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This paper discusses highly efficient discretization schemes for mixed variational formulation
of eigenvalue problems. A new finite element two-scale discretization scheme is proposed by
combining the mixed finite element method with the shifted-inverse power method for solving
matrix eigenvalue problems. With this scheme, the solution of an eigenvalue problem on a fine
grid Kh is reduced to the solution of an eigenvalue problem on a much coarser grid KH and the
solution of a linear algebraic system on the fine gridKh. Theoretical analysis shows that the scheme
has high efficiency. For instance, when using the Mini element to solve Stokes eigenvalue problem,
the resulting solution can maintain an asymptotically optimal accuracy by taking H = O( 4

√
h),

and when using the Pk+1-Pk element to solve eigenvalue problems of electric field, the calculation
results can maintain an asymptotically optimal accuracy by takingH = O( 3

√
h). Finally, numerical

experiments are presented to support the theoretical analysis.

1. Introduction

To improve the efficiency of finite element method, Xu introduced a two-scale discretization
scheme and applied it to nonsymmetric and nonlinear elliptic problems (see [1–3]). Later on,
this scheme attracted the attention of academic circles and has been successfully applied to
Stokes equations (see [4–7]), semilinear eigenvalue problems (see [8]), and linear differential
operator eigenvalue problems, and so forth.

Up to now, two kinds of finite element two-scale discretization schemes have been
developed for linear differential operator eigenvalue problems. The first kind is established
by Xu and Zhou [9] in 2001, whose idea correlates with the iterative Galerkin method which
was established by Lin and Xie [10] and Sloan [11], but it bases on the finite element
spaces on two different scale grids. The scheme of Xu and Zhou has been applied to
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the conforming finite element method for electric structure eigenvalue problem (see [12–
14]), the conforming/nonconforming finite element method for non-self-adjoint eigenvalue
problem (see [15, 16]), the conforming/nonconforming finite element method for Steklov
eigenvalue problem (see [17, 18]), the mixed finite element method for Stokes eigenvalue
problem, and biharmonic equations eigenvalue problem (see [19, 20]). Another group of
two-scale discretization scheme is proposed by Yang and Bi [21]. They established the
conforming/nonconforming finite element two-scale discretization scheme based on the
shifted-inverse power method.

With two-scale discretization schemes, the solution of an eigenvalue problem on a fine
grid Kh is reduced to the solution of an eigenvalue problem on a much coarser grid KH

and the solution of a linear algebraic system on the fine grid Kh, and the resulting solution
still maintains an asymptotically optimal accuracy. Thus, the computational efficiency is
improved.

Influenced by the work mentioned above, in this paper we establish a new finite
element two-scale discretization scheme for mixed variational formulation of eigenvalue
problem and apply it to Stokes eigenvalue problem and eigenvalue problem of electric field.
The research of this paper has the following features.

(1) Our two-scale discretization scheme is a combinative production of the mixed finite
element method and the shifted-inverse power method (see [22, Algorithm 27.2]).
Comparing with the scheme in [19, 20], the scheme in this paper is more efficient:
the resulting solution obtained by our scheme can maintain an asymptotically
optimal accuracy by taking H = O( 4

√
h) when solving Stokes eigenvalue problem

and H = O( 3
√
h) when solving eigenvalue problem of electric field; however, with

the scheme in [19, 20] the resulted solution maintains an asymptotically optimal
accuracy by takingH = O( 2

√
h).

(2) The literatures of high-efficient numerical method for eigenvalue problem of
electric field are not too many by now, thus they seem to be very valuable. Our
two-scale discretization scheme is a new and highly efficient method for eigenvalue
problem of electric field.

The rest of this paper is organized as follows. Some preliminaries of finite element
approximations for eigenvalue problems which are needed in this paper are provided in
the next section. In Section 3, for eigenvalue problem mixed variational formulation (2.3)-
(2.4) in general form, the finite element two-scale discretization scheme based on the shifted-
inverse power method is established, and the validity of this scheme is proved theoretically.
In Sections 4 and 5, the scheme established in Section 3 is applied to Stokes eigenvalue
problem and eigenvalue problem of electric field, respectively. Finally, numerical experiments
are presented in Section 6.

2. Preliminaries

Let V ,W , andD be three real Hilbert spaceswith inner products and norms (·, ·)V , ‖·‖V , (·, ·)W ,
‖ ·‖W , and (·, ·)D, ‖ ·‖D, respectively. We suppose that V ↪→ D (continuously imbedded), a(·, ·)
is a symmetric, continuous, and V -elliptic bilinear form on V × V , that is,

∣
∣a
(

q, ψ
)∣
∣ ≤M1

∥
∥q

∥
∥
V

∥
∥ψ

∥
∥
V , ∀q, ψ ∈ V,

a
(

q, q
) ≥ ν∥∥q∥∥2

V , ∀0/= q ∈ V ,
(2.1)
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b(·, ·) is a continuous bilinear form on V ×W , that is,

∣
∣b
(

ψ, v
)∣
∣ ≤M2

∥
∥ψ

∥
∥
V ‖v‖W, ∀ψ ∈ V, v ∈W. (2.2)

In scientific and engineering computations, many eigenvalue problems for differential
equation have the following mixed variational formulation.

Find (λ, u, σ) ∈ R × V ×W , (u, σ)/= (0, 0), such that

a
(

u, ψ
)

+ b
(

ψ, σ
)

= λ
(

u, ψ
)

D, ∀ψ ∈ V, (2.3)

b(u, v) = 0, ∀v ∈W. (2.4)

In order to solve problem (2.3)-(2.4), one should construct finite element spaces Vh ⊂ V
andWh ⊂ W . Restricting (2.3)-(2.4) on Vh ×Wh we get the conforming mixed finite element
approximation as follows. Find (λh, uh, σh) ∈ R × Vh ×Wh, (uh, σh)/= (0, 0), such that

a
(

uh, ψ
)

+ b
(

ψ, σh
)

= λh
(

uh, ψ
)

D, ∀ψ ∈ Vh, (2.5)

b(uh, v) = 0, ∀v ∈Wh. (2.6)

Consider the associated source and approximate source problems.
Given f ∈ D, find (w, p) ∈ V ×W satisfying

a
(

w,ψ
)

+ b
(

ψ, p
)

=
(

f, ψ
)

D, ∀ψ ∈ V, (2.7)

b(w,v) = 0, ∀v ∈W. (2.8)

Given f ∈ D, find (wh, ph) ∈ Vh ×Wh satisfying

a
(

wh, ψ
)

+ b
(

ψ, ph
)

=
(

f, ψ
)

D, ∀ψ ∈ Vh, (2.9)

b(wh, v) = 0, ∀v ∈Wh. (2.10)

As for the mixed finite element method for boundary value problems, Brezzi and
Babuska, and others have established a systematic theory. Denote

V0 = {u ∈ V : b(u, v) = 0, ∀v ∈W},
Vh0 = {u ∈ Vh : b(u, v) = 0, ∀v ∈Wh}.

(2.11)

Theorem 2.1 (Brezzi-Babuska Theorem). Suppose that

(1) a(·, ·) and b(·, ·) are continuous bilinear forms, that is,

∣
∣a
(

q, ψ
)∣
∣ ≤M1

∥
∥q

∥
∥
V

∥
∥ψ

∥
∥
V , ∀q, ψ ∈ V,

∣
∣b
(

ψ, v
)∣
∣ ≤M2

∥
∥ψ

∥
∥
V ‖v‖W, ∀ψ ∈ V, v ∈W ;

(2.12)
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(2) there exists ν1 > 0, such that

a
(

q, q
) ≥ ν1

∥
∥q

∥
∥
2
V , ∀0/= q ∈ V0; (2.13)

(3) inf-sup condition: there exists ν2 > 0, such that

sup
ψ∈V,ψ /= 0

b
(

ψ, v
)

∥
∥ψ

∥
∥
V

≥ ν2‖v‖W, ∀v ∈W ; (2.14)

then there exists a unique solution to the problem (2.7)-(2.8), and

‖w‖V +
∥
∥p

∥
∥
W ≤ C∥∥f∥∥D, (2.15)

where constant C just depends on ν1, ν2 andM1, M2. Furthermore, suppose that

(4) there exists a constant μ̃1 > 0, such that

a
(

q, q
) ≥ μ̃1

∥
∥q

∥
∥
2
V , ∀0/= q ∈ Vh0; (2.16)

(5) discrete inf-sup condition: there exists a constant μ̃2 > 0, such that

sup
ψ∈Vh,ψ /= 0

b
(

ψ, v
)

∥
∥ψ

∥
∥
V

≥ μ̃2‖v‖W, ∀v ∈Wh. (2.17)

Then there exists a unique solution (wh, ph) to the problem (2.9)-(2.10); moreover, the following error
estimate is valid:

‖w −wh‖V +
∥
∥p − ph

∥
∥
W ≤ C

{

inf
q∈Vh

∥
∥w − q∥∥V + inf

v∈Wh

∥
∥p − v∥∥W

}

, (2.18)

where C just depends on μ̃1, μ̃2 andM1,M2.

Since a(·, ·) is a symmetric, continuous, and V -elliptic bilinear form on V × V , b(·, ·)
is a continuous bilinear form, then conditions (1), (2), and (4) of Brezzi-Babuska Theorem
hold. Suppose inf-sup condition and discrete inf-sup condition hold. Then by Brezzi-Babuska
Theorem, we know that (2.7)-(2.8) and (2.9)-(2.10) are uniquely solvable for each f ∈ D. Thus
we can define the corresponding linear bounded operators:
T : D → V, S : D → W : for all f ∈ D

a
(

Tf, ψ
)

+ b
(

ψ, Sf
)

=
(

f, ψ
)

D, ∀ψ ∈ V, (2.19)

b
(

Tf, v
)

= 0, ∀v ∈W, (2.20)
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Th : D → Vh ⊂ V, Sh : D → Wh ⊂W : for all f ∈ D,

a
(

Thf, ψ
)

+ b
(

ψ, Shf
)

=
(

f, ψ
)

D, ∀ψ ∈ Vh, (2.21)

b
(

Thf, v
)

= 0, ∀v ∈Wh. (2.22)

It is obvious that (2.3)-(2.4) have an equivalent operator form:

λTu = u, (2.23)

σ = S(λu). (2.24)

Equations (2.5)-(2.6) have an equivalent operator form:

λhThuh = uh, (2.25)

σh = Sh(λhuh). (2.26)

It is easy to prove that T : D → D, Th : D → D are self-adjoint operators. In fact, for all
f, g ∈ D, taking ψ = Tg, v = Sg in (2.7)-(2.8)we obtain

a
(

Tf, Tg
)

+ b
(

Tg, Sf
)

=
(

f, Tg
)

D,

b
(

Tf, Sg
)

= 0.
(2.27)

Exchanging f and g, we get

a
(

Tg, Tf
)

+ b
(

Tf, Sg
)

=
(

g, Tf
)

D, (2.28)

b
(

Tg, Sf
)

= 0, (2.29)

then

(

f, Tg
)

D = a
(

Tf, Tg
)

+ b
(

Tg, Sf
)

+ b
(

Tf, Sg
)

= a
(

Tg, Tf
)

+ b
(

Tf, Sg
)

+ b
(

Tg, Sf
)

=
(

g, Tf
)

D + 0 =
(

Tf, g
)

D.
(2.30)

It shows that T : D → D is self-adjoint in the sense of inner product (·, ·)D. Analogously, it
can be proved that Th : D → D is self-adjoint in the sense of inner product (·, ·)D.

Assume that V ↪→ D (compact imbedded), then it is easy to prove that the operator
T : D → D is completely continuous, T : V → V is completely continuous, and Th is a finite
rank operator. Combining (2.3)-(2.4), (2.5)-(2.6), and the V -ellipticity of a(·, ·), we deduce

λ =
a(u, u)
(u, u)D

> 0, λh =
a(uh, uh)
(uh, uh)D

> 0. (2.31)
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Then, from the spectral theory of self-adjoint and completely continuous operator we know
that the eigenvalues of (2.3)-(2.4) can be sorted as

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · ↗ +∞, (2.32)

and the corresponding eigenfunctions are

u1, σ1, u2, σ2, . . . , uk, σk, . . . , (2.33)

where (ui, uj)D = δij .
The eigenvalues of (2.5)-(2.6) can be sorted as

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h, (2.34)

and the corresponding eigenfunctions are

u1,h, σ1,h, u2,h, σ2,h, . . . , uk,h, σk,h, . . . , uNh,h, σNh,h, (2.35)

where (ui,h, uj,h)D = δij .
It is obvious that a(·, ·) is an inner product on V, ‖·‖a =

√

a(·, ·) and ‖·‖V are equivalent
norms. Let uh = ui,h in (2.5); then

a
(

ui,h, uj,h
)

+ b
(

uj,h, σh
)

= λi,h
(

ui,h, uj,h
)

D
. (2.36)

From (2.6), we get b(uj,h, σh) = 0. Then

a
(

ui,h, uj,h
)

= λi,h
(

ui,h, uj,h
)

D
= λi,hδij ; (2.37)

therefore, {ui,h/‖ui,h‖a} is a completely normal eigenvector system on Vh in the sense of inner
product a(·, ·).

Denote λk = 1/μk, λk,h = 1/μk,h. In this paper, μk and μk,h, λk, and λk,h are all called
eigenvalues. Let μ be the kth eigenvalue with algebraic multiplicity q, μ = μk = μk+1 =
· · · = μk+q−1. M(μ) is the space spanned by all eigenfunctions {uj}k+q−1k

corresponding to

μ of T . Mh(μ) is the space spanned by all eigenfunctions {uj,h}k+q−1k corresponding to all
eigenvalues of Th that converge to μ. Let M̂(μ) = {v : v ∈ M(μ), ‖v‖a = 1}, M̂h(μ) = {v :
v ∈ Mh(μ), ‖v‖a = 1}. We call λ = 1/μ the kth eigenvalue, too. Denote M(λ) = M(μ),
Mh(λ) =Mh(μ), and M̂(λ) = M̂(μ). Define

∥
∥(T − Th)|M(λ)

∥
∥
D = max

u∈M(λ),u /= 0

‖(T − Th)u‖D
‖u‖D

,

∥
∥(T − Th)|M(λ)

∥
∥
a = max

u∈M(λ),u /= 0

‖(T − Th)u‖a
‖u‖a

.

(2.38)
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The convergence and error estimate about mixed element method of eigenvalue
problem have been studied by [23–25]. From these literatures we easily know that the
following results are valid.

Lemma 2.2. Suppose that the conditions of Brezzi-Babuska Theorem hold, and ‖T −Th‖D → 0 (h →
0). Let (λh, uh, σh) be the kth eigenpair of (2.5)-(2.6), ‖uh‖a = 1, and λ the kth eigenvalue of (2.3)-
(2.4). Then λh → λ (h → 0), and there exists an eigenfunction (u, σ) corresponding to λ such
that

|λh − λ| + ‖uh − u‖D ≤ C∥∥(T − Th)|M(λ)
∥
∥
D, (2.39)

‖σ − σh‖W ≤ ‖Sh(λu) − S(λu)‖W + C
∥
∥(T − Th)|M(λ)

∥
∥
D, (2.40)

‖u − uh‖a ≤ C
∥
∥(Th − T)|M(λ)

∥
∥
a. (2.41)

Let u ∈ M̂(λ); then there exists uh ∈Mh(λ) such that

‖u − uh‖a ≤ C
∥
∥(Th − T)|M(λ)

∥
∥
a. (2.42)

Proof. From the spectral approximation theory (see [23])we have (2.39).
Let u satisfy (2.39), and σ = S(λu). Next we will prove that this eigenpair satisfies

(2.40)-(2.41). From Brezzi-Babuska Theorem and (2.39), we get

‖S(λu − λhuh)‖W ≤ C‖λu − λhuh‖D ≤ C∥∥(T − Th)|M(λ)
∥
∥
D, (2.43)

‖T(λu − λhuh)‖V ≤ C‖λu − λhuh‖D ≤ C∥∥(T − Th)|M(λ)
∥
∥
D. (2.44)

Using the triangle inequality and (2.43), we deduce

‖σ − σh‖W − ‖Sh(λu) − S(λu)‖W
= |‖S(λu) − Sh(λhuh)‖W − ‖Sh(λu) − S(λu)‖W |
≤ ‖Sh(λu − λhuh)‖W ≤ C∥∥(T − Th)|M(λ)

∥
∥
D,

(2.45)

that is, (2.40) is valid.
Using the triangle inequality and (2.44), we get

‖u − uh‖a − ‖Th(λu) − T(λu)‖a
= |‖T(λu) − Th(λhuh)‖a − ‖Th(λu) − T(λu)‖a|
≤ ‖Th(λu − λhuh)‖a
≤ C

∥
∥(T − Th)|M(λ)

∥
∥
D ≤ C∥∥(T − Th)|M(λ)

∥
∥
a,

(2.46)

which together with ‖Th(λu) − T(λu)‖a ≤ C‖(T − Th)|M(λ)‖a yields (2.41).
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Let the eigenfunctions {uj,h} be an orthonormal system ofMh(λ) in the sense of inner
product a(·, ·). Then, from (2.41) and Lemma 3.1 we know that there exists a basis {u0j } of
M(λ) satisfying ‖u0j ‖a = 1 and the following result is valid:

∥
∥
∥u0j − uj,h

∥
∥
∥
a
≤ C∥∥(Th − T)|M(λ)

∥
∥
a. (2.47)

For any u ∈ M̂(λ), we write u =
∑k+q−1

j=k αju
0
j . By calculation, we get

1 = ‖u‖2a =
k+q−1
∑

j=k

α2j +
k+q−1
∑

i /= j,i,j=k

αiαja
(

u0i , u
0
j

)

. (2.48)

From (2.47), when i /= j we have a(u0i , u
0
j ) = a(u

0
i , u

0
j ) − a(ui,h, uj,h) → 0 (h → 0), and thus we

get
∑k+q−1

j=k α2j → 1 (h → 0).

Denote uh =
∑k+q−1

j=k αjuj,h, then uh ∈Mh(λ). From (2.47), we deduce

‖u − uh‖a ≤ C
k+q−1
∑

j=k

∥
∥
∥uj,h − u0j

∥
∥
∥
a
≤ C∥∥(Th − T)|M(λ)

∥
∥
a, (2.49)

that is, (2.42) is valid. The proof is completed.

For (u∗, σ∗) ∈ V ×W, u∗ /= 0, define the Rayleigh quotient

λr =
a(u∗, u∗) + 2b(u∗, σ∗)

(u∗, u∗)D
. (2.50)

The following lemma is an extension of [23, Lemma 9.1].

Lemma 2.3. Let (λ, u, σ) be an eigenpair of (2.3)-(2.4); then for all (u∗, σ∗) ∈ V×W , (u∗, σ∗)/= (0, 0)
with its Rayleigh quotient satisfying

λr − λ =
a(u∗ − u, u∗ − u) + 2b(u∗ − u, σ∗ − σ)

(u∗, u∗)D
− λ (u

∗ − u, u∗ − u)D
(u∗, u∗)D

. (2.51)
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Proof. From (2.3)-(2.4), we deduce

a(u∗ − u, u∗ − u) + 2b(u∗ − u, σ∗ − σ) − λ(u∗ − u, u∗ − u)D
= a(u∗, u∗) − 2a(u∗, u) + a(u, u) + 2b(u∗, σ∗) − 2b(u∗, σ) − 2b(u, σ∗)

+ 2b(u, σ) − λ(u∗, u∗)D + 2λ(u∗, u)D − λ(u, u)D.
= a(u∗, u∗) + 2b(u∗, σ∗) − λ(u∗, u∗)D − 2(a(u∗, u) + b(u∗, σ) − λ(u∗, u)D)
− 2b(u, σ∗) + (a(u, u) + b(u, σ) − λ(u, u)D) + b(u, σ).

= a(u∗, u∗) + 2b(u∗, σ∗) − λ(u∗, u∗)D − 0 − 0 + 0 + 0.

(2.52)

By dividing by (u∗, u∗)D on both sides of the above identity, we obtain (2.51).

Taking (u∗, σ∗) = (uh, σh) in (2.51) and using (2.4) and (2.6), we derive

Lemma 2.4. Let (λ, u, σ) and (λh, uh, σh) be the kth eigenpair of (2.3)-(2.4) and (2.5)-(2.6),
respectively; then

λh − λ =
a(uh − u, uh − u) + 2b(uh − u, v − σ)

(uh, uh)D
− λ (uh − u, uh − u)D

(uh, uh)D
, ∀v ∈Wh, (2.53)

|λh − λ| ≤ C
(

‖uh − u‖2a + ‖uh − u‖a‖σ − v‖W
)

, ∀v ∈Wh. (2.54)

3. The Two-Scale Discretization Scheme for
Mixed Variational Formulation of Eigenvalue Problems

This paper establishes the following finite element two-scale discretization scheme based on
the shifted-inverse power method.

Scheme 1. One has the following.
Step 1. Solve the eigenvalue problem (2.3)-(2.4) on a coarse grid KH : find

(λH, uH, σH) ∈ R × VH ×WH , ‖uH‖a = 1 such that

a
(

uH, ψ
)

+ b
(

ψ, σH
)

= λH
(

uH, ψ
)

D, ∀ψ ∈ VH,
b(uH, v) = 0, ∀v ∈WH.

(3.1)

Step 2. Solve a equation on a fine grid Kh: find (u′, σ ′) ∈ Vh ×Wh such that

a
(

u′, ψ
)

+ b
(

ψ, σ ′) − λH
(

u′, ψ
)

D =
(

uH, ψ
)

D, ∀ψ ∈ Vh,
b
(

u′, v
)

= 0, ∀v ∈Wh.
(3.2)

Set uh = u′/‖u′‖a, σh = σ ′/‖u′‖a.
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Step 3. Compute the Rayleigh quotient

λh =
a
(

uh, uh
)

(

uh, uh
)

D

. (3.3)

Next we will discuss the validity of Scheme 1.

Lemma 3.1. For any nonzero elements u, v ∈ V ,

∥
∥
∥
∥

u

‖u‖a
− v

‖v‖a

∥
∥
∥
∥
a

≤ 2
‖u − v‖a
‖u‖a

,

∥
∥
∥
∥

u

‖u‖a
− v

‖v‖a

∥
∥
∥
∥
a

≤ 2
‖u − v‖a
‖v‖a

. (3.4)

Proof. See [21].

Denote dist(u, V ) = infv∈V ‖u − v‖a.
Consider the eigenvalue problem (2.25) on the space Vh.

Lemma 3.2. Suppose that μ and μh are the kth eigenvalue of T and Th, respectively, and (μ0, u0) is
an approximate eigenpair where μ0 is not an eigenvalue of Th, u0 ∈ Vh, ‖u0‖a = 1, dist(u0,Mh(μ)) ≤
1/2,maxk≤j≤k+q−1|(μj,h −μh)/(μ0 −μj,h)| ≤ 1/2, |μ0 −μj,h| ≥ (ρ/2)(j /= k, k + 1, . . . , k + q − 1), and
us ∈ Vh, uh ∈ Vh satisfy

(

μ0 − Th
)

us = u0, uh =
us

‖us‖a
. (3.5)

Then

dist
(

uh, M̂h

(

μ
)) ≤ 16

ρ

∣
∣μ0 − μh

∣
∣dist

(

u0,Mh

(

μ
))

, (3.6)

where ρ = minμj /=μ|μj − μ| is the separation constant of the eigenvalue μ.

Proof. See [21].

Theorem 3.3. Suppose that the conditions of Brezzi-Babuska Theorem hold and ‖Th−T‖D → 0 (h →
0). Let (λh, uh, σh) be the approximate eigenpair obtained by the two-scale discretization scheme and
H small properly. Then there exists u ∈M(λ) such that

∥
∥
∥uh − u

∥
∥
∥
a
≤ C

(

|λH − λ|2 + |λH − λ|∥∥(T − TH)|M(λ)
∥
∥
D +

∥
∥(T − Th)|M(λ)

∥
∥
a

)

, (3.7)

∣
∣
∣λh − λ

∣
∣
∣ ≤ C

(∥
∥
∥uh − u

∥
∥
∥

2

a
+ ‖uh − u‖a inf

v∈Wh

‖σ − v‖W
)

. (3.8)

Proof. We use Lemma 3.2 in the proof.
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Select μ0 = 1/λH and u0 = λHThuH/‖λHThuH‖a. Let u0 ∈ M(λ) such that uH − u0
satisfies (2.39) and (2.41). By calculation we deduce

∥
∥
∥λHThuH − u0

∥
∥
∥
a
=
∥
∥
∥λHThuH − λTu0

∥
∥
∥
a

≤ C
(

|λH − λ| +
∥
∥
∥uH − u0

∥
∥
∥
D
+
∥
∥
∥(T − Th)u0

∥
∥
∥
a

)

≤ C(|λH − λ| + ∥
∥(T − TH)|M(λ)

∥
∥
D +

∥
∥(T − Th)|M(λ)

∥
∥
a

)

;

(3.9)

thus, using Lemma 3.1, we get

dist
(

u0, M̂(λ)
)

≤
∥
∥
∥
∥
∥
u0 − u0

‖u0‖a

∥
∥
∥
∥
∥
a

≤ C
∥
∥
∥λHThuH − u0

∥
∥
∥
a

≤ C(|λH − λ| + ∥
∥(T − TH)|M(λ)

∥
∥
D +

∥
∥(T − Th)|M(λ)

∥
∥
a

)

.

(3.10)

Using the triangle inequality and (2.42), we derive

dist(u0,Mh(λ)) ≤ dist
(

u0, M̂(λ)
)

+ C
∥
∥(T − Th)|M(λ)

∥
∥
a. (3.11)

From Lemma 2.2 we know λH → λ, λj,h → λ; then

∣
∣μ0 − μj,h

∣
∣ =

∣
∣
∣
∣
∣

λH − λ + λ − λj,h
λj,hλH

∣
∣
∣
∣
∣
. (3.12)

WhenH is small enough, noting that h� H, from (3.11) and (3.10) we get

dist(u0,Mh(λ)) ≤ 1
2
. (3.13)

Having in mind that λ = λk+1 = · · · = λk+q−1 we have

∣
∣μj,h − μh

∣
∣ =

∣
∣
∣
∣
∣

λh − λj,h
λhλj,h

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

λh − λ + λj − λj,h
λhλj,h

∣
∣
∣
∣
∣
, (3.14)

which together with (3.12), noting that λj,h − λ is an infinitesimal of higher order comparing
with λH − λ, yields

max
k≤j≤k+q−1

∣
∣
∣
∣
∣

μj,h − μh
μ0 − μj,h

∣
∣
∣
∣
∣
≤ 1

2
. (3.15)

Since ρ is the separation constant,H is small enough, and h� H, there holds

∣
∣μ0 − μj,h

∣
∣ ≥ ρ

2
, j /= k, k + 1, . . . , k + q − 1. (3.16)
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For u′ in Step 2 of Scheme 1, from the definition of Th and Sh we have

a
(

ThλHu
′, ψ

)

+ b
(

ψ, ShλHu
′) = λH

(

u′, ψ
)

D, ∀ψ ∈ Vh, (3.17)

b
(

Thu
′, v

)

= 0, ∀v ∈Wh. (3.18)

a
(

ThuH, ψ
)

+ b
(

ψ, ShuH
)

=
(

uH, ψ
)

D, ∀ψ ∈ Vh, (3.19)

b(ThuH, v) = 0, ∀v ∈Wh. (3.20)

Hence, Step 2 of Scheme 1 is equivalent to (u′, σ ′) ∈ Vh ×Wh,

a
(

u′, ψ
)

+ b
(

ψ, σ ′) − λHa
(

Thu
′, ψ

) − λHb
(

ψ, Shu
′) = a

(

ThuH, ψ
)

+ b
(

ψ, ShuH
)

, ∀ψ ∈ Vh,
(3.21)

b
(

u′, v
)

= 0, ∀v ∈Wh, (3.22)

uh = u′/‖u′‖a, σh = σ ′/‖u′‖a.
From (3.21)we obtain

a
(

u′ − λHThu′ − ThuH, ψ
)

+ b
(

ψ, σ ′ − λHShu′ − ShuH
)

= 0, ∀ψ ∈ Vh. (3.23)

Combining (3.22), (3.18), and (3.20), we get

b
(

u′ − λHThu′ − ThuH, v
)

= 0, ∀v ∈Wh. (3.24)

By (3.24), taking ψ = u′ − λHThu′ − ThuH in (3.23), we obtain

a
(

u′ − λHThu′ − ThuH, u′ − λHThu′ − ThuH
)

= 0. (3.25)

Thus

(
1
λH

− Th
)

u′ =
1
λH

ThuH, uh =
u′

‖u′‖a
. (3.26)

From (3.26) we know that the first term on the left-hand side of (3.23) is equal to 0; thus

b
(

ψ, σ ′ − λHShu′ − ShuH
)

= 0, ∀ψ ∈ Vh; (3.27)

then, using discrete inf-sup condition, we obtain

σ ′ = λHShu′ + ShuH. (3.28)
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Thus Step 2 of Scheme 1 is equivalent to (3.26), (3.28), and uh = u′/‖u′‖a, σh = σ ′/‖u′‖a.
Noting that λ−1H ThuH = ‖λ−1H ThuH‖au0 differs from u0 by only a constant and denoting us =
u′/‖λ−1H ThuH‖a, we have

(
1
λH

− Th
)

us = u0, uh =
us

‖us‖a
. (3.29)

By (3.13), (3.15), (3.16), and (3.29), we see that the conditions of Lemma 3.2 hold. Thus,
substituting (3.11) and (3.12) into (3.6), we obtain

dist
(

uh, M̂h(λ)
)

≤ C|λH − λ|
(

dist
(

u0, M̂(λ)
)

+ ‖Tu − Thu‖a
)

. (3.30)

Let the eigenfunctions {uj,h}k+q−1k be an orthonormal system ofMh(λ) (in the sense of a(·, ·)).
Then

dist
(

uh,Mh(λ)
)

=

∥
∥
∥
∥
∥
∥

uh −
k+q−1
∑

j=k

a
(

uh, uj,h
)

uj,h

∥
∥
∥
∥
∥
∥
a

. (3.31)

Let

u∗ =
k+q−1
∑

j=k

a
(

uh, uj,h
)

uj,h, (3.32)

and noting that ‖uh − u∗‖a ≤ dist(uh, M̂h(λ)), from (3.30)we deduce

∥
∥
∥uh − u∗

∥
∥
∥
a
≤ C|λH − λ|

(

dist
(

u0, M̂(λ)
)

+ ‖Tu − Thu‖a
)

. (3.33)

By Lemma 2.2, there exists {u0j }
k+q−1
k

⊂M(λ) such that uj,h − u0j satisfies (2.41). Let

u =
k+q−1
∑

j=k

a
(

uh, uj,h
)

u0j ; (3.34)

then u ∈M(λ). Using (2.41) we deduce

‖u∗ − u‖a =
∥
∥
∥
∥
∥
∥

k+q−1
∑

j=k

a
(

uh, uj,h
)(

uj,h − u0j
)

∥
∥
∥
∥
∥
∥
a

≤ C
⎛

⎝

k+q−1
∑

j=k

∥
∥
∥uj,h − u0j

∥
∥
∥

2

a

⎞

⎠

1/2

≤ C∥∥(Th − T)|M(λ)
∥
∥
a.

(3.35)
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Combining (3.33) with the previous inequality, we have

∥
∥
∥uh − u

∥
∥
∥
a
≤ C

(

|λH − λ|dist
(

u0, M̂(λ)
)

+
∥
∥(Th − T)|M(λ)

∥
∥
a

)

. (3.36)

Substituting (3.10) into (3.36), we get (3.7).
We know that b(uh, σh) = 0 from Step 2 of two-scale scheme; then

λh =
a
(

uh, uh
)

(

uh, uh
)

D

=
a
(

uh, uh
)

+ 2b
(

uh, σh
)

(

uh, uh
)

D

. (3.37)

Select λr = λh, u∗ = uh, σ∗ = σh. From Lemma 2.3, we get

λh − λ =
a
(

uh − u, uh − u) + 2b
(

uh − u, σh − σ)
(

uh, uh
)

D

− λ
(

uh − u, uh − u)D
(

uh, uh
)

D

. (3.38)

Noting that, for all v ∈Wh, b(uh − u, v) = 0, we have

λh − λ =
a
(

uh − u, uh − u) + 2b
(

uh − u, v − σ)
(

uh, uh
)

D

− λ
(

uh − u, uh − u)D
(

uh, uh
)

D

, ∀v ∈Wh. (3.39)

Since V ↪→ D (continuously imbedded), ‖uh − u‖D ≤ C‖uh − u‖a. Then from (3.39) we obtain
(3.8).

4. Two-Scale Discretization Scheme for Stokes Eigenvalue Problem

Consider the Stokes eigenvalue problem:

−Δ
u +∇σ = λ
u, in Ω, (4.1)

div 
u = 0, in Ω, (4.2)


u = 0, on ∂Ω, (4.3)

where Ω is a polygonal domain in R2, 
u = (u1, u2) denotes the fluid velocity, and σ denotes
the pressure.

In this paper, we use the symbol 
 to stand for vector function. For the function σ in
Hm(Ω), let

‖σ‖m =

⎛

⎝
∑

|α|≤m

∫

Ω
|∂ασ|2

⎞

⎠

1/2

, α = {α1, α2}, |α| = α1 + α2. (4.4)
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For vector function 
u = (u1, u2), define

‖
u‖m =
(

‖u1‖2m + ‖u2‖2m
)1/2

, |
u|m =
(

|u1|2m + |u2|2m
)1/2

. (4.5)

Using Green’s formula, we derive the mixed variational form associated with (4.1)–
(4.3).

Find (λ, 
u, σ) ∈ R ×H1
0(Ω)2 × L2

0(Ω)with |
u|1 = 1 such that

∫

Ω

2∑

i=1

�ui · �ψi −
∫

Ω
div 
ψσ = λ

∫

Ω

u · 
ψ, ∀
ψ ∈ H1

0(Ω)2, (4.6)

−
∫

Ω
div 
uv = 0, ∀v ∈ L2

0(Ω). (4.7)

Let Vh ⊂ H1
0(Ω)2, Wh ⊂ L2

0(Ω) be two mixed finite element spaces. The mixed finite
element form is as follows.

Seek (λh, 
uh, σh) ∈ R × Vh ×Wh with |
uh|1 = 1 such that

∫

Ω

2∑

i=1

�uhi · �ψi −
∫

Ω
div 
ψhσh = λ

∫

Ω

uh · 
ψ, ∀
ψ ∈ Vh, (4.8)

−
∫

Ω
div 
uhv = 0, ∀v ∈Wh. (4.9)

Denote

V = H1
0(Ω) ×H1

0(Ω),

W = L2
0(Ω) =

{

v ∈ L2(Ω) :
∫

Ω
v = 0

}

, D = L2(Ω) × L2(Ω),

a
(


u, 
ψ
)

=
∫

Ω

2∑

i=1

�ui · �ψi,

b(
u, v) = −
∫

Ω
div 
uv,

(


u, 
ψ
)

D =
∫

Ω

u · 
ψ.

(4.10)

Let ‖
u‖a =
√

a(
u, 
u). It is clear that ‖
u‖a = |
u|1 is a norm. Then (4.6)-(4.7) and (4.8)-(4.9) can
be written in the forms of (2.3)-(2.4) and (2.5)-(2.6), respectively (we need to add 
 for the
vector function, e.g., u, ψ should be written in the forms of 
u, 
ψ).

We apply Scheme 1 to the Stokes eigenvalue problem (4.6)-(4.7). Adding the symbol

 for the vector function we get two-scale discretization scheme of mixed finite element for
solving the Stokes eigenvalue problem (4.6)-(4.7), which is still called Scheme 1.

Consider the associated source and approximate source problems.
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Find ( 
w, p) ∈ V ×W such that

a
(


w, 
ψ
)

+ b
(


ψ, p
)

=
(


f, 
ψ
)

D
, ∀
ψ ∈ V, (4.11)

b( 
w, v) = 0, ∀v ∈W. (4.12)

Seek ( 
wh, ph) ∈ Vh ×Wh such that

a
(


wh, 
ψ
)

+ b
(


ψ, ph
)

=
(


f, 
ψ
)

D
, ∀
ψ ∈ Vh, (4.13)

b( 
wh, v) = 0, ∀v ∈Wh. (4.14)

From [26] we know that (4.11)-(4.12) satisfy conditions (1)–(3) in Brezzi-Babuska
Theorem; therefore, there exists a unique solution ( 
w, p) ∈ V ×W to the problem (4.11)-(4.12)
and the following estimate is valid:

‖ 
w‖1 +
∥
∥p

∥
∥
0 ≤ Cp

∥
∥
∥ 
f

∥
∥
∥
0
. (4.15)

Condition (4) in Brezzi-Babuska Theorem holds since Vh ⊂ V and Wh ⊂ W . Suppose that
condition (5) in Brezzi-Babuska Theorem (discrete inf-sup condition) is valid, then there
exists a unique solution ( 
wh, ph) ∈ Vh ×Wh to the problem (4.13)-(4.14), and the following
error estimate is valid (see [27–29]):

‖ 
w − 
wh‖1 +
∥
∥p − ph

∥
∥
0 ≤ C

(

inf

ψ∈Vh

∥
∥ 
w − 
ψ

∥
∥
1 + inf

v∈Wh

∥
∥p − v∥∥0

)

. (4.16)

We assume that the following a prior estimate holds: for any 
f ∈ D, 
w ∈ H1+r(Ω) ×
H1+r(Ω), p ∈ Hr(Ω), and

‖ 
w‖1+r +
∥
∥p

∥
∥
r ≤ C

∥
∥
∥ 
f

∥
∥
∥
0
, (4.17)

where 0 < r ≤ 1 is a number determined by the maximal inner angle ω of Ω. When ω < π ,
r = 1 (see [30]).

Suppose that the following estimate holds: for any 
w ∈ H1+r(Ω) ×H1+r(Ω), and for
any p ∈ Hr(Ω),

inf

ψ∈Vh

∥
∥ 
w − 
ψ

∥
∥
V + inf

v∈Wh

∥
∥p − v∥∥W ≤ Chr(‖ 
w‖1+r +

∥
∥p

∥
∥
r

)

. (4.18)

From Section 2, we know that (4.6)-(4.7) and (4.8)-(4.9) have the following equivalent
operator forms, respectively,

λT
u = 
u, σ = S(λ
u), (4.19)

λhTh
uh = 
uh, σh = Sh(λh
uh). (4.20)

Moreover, T and Th are all self-adjoint compact operators.
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Theorem 4.1. Assume that discrete inf-sup condition, (4.17) and (4.18) hold; letH be properly small;
and (λh, 
uh, σh) an approximate eigenpair obtained by Scheme 1. Then there exists 
u ∈ M(λ) such
that

∥
∥
∥
uh − 
u

∥
∥
∥
a
≤ C

(

H4r + hr
)

, (4.21)

∣
∣
∣λh − λ

∣
∣
∣ ≤ C

(

H8r + h2r
)

. (4.22)

Proof. From Brezzi-Babuska Theorem, (4.17), and (4.18), we deduce

∥
∥
∥T 
f − Th 
f

∥
∥
∥
V
+
∥
∥
∥S 
f − Sh 
f

∥
∥
∥
W

≤ Chr
∥
∥
∥ 
f

∥
∥
∥
D
, ∀ 
f ∈ D. (4.23)

By virtue of Nitsche technique (see [29]) and (4.17), we derive

∥
∥
∥T 
f − Th 
f

∥
∥
∥
D
≤ Chr

(

inf
q∈Vh

∥
∥
∥T 
f − q

∥
∥
∥
V
+ inf
v∈Wh

∥
∥
∥S 
f − v

∥
∥
∥
W

)

≤ Ch2r
∥
∥
∥ 
f

∥
∥
∥
D
, ∀f ∈ D.

(4.24)

Using (4.24), we have

‖T − Th‖D = sup

f∈D,‖ 
f‖D=1

∥
∥
∥T 
f − Th 
f

∥
∥
∥
D
≤ Ch2r −→ 0 (h −→ 0). (4.25)

Hence, the conditions in Lemma 2.2 and Theorem 3.3 hold.
From (2.23), we know that

|λh − λ| + ‖
uh − 
u‖D ≤ C∥∥(T − Th)|M(λ)
∥
∥
D ≤ Ch2r . (4.26)

From (4.23), (4.18), and (4.17), we have

∥
∥(T − Th)|M(λ)

∥
∥
a = sup


u∈M(λ),
u /= 0

‖T
u − Th
u‖a
‖
u‖a

≤ Chr, (4.27)

inf
v∈Wh

‖σ − v‖W ≤ Chr‖σ‖r ≤ Chr‖
u‖D. (4.28)

Substituting (4.26) and (4.27) into (3.7), we obtain (4.21). Substituting (4.21) and (4.28) into
(3.8), we obtain (4.22).

4.1. Mini Mixed Finite Element

Consider two-scale discretization scheme of Mini mixed finite element for the Stokes eigen-
value problem (4.1)–(4.3) (Scheme 1).
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Mini element was established by Arnold et al. in 1984 (see [31]). Let Kh be a regular
triangulation of Ω under the meaning of paper [32], and

Sh =
{

v ∈ C
(

Ω
)

: v|κ ∈ P1, κ ∈ Kh
}

, Sh0 = Sh
⋂

H1
0(Ω). (4.29)

For any κ ∈ Kh, let N1, N2, and N3 denote barycentric coordinates. Denote Bh = {v : v|κ ∈
span{N1N2N3}, κ ∈ Kh}, and set

Vh =
(

Sh0
⊕

Bh
)2
, Wh = Sh

⋂

L2
0(Ω). (4.30)

From [31], we know that Mini element satisfies discrete inf-sup condition. From the
interpolation theory in Sobolev space, we conclude that (4.18) is valid. Hence, for r satisfying
(4.17), Scheme 1 for Mini mixed finite element is effective. Theorem 4.1 is valid.

4.2. P1-P1 Mixed Finite Element

Consider two-scale discretization scheme of P1-P1 mixed finite element for the Stokes eigen-
value problem (4.1)–(4.3) (Scheme 1).

Let K2h be a regular triangulation of Ω, and Kh is the product of refining K2h in the
middle point. The P1-P1 mixed finite element space is defined by

Vh =
[

Sh
⋂

H1
0(Ω)

]2
, Wh = S2h

⋂

L2
0(Ω), (4.31)

where S2h and Sh are piecewise continuous linear polynomial spaces defined onK2h andKh,
respectively.

From [33, Proposition 3.3], we know that P1-P1 element satisfies discrete inf-sup
condition. By the interpolation theory in Sobolev space, we conclude that (4.18) holds.
Therefore, for r satisfying (4.17), Scheme 1 for P1-P1 mixed finite element is effective.
Theorem 4.1 is valid.

5. Two-Scale Discretization Scheme for Eigenvalue Problem of
Electric Field

Consider the eigenvalue problem of electric field:

c2 curl curl 
u = ω2
u, in Ω, (5.1)

div 
u = 0, in Ω, (5.2)


u × 
γ = 0, on ∈ ∂Ω, (5.3)

where Ω is a polyhedron in R3 and 
γ is the outward normal unit vector on ∂Ω.
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In physics, 
u in the above eigenvalue problem of electric field denotes electric field, ω
denotes the time frequency, and c is the speed of the light. Usually we set λ = ω2/c2 which is
called eigenvalue.

The spacesH(curl, Ω),H0(curl, Ω) are defined in the usual way:

H(curl,Ω) =
{


q ∈ L2(Ω)3 : curl 
q ∈ L2(Ω)3
}

,

H0(curl,Ω) =
{


q ∈ H(curl,Ω) : 
q × 
γ |∂Ω = 0
}

.

(5.4)

When Ω is convex polyhedron, we define the following function space:

χ =
{


q ∈ H0(curl,Ω) : div 
q ∈ L2(Ω)
}

. (5.5)

Denote

(


q, 
ψ
)

0 =
∫

Ω

q · 
ψ dx, ∥

∥
q
∥
∥
0 =

(


q, 
q
)1/2
0 .

(


q, 
ψ
)

χ =
(

curl 
q, curl 
ψ
)

0 +
(

div 
q,div 
ψ
)

0,
∥
∥
q

∥
∥
χ =

(


q, 
q
)1/2
χ .

(5.6)

From [34, 35], we see that χ ⊂ H1(Ω)3; (
q, 
ψ)χ is a coercive bilinear form in χ, and ‖
q‖χ is a
norm.

On the other hand, whenΩ is nonconvex themaximal interior angle belongs to (π, 2π).
In this situation the problem is relatively complicated. Let E denote a set of reentrant edge
with dihedral angles belonging to (π, 2π), and let d denote the distance to the set E: d(x) =
dist(x,∪e∈Ee). We introduce a weight function ωr which is a nonnegative smooth function
with respect to x. It can be represented by dr in reentrant edge and angular domain. We write
ωr � dr . Define the weight function space:

L2
r(Ω) =

{

v ∈ L2
loc(Ω) : ωrv ∈ L2(Ω)

}

,

χr =
{


q ∈ H0(curl,Ω) : div 
q ∈ L2
r(Ω)

}

.

(5.7)

Denote

(


q, 
ψ
)

L2
r
=
∫

Ω
ω2
r 
q · 
ψ dx,

∥
∥
q

∥
∥
L2
r
=
(


q, 
q
)1/2
L2
r
,

(


q, 
ψ
)

χr
=
(

curl 
q, curl 
ψ
)

0 +
(

div 
q,div 
ψ
)

L2
r
,

∥
∥
q

∥
∥
χr

=
(


q, 
q
)1/2
χr
.

(5.8)
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Let σNΔ be the following smallest singular exponent in the Laplace problemwith homogenous
Dirichlet boundary condition:

{

φ ∈ H1
0(Ω) : Δφ ∈ L2(Ω)

}

⊂
⋂

s<σDΔ

Hs(Ω),

{

φ ∈ H1
0(Ω) : Δφ ∈ L2(Ω)

}

/⊂HσDΔ (Ω).

(5.9)

From the regularity estimate we know σDΔ ∈ (3/2, 2). Let rmin = 2 − σDΔ .
From [36, 37], we know that, for all r ∈ (rmin, 1), the seminorm |
q|χr is a norm in χr ,

and χr ∩H1(Ω)3 is dense in χr .
In the following discussion, we will use χr, L2

r(Ω) both for non-convex and convex
domain. We take r ∈ (rmin, 1) for non-convex domain; otherwise, we take χr = χ, L2

r(Ω) =
L2(Ω).

By introducing Lagrange multiplier σ, [36, 38, 39] changed (5.1)–(5.3) into the mixed
variational formulation: find (λ, 
u, σ) ∈ R+ × χr × L2

r(Ω) such that

(


u, 
ψ
)

χr
+
(

div 
ψ, σ
)

L2
r
= λ

(


u, 
ψ
)

0, ∀
ψ ∈ χr, (5.10)

(div 
u, v)L2
r
= 0, ∀v ∈ L2

r(Ω). (5.11)

Let Kh be a regular simplex partition (tetrahedral partition) of Ω with the mesh
diameter h. Define the Pk+1-Pk finite element space as follows:

Vh =
{


q ∈ C0
(

Ω
)3

: 
q × 
γ |∂Ω = 0, 
q|κ ∈ Pk+1(κ)3, ∀κ ∈ Kh

}

,

Wh =
{

v ∈ C0
(

Ω
)

: v|κ ∈ Pk(κ), ∀κ ∈ Kh, v|Eh = 0
}

.

(5.12)

Here we set Eh = ∪κ∈Kh,∂κ∩E/=φκ. v|Eh = 0 means that v is zero on the tetrahedron where
reentrant edge and angular point are adjacent.

Restricting (5.10)-(5.11) to the previous finite element space, we get discrete mixed
variational form: find (λh, 
uh, σh) ∈ R+ × χh ×Mh such that

(


uh, 
ψ
)

χr
+
(

div 
ψ, σh
)

L2
r
= λh

(


uh, 
ψ
)

0, ∀
ψ ∈ χh, (5.13)

(div 
uh, v)L2
r
= 0, ∀v ∈Mh. (5.14)

Set

V = χr, ‖·‖V = ‖·‖χr ,

W = L2
r(Ω), ‖·‖W = ‖·‖L2

r
,

D = L2(Ω)3, ‖·‖D = ‖·‖0,
a
(


q, 
ψ
)

=
(


q, 
ψ
)

χr
, b

(


ψ, v
)

=
(

div 
ψ, v
)

L2
r
.

(5.15)
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Then (5.10)-(5.11) and (5.13)-(5.14) can be written in the forms of (2.3)-(2.4) and (2.5)-(2.6),
respectively (we need to add 
 for the vector function, e.g., u, ψ should be written in the
forms of 
u, 
ψ).

We apply Scheme 1 to the eigenvalue problem of electric field (5.10)-(5.11). Adding
the symbol 
 for the vector function we get two-scale discretization scheme of mixed finite
element for solving the eigenvalue problem of electric field (5.10)-(5.11) which is still called
Scheme 1.

It is easy to know that a(·, ·) and b(·, ·) are continuous bilinear forms on V × V and
V ×W , respectively. V is compact embedded in D (when Ω is convex, it is valid obviously;
when Ω is non-convex, see [36]).

Consider the source problem corresponding to (5.10)-(5.11).
Find ( 
w, p) ∈ χr × L2

r(Ω) such that

(


w, 
ψ
)

χr
+
(

div 
ψ, p
)

L2
r
=
(


f, 
ψ
)

0
, ∀
ψ ∈ χr, (5.16)

(div 
w, v)L2
r
= 0, ∀v ∈ L2

r(Ω). (5.17)

For the problem (5.16)-(5.17) and its Pk+1-Pk element approximation, people have
already proved the conditions in Brezzi-Babuska Theorem hold (see [38, 40, 41]).

Therefore, we can define operators T, S, Th, Sh; moreover, (5.10)-(5.11) and (5.13)-
(5.14) can be written in the forms of (2.23)-(2.24) and (2.25)-(2.26), respectively.

Lemma 5.1 is cited from the literature [36, 38].

Lemma 5.1. (5.1)–(5.3) is equivalent to (5.10)-(5.11), and the solutions of (5.10)-(5.11), (
u, σ),
satisfy σ = S(λ
u) = 0 and 
u ∈ χr with div 
u = 0.

Denote

ελ(h) = sup

u∈M̂(λ)

inf

ψ∈Vh

∥
∥T
u − 
ψ

∥
∥
a. (5.18)

For the Pk+1-Pk element approximation of (5.16)-(5.17), [38] proved that the condition
of [24, Theorem 1] (i.e., [38, Theorem 4.3]) is valid, hence, there holds the following.

Lemma 5.2. For the Pk+1-Pk element approximation of (5.16)-(5.17), there exists r(h) > 0, r(h) →
0 (h → 0) such that

sup

f∈D, 
f /= 0

∥
∥
∥(T − Th) 
f

∥
∥
∥
V

∥
∥
∥ 
f

∥
∥
∥
D

≤ r(h). (5.19)

This lemma is very important. It tells us that ‖T − Th‖D → 0 (h → 0). Based on this
lemma, [38] also proved the following conclusion.
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Lemma 5.3. For the Pk+1-Pk element approximation of (5.10)-(5.11), the following estimate is valid:

|λ − λh| ≤ Cελ(h)2, (5.20)

‖
uh − 
u‖a ≤ Cελ(h). (5.21)

Theorem 5.4. Let (λh, 
uh) be the approximate Pk+1-Pk element eigenpair obtained by Scheme 1; then
there exists 
u ∈M(λ) such that

∥
∥
∥
uh − 
u

∥
∥
∥
a
≤ C

(

ελ(H)3 + ελ(h)
)

, (5.22)

∣
∣
∣λh − λ

∣
∣
∣ ≤ C

(

ελ(H)6 + ελ(h)
2
)

. (5.23)

Proof. We use Theorem 3.3 to complete the proof. From (5.19) we see that the condition in
Theorem 3.3 holds, and by Lemma 5.1 we know σ = 0.

From (2.18), we deduce

∥
∥(T − Th)|M(λ)

∥
∥
a = sup


u∈M̂(λ)

‖T
u − Th
u‖a

≤ C sup

u∈M̂(λ)

inf

ψ∈Vh

∥
∥T
u − 
ψ

∥
∥
a

≤ Cελ(h).

(5.24)

From (5.20), we derive

|λH − λ| ≤ Cελ(H)2. (5.25)

Substituting (5.24) and (5.25) into (3.7), we get (5.22).
Since σ = 0, (3.8) can be simplified to

∣
∣
∣λh − λ

∣
∣
∣ ≤ C

∥
∥
∥
uh − 
u

∥
∥
∥

2

a
. (5.26)

Substituting (5.22) into (5.26), we obtain (5.23).

Let σNΔ be the smallest singular exponent in the Laplace problem with homogenous
Neumann boundary condition, then σNΔ ∈ (3/2, 2). Denote τ = min(r − rmin, σ

N
Δ − 1).

Corollary 5.5. Under the condition of Theorem 5.4, if Ω is a convex polyhedron there holds

∥
∥
∥
uh − 
u

∥
∥
∥
a
≤ C

(

H3 + h
)

, (5.27)

∣
∣
∣λh − λ

∣
∣
∣ ≤ C

(

H6 + h2
)

; (5.28)



Abstract and Applied Analysis 23

if Ω is a non-convex polyhedron, then

∥
∥
∥
uh − 
u

∥
∥
∥
a
≤ C

(

H3μ + hμ
)

, ∀μ ∈ (0, τ), (5.29)

∣
∣
∣λh − λ

∣
∣
∣ ≤ C

(

H6μ + h2μ
)

, ∀μ ∈ (0, τ). (5.30)

Proof. When Ω is a convex polyhedron, for any 
u ∈ M(λ) we have 
u = T(λ
u) ∈ H2(Ω) (see
[35], or [42, equation (44)]); therefore

ελ(H) ≤ CH, ελ(h) ≤ Ch. (5.31)

Substituting these two formulae into (5.22) and (5.23), we obtain (5.27) and (5.28), respec-
tively. When Ω is non-convex, for all 
u ∈M(λ), from [38, equation (36)] we know that

ελ(H) ≤ CHμ, ελ(h) ≤ Chμ. (5.32)

Substituting the above two formulae into (5.22) and (5.23), we obtain (5.29) and (5.30),
respectively.

6. Numerical Experiments

In the following two examples, let λ1,H, λ2,H, . . . , λ4,H be the first four eigenvalues computed
by using mixed finite method directly on coarse mesh KH and λ1,h, λ2,h, . . . , λ4,h the first
four eigenvalues computed by using mixed finite method directly on fine mesh Kh. Let
λh1 , λ

h
2 , . . . , λ

h
4 denote the first four eigenvalues computed by Scheme 1 on the meshes KH

and Kh.

Example 6.1. Consider the Stokes eigenvalue problem (4.1)–(4.3), where Ω ⊂ R2 is a unit
square domain. The smallest eigenvalue λ1 is approximately equal to 52.3446911 for this
problem.

We adopt a uniform isosceles right triangulation for the domain Ω (the edge in each
element is along three fixed directions), and we give an initial mesh in Figure 1 and refine
the initial mesh in a uniform way (each triangle is divided into four congruent triangles)
repeatedly to get meshes KH and Kh.

We solve this problem by Scheme 1 with Mini element. The numerical results are
shown in Table 1.

From Table 1, we conclude that Scheme 1 can efficiently solve Stokes eigenvalue prob-
lem.

Example 6.2. Consider the eigenvalue problem of electric field (5.1)–(5.3), whereΩ is a square
domain [0, π] × [0, π] or an L-shaped domain [−1, 0] × [−1, 0] ∪ [−1, 1] × [0, 1]. For the square
domain, the first four exact eigenvalues are λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4 for this problem.
For the L-shaped domain, the first four approximate eigenvalues are λ1 ≈ 1.475622, λ2 ≈
3.534031, λ3 ≈ 9.869604, λ4 ≈ 9.869604.
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1

Figure 1

Table 1: The results on the square by Scheme 1 (Mini element) for Stokes eigenvalue problem.

k H h λk,H λk,h λh
k

1
√
2
8

√
2

64
57.50602342019 52.42255785241 52.42147553267

1
√
2

10

√
2

100
55.61324143591 52.37622690147 52.37604993774

1
√
2

12

√
2

144
54.59828590012 52.35983048690 52.35978975974

2
√
2
8

√
2

64
103.5158846668 92.30714521284 92.29553836981

2
√
2

10

√
2

100
99.36963738012 92.19619098643 92.19429134425

2
√
2

12

√
2

144
97.12904494102 92.15848299868 92.15804753694

3
√
2
8

√
2

64
110.7048253409 92.43050152401 92.39531304531

3
√
2

10

√
2

100
103.8058661064 92.24032470162 92.23510195554

3
√
2

12

√
2

144
100.1402638604 92.17887213187 92.17771885852

4
√
2
8

√
2

64
159.7476076282 128.8864896622 128.7085892117

4
√
2

10

√
2

100
148.7986378758 128.4767873556 128.4133574197

4
√
2

12

√
2

144
142.5976379771 128.3089668708 128.3076834410
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Table 2: The results on the square by Scheme 1 (P2-P1 element) for eigenvalue problem of electric field
(r = 0).

k H h λk,H λk,h λh
k

1
√
2
4

√
2

72
1.000489112 1.000000005 1.000000005

1
√
2
6

√
2

72
1.000099609 1.000000005 1.000000005

1
√
2
8

√
2

72
1.000031944 1.000000005 1.000000005

2
√
2
4

√
2

72
1.000490210 1.000000005 1.000000005

2
√
2
6

√
2

72
1.000099685 1.000000005 1.000000005

2
√
2
8

√
2

72
1.000031956 1.000000005 1.000000005

3
√
2
4

√
2

72
2.006497695 2.000000070 2.000000070

3
√
2
6

√
2

72
2.001365268 2.000000070 2.000000070

3
√
2
8

√
2

72
2.000442889 2.000000070 2.000000070

4
√
2
4

√
2

72
4.028293524 4.000000321 4.000000333

4
√
2
6

√
2

72
4.006078511 4.000000321 4.000000321

4
√
2
8

√
2

72
4.001988912 4.000000321 4.000000321

We adopt a uniform isosceles right triangulation for Ω (the edge in each element is
along three fixed directions, see Figure 2 for the L-shaped domain, and see Figure 1 for the
square domain [0, π] × [0, π]) to produce the meshes KH and Kh.

We use P2-P1 mixed finite element to solve this problem. The definition of P2-P1 mixed
finite element space is given by

Vh =
{


q ∈ C0
(

Ω
)2

: 
q × 
γ |∂Ω = 0, 
q|κ ∈ P2(κ)2, ∀κ ∈ Kh

}

,

Wh =
{

v ∈ C0
(

Ω
)

: v|κ ∈ P1(κ), ∀κ ∈ Kh, v|Eh = 0
}

.

(6.1)

We compute the first four approximate eigenvalues by using Scheme 1 with P2-P1
element on the mesh KH and Kh. The numerical results are listed in Tables 2, 3, and 4.

From Tables 2–4, we conclude that Scheme 1 can efficiently solve the eigenvalue
problem of electric field.
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2

Figure 2

Table 3: The results on the L-shaped domain by Scheme 1 (P2-P1 element) for eigenvalue problem of
electric field (r = 0.5).

k H h λk,H λk,h λh
k

1
√
2
4

√
2

72
3.004954998 2.557217952 2.557241250

1
√
2
6

√
2

72
2.896205625 2.557217952 2.557225625

1
√
2
8

√
2

72
2.842087274 2.557217952 2.557221723

2
√
2
4

√
2

72
3.686002173 3.536967001 3.536967768

2
√
2
6

√
2

72
3.623341929 3.536967001 3.536967079

2
√
2
8

√
2

72
3.595097794 3.536967001 3.536967017

3
√
2
4

√
2

72
9.938579092 9.869605192 9.869605219

3
√
2
6

√
2

72
9.884458574 9.869605192 9.869605192

3
√
2
8

√
2

72
9.874470046 9.869605192 9.869605192

4
√
2
4

√
2

72
9.938761731 9.869605192 9.869605221

4
√
2
6

√
2

72
9.884463697 9.869605192 9.869605192

4
√
2
8

√
2

72
9.874472304 9.869605192 9.869605192
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Table 4: The results on the L-shaped domain by Scheme 1 (P2-P1 element) for eigenvalue problem of
electric field (r = 0.95).

k H h λk,H λk,h λh
k

1
√
2
4

√
2

72
1.913411786 1.517146260 1.517159275

1
√
2
6

√
2

72
1.779172346 1.517146260 1.517148955

1
√
2
8

√
2

72
1.723917701 1.517146260 1.517147418

2
√
2
4

√
2

72
3.589241343 3.534187594 3.534187611

2
√
2
6

√
2

72
3.558323120 3.534187594 3.534187595

2
√
2
8

√
2

72
3.547766251 3.534187594 3.534187595

3
√
2
4

√
2

72
9.937421407 9.869605190 9.869605213

3
√
2
6

√
2

72
9.884270121 9.869605190 9.869605191

3
√
2
8

√
2

72
9.874420606 9.869605190 9.869605191

4
√
2
4

√
2

72
9.937916802 9.869605191 9.869605216

4
√
2
6

√
2

72
9.884282799 9.869605191 9.869605190

4
√
2
8

√
2

72
9.874424604 9.869605191 9.869605190

In this paper, C denotes a positive constant independent of h, which may stand for
different values at its different occurrences.
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