is a solution of the SG (2.1).
However, if we take the functions φ1 and φ2 in the form

φ1 = dnξ1, φ2 = sinh(ξ2 + θi), ξi = kix + lit, i = 1, 2, (2.10)
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where dnξ1 ≡ dn(ξ1, m) is Jacobi elliptic function with the modulus m, and θ is arbitrary real
constant, then, the following

u′ = 2i ln
f∗

f
= 4 arctan

fI
fr

= 4 arctan
sin θ

(
m2k1snξ1cnξ1 cosh ξ2 + k2dnξ1 sinh ξ2

)

cos θ(m2k1snξ1cnξ1 sinh ξ2 + k2dnξ1 cosh ξ2)

ξi = kix + lit, i = 1, 2

(2.11)

is not a solution to the SG equation (2.1). The reason is that Jacobi elliptic function dn ξ1 in
(2.10) does not satisfy the linear partial differential equations (2.7) or other various linear
generalizations.

Although the above u′ in (2.11) is not a solution to the SG equation (2.1), we may take
advantage of its form and structure.

In the following steps, we will show our new Wronskian form expansion method.

Step 1 (suppose Wronskian form solution). First, we take the functions φ1 and φ2 in the form

φ1 = dnξ1, φ2 = sinh(ξ2 + θi), ξi = kix + lit, i = 1, 2. (2.12)

Then we may suppose that the SG equation (2.1) has the following Wronskian form solution,
which corresponds to u′ in (2.11):

u = 4 arctan
a1snξ1cnξ1 cosh ξ2 + a2dnξ1 sinh ξ2
b1snξ1cnξ1 sinh ξ2 + b2dnξ1 cosh ξ2

,

ξi = kix + lit, i = 1, 2,

(2.13)

where ai, bi, ki and li, i = 1, 2. are the unknowns to be determined later.
The purpose of such an supposition is to adjust coefficients of the form solution so

that u in (2.13) solves the SG equation (2.1). The ansatz u in (2.13) is the suitable choices and
determinations to obtain the interaction solutions between elliptic wave and solitary wave.
If the ansatz is too general, then computations are very complicated, hard, and not practical.
If the ansatz is too special, then the interaction solutions are possible to be left out and not
discovered.

Step 2 (lead to the set of algebraic equations). Now substitute (2.13) into (2.1), and set all coef-
ficients of the like powers of the resulting system’s numerator to be zero; then get a set of alge-
braic equations with respect to the unknowns ki, li, ai, bi (i = 1, 2). We can determine these
unknowns through solving the set of algebraic equations by using elimination methods [15].
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Figure 1: Two special cases of interaction solution u1.

Step 3 (obtain abundant interaction solutions). At last, substituting the value of ki, li, ai,
bi into (2.13), we can obtain the following new type of interaction solution between Jacobi
elliptic function and trigonometric function to the SG equation (2.1):

u1 = 4 arctan
m snξ1cnξ1 cos ξ2 + dnξ1 sin ξ2
m snξ1cnξ1 sin ξ2 + dn ξ1 cos ξ2

,

ξ1 = k1x −
(
4m2k1

)−1
t

ξ2 =
√
1 −m2

(
k1x +

(
4m2k1

)−1
t

)
(2.14)

and travelling wave solution to the SG equation (2.1):

u2 = 4 arctan
m snξcnξ

dnξ

ξ = kx − (4 k)−1t.

(2.15)

Note: All of the solutions presented in this paper have been verified with respect to the
original SG equation (2.1) by virtue of Maple. See the Appendix.

Figure 1 plots two cases of interaction solution u1 with the same parameter select k1 =
1, grid = [60, 60].

Similarly, let us fix

φ1 = 1 + dn ξ1, φ2 = sinh(ξ2 + θi) (2.16)
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in our Wronskian form expansion method, and by making use of the previous steps, we get

u3 = 4 arctan
sinh ξ2dnξ1

4
√
1 −m2 cosh ξ2

,

ξ1 = l−11
(
1 +
√
1 −m2

)−2
x + l1t,

ξ2 =
4
√
1 −m2

(
−l−11
(
1 +
√
1 −m2

)−2
x + l1t

)
,

u4 = 4 arctan
sin ξ2dnξ1

4
√
1 −m2 cos ξ2

,

ξ1 = l−11
(√

1 −m2 − 1
)−2

x + l1t,

ξ2 =
4
√
1 −m2

(
−l−11
(√

1 −m2 − 1
)−2

x + l1t

)
,

u5 = 4 arctan
4
√
1 −m2 sinh ξ2
cosh ξ2dnξ1

,

ξ1 = l−11
(
1 +
√
1 −m2

)−2
x + l1t,

ξ2 =
4
√
1 −m2

(
−l−11
(
1 +
√
1 −m2

)−2
x + l1t

)
,

u6 = 4 arctan

(
dnξ1 +

4
√
1 −m2

)
sinh ξ2

(
dnξ1 − 4

√
1 −m2

)
cosh ξ2

,

ξ1 = −l−11
(
1 +
√
1 −m2

)−2
x + l1t,

ξ2 =
1
2

√
−2 + 2

√
1 −m2 +m2

(
l−11
(
1 +
√
1 −m2

)−2
x + l1t

)
.

(2.17)

Taking

φ1 = 1 + snξ1, φ2 = sinh(ξ2 + θi) (2.18)

we gain

u7 = 4 arctan

(√
msnξ1 + 1

)
sin ξ2(√

msnξ1 − 1
)
cos ξ2

,

ξ1 =
1
4
l−11 m−1x + l1t,

ξ2 =
1
8
(1 −m)

(
l−11 m−1x − 4l1t

)
,



Journal of Applied Mathematics 7

u8 = 4 arctan

(√
msnξ1 + 1

)
sinh ξ2(√

msnξ1 − 1
)
cosh ξ2

,

ξ1 = l−11 (1 +m)−2x + l1t,

ξ2 =
1
2
(1 −m)

(
l−11 (1 +m)−2x − l1t

)
.

(2.19)

In general, we take the functions φ1 and φ2 in the form

φ1 = 1 + sn(ξ1, m1), φ2 = sn(ξ2 + θi,m2). (2.20)

Then we obtain the corresponding interaction solution between two Jacobi elliptic functions
with two different moduli m1 and m2:

u9 = 4 arctan

√
1 −m2

2sn(ξ2, m2)(
√
m1sn(ξ1, m1) − 1)

cn(ξ2, m2)dn(ξ2, m2)(
√
m1sn(ξ1, m1) + 1)

,

ξ1 = k1x +

(
m2

2 − 1
)
t

k1
(
m2

1m
2
2 + 2m2

2m1 +m2
2 − 4m1

) ,

ξ2 =
1 −m1

2
√
1 −m2

2

(
k1x −

(
m2

2 − 1
)
t

k1
(
m2

1m
2
2 + 2m2

2 m1 +m2
2 − 4m1

)
)
.

(2.21)

Choosing

φ1 = 1 + dn(ξ1, m1), φ2 = dn(ξ2 + θi,m2). (2.22)

We have

u10 = 4 arctan
dn(ξ2, m2)

(
dn(ξ1, m1) + 4

√
1 −m2

1

)

m2 sn(ξ2, m2)cn(ξ2, m2)
(
dn(ξ1, m1) − 4

√
1 −m2

1

) ,

ξ1 =
1
2
m2

⎛
⎜⎜⎝−

x

√
2
√
1 −m2

1 − 2 +m2
1

l2

(√
1 −m2

1

(
4 m2

2 − 2
)
+ 2 −m2

1

) +
4l2t√

2
√
1 −m2

1 − 2 +m2
1

⎞
⎟⎟⎠,

ξ2 =
x

(
2
√
1 −m2

1 − 2 +m2
1

)

4l2
(√

1 −m2
1

(
4m2

2 − 2
)
+ 2 −m2

1

) + l2t.

(2.23)
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Figure 2: Two special cases of the solutions u9(a) and u10(b).

Figure 2 shows two special structures of the solutions u9 and u10, respectively, where grid =
[60, 60].

In particular, we can easily obtain many travelling wave solutions via our Wronskian
form expansion method. For instance, only choosing the function φ1 = 1 + sn(ξ + θI) as
the simplest example, we can get many travelling wave solutions; the following are some
travelling wave solutions of them:

u11 = 4 arctan
cnξdnξ√
1 −m2snξ

ξ = kx +
1

4km2
t

u12 = −4 arctan dnξ√
mcnξ

ξ = kx − 1

k(1 +m)2
t,

u13 = 4 arctan
cnξdnξ

1 − (m + 1)snξ +msn2ξ

ξ = kx +
1

4km
t

u14 = 4 arctan
4
√
4mcnξdnξ√

1 +m(−1 +msn2ξ)

ξ = kx − (1 − √
m)2

k(1 −m)2(1 +
√
m)2

t.

(2.24)

Remark 2.1. It is easily seen that our method is more powerful than the methods searching
for traveling wave solutions, such as the Jacobi elliptic function method [16, 17], the tanh
method [18], the sine-cosine method [19], and Exp-function method [20], Fan subequation
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method [21], F-expansion method [22], Riccati method [23], Hyperbolic function method
[24], and G′/G expansion method [25]. It is difficult to obtain the interaction solutions
between two different kinds of functions by the methods [16–25] and the classical
methods, such as the inverse scattering transformation, Bäcklund transformation, Darboux
transformation, bilinear method, perturbation method, and the dressing method.

Remark 2.2. Recently, Ma and Lee presented a Frobenius decompositions method [26] and
a transformed rational function method [27] for solving nonlinear differential equations.
Although their methods are very good and our method cannot recover the solutions obtained
by Ma’s methods [26, 27], new types of the interaction solutions obtained by us cannot be
found by Ma’s methods.

Remark 2.3. In fact, we can choose other types of the functions to get other new types of inter-
action solutions in our Wronskian form expansion method. For simplification, we omit them
in the paper. We can also generate Wronskian solutions of higher order by inputting more
special functions in the Wronskian formulation. But, higher the order is, the more difficult
the computation of nonlinear algebraic equations by using elimination methods [15] is.

Remark 2.4. Although our method seems complicated, the procedure can be automatically
carried out in computer symbolic computation software (e.g., Maple), which makes the
process simple.

3. Conclusions and Discussion

In this paper, only on the basis of the forms and structures of Wronskian solutions to the SG
equation, we have presented the Wronskian form expansion method to construct a few new
types of interaction solutions which we have never seen before within our knowledge, and
the functions used in the Wronskian determinants don’t satisfy the linear partial differential
equations. Our exact solutions indicate that the solitary wave can preserve its shape and
velocity with only a small change in its phase after the collision with elliptic wave, and the
elliptic wave can also preserve its shape and speed upon collision with other elliptic wave.
The method can be applied to other soliton equations.

Our results with Jacobi elliptic functions, which satisfy the nonlinear differential
equations, suggest that it seems reasonable to believe that there exist the nonlinearWronskian
condition equations to the SG equation, further, one can obtain more general new types
of multi-interaction solutions with Jacobi elliptic functions and other functions to the SG
equation. How to find these nonlinear Wronskian condition equations will be an interesting
topic. A general theory on Wronskian technique of the soliton equations still needs to be
further explored.

Appendix

As claimed, all of our solutions in this paper have been verified by the use of Maple. The
following is an example. For instance, the solution u1, that is, (2.14), can be straightforwardly
verified with the Maple program below, in which snξ, cnξ, dnξ are the user-defined veri-
fication functions. One may also use Maple’s default command functions JacobiSN(ξ,m),
JacobiCN(ξ,m), JacobiDN(ξ,m) instead of the user-defined functions snξ, cnξ, dnξ. The
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results of output indicate that u1, that is, (2.14), is indeed a particular solution for the original
SG equation (2.1):

>restart:

>alias(u=u(x,t)):

>define(sn, diff (sn(xi), xi)=cn(xi)∗dn(xi)):
>define(cn, diff (cn(xi), xi)=−sn(xi)∗dn(xi)):
>define(dn, diff (dn(xi), xi)=−m∧2∗sn(xi)∗cn(xi)):
>xi[1]:=k[1]∗x−1/4∗1/k[1]/m∧2∗t:
>#xi[1] namely (2.14)

>xi[2]:=(1−m∧2)∧(1/2)∗k[1]∗x+1/4∗(1−m∧2)∧(1/2)/k[1]/m∧2∗t:
>#xi[2] namely (2.14)

>u:=4∗arctan((dn(xi[1])∗sin(xi[2])+m∗cn(xi[1])∗sn(xi[1])∗cos(xi[2]))/(d
>n(xi[1])∗cos(xi[2])+m∗cn(xi[1])∗sn(xi[1])∗sin(xi[2]))):
>#u=u[1] namely (2.14)

>SG:=diff(u, x, t)−sin (u):

>numer(normal(expand(subs({k[1] ∗ x − 1/4 ∗ 1/k[1]/m∧2 ∗ t = eta[1],

> (1−m∧2)∧(1/2) ∗ k[1] ∗ x + 1/4 ∗ (1−m∧2)∧(1/2)/k[1]/m∧2 ∗ t = eta[2]}, SG)))):

>algsubs (cn(eta[1])∧2=1-sn(eta[1])∧2,%):

>algsubs (dn(eta[1])∧2=1−m∧2∗sn (eta[1])∧2,%):

>simplify(%);
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