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A possible type of the operator splitting is studied. Using this operator splitting, we introduce
some properties and representations of generalized inverses as well as iterative method for
computing various solutions of the restricted linear operator system Ax = b, x ∈ T , where
A ∈ L(X,Y) and T is an arbitrary but fixed subspace of X.

1. Introduction

The subject of splitting was investigated by numerous authors. And there are several papers
concerning the iterative methods of the general formas follows:

Xi+1 = M
(2)
T,KXi +M

(2)
T,K, i = 0, 1, 2, . . . , (1.1)

where A = M −N is a splitting of A, and K is an arbitrary closed subspaces of Y (see [1–4]).
Particular results concerning the computation of the Drazin inverse and the Moore-Penrose
inverse can be investigated in [5, 6].

In this paper, we will consider the linear operator system Ax = b, where A ∈ L(X,Y),
T⊕L = X, and AT⊕S = Y. The concept of a operator splitting can be used in characterizations
of the generalized inverse A(2)

T,S and in iterative method as follows:

Xk+1 = M
(2)
T,KNXk +M

(2)
T,KGb, i = 0, 1, 2, . . . (1.2)
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for solving linear operator system Ax = b. In particular, letK = L, the authors in [7] gave the
iterative method

Xi+1 = MgNXi +MgGb, i = 0, 1, 2, . . . . (1.3)

to solve linear system Ax = b.
Now, we introduce some notations and terminologies.
Let X, Y be Banach spaces and L(X,Y) be the set of all bounded operators from X to

Y. We use R(A), N(A) and ρ(A), respectively, to denote the range, the null space, and the
spectral radius for an operatorA ∈ L(X,Y). Suppose that there exists an operator B ∈ L(Y,X),
such that

BAB = B, R(B) = T, N(B) = S. (1.4)

Then B is usually denoted by A
(2)
T,S. Recall that the splitting A = U − V is called a proper

splitting of A if R(A) = R(U) andN(A) = N(U).
Let T ∈ L(X) if, for some nonnegative integer k ≥ 0, there exists S ∈ L(X) such that

(
1k
)
TSTk = Tk, (2) STS = S, (5) TS = ST, (1.5)

then S is called the Drazin inverse of T , and the smallest n is called the index of T and will
be denoted by ind(T). If an operator T ∈ L(X) has a Drazin inverse, then it is unique and
is denoted by Td (see [8] for details). Particularly, when ind(T) ≤ 1, Td is called the group
inverse of T and is denoted by Tg .

The paper is organized as follows. In the remainder of this section, we will introduce
some lemmas which are useful in the proofs. In Section 2, We express some properties and
representations of generalized inverses based on the operator splitting. Moreover, by using
these representations, we introduce iterative method for computing various solutions of
linear operator system. In Section 3, we give a numerical example to demonstrate one of the
results in Section 2.

Basic auxiliary results are summarized in the following lemmas.

Lemma 1.1 (see [9, page 43]). Let A ∈ L(X,Y) and S, T be closed subspaces of X and Y such that
T ⊕ L = X and AT ⊕ S = Y. Then A has the following matrix form:

A =
[
A1 A2

0 A3

]
:
[
T
L

]
−→
[
AT
S

]
, (1.6)

where A1 is invertible. Moreover,

A
(2)
T,S =

[
A−1

1 0
0 0

]
:
[
AT
S

]
−→
[
T
L

]
. (1.7)

Lemma 1.2 (see [9, lemma 3.5.2]). Let B ∈ L(X). L and M are closed subspaces of X such that
X = L ⊕M and PL,M is a projection from X onto Y parallel toM. Then, one has
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(i) PL,MB = B if and only if R(B) ⊆ L,

(ii) BPL,M = B if and only ifN(B) ⊇ M.

Lemma 1.3 (see [6]). Let A ∈ C
m×n
r be factorized in the following form:

A = U

[
I
C

]
A11
[
I B
]
V, (1.8)

where A11 is an r × r nonsingular matrix, and U and V are permutation matrices. Then

N(M) = N(A), R(M) = R(A) (1.9)

(i.e., A = M −N is a proper splitting) if and only if

M = U

[
I
C

]
M11

[
I B
]
V, (1.10)

whereM11 is a nonsingular matrix of order r.

Lemma 1.4 (see [10]). Let A ∈ C
m×n
r with ind(A) = 1 and A be partitioned as

A = U

[
I
C

]
A11
[
I B
]
V, (1.11)

whereU, V and A11 are the same as Lemma 1.3. Then the group inverse Ag exists if and only if

VU + BVUC is nonsingular,

Ag = U

[
I
C

]
(VU + BVUC)−1A−1

11 (VU + BVUC)−1
[
I B
]
V.

(1.12)

2. Main Results

In this section, the representation of the generalized inverse A
(2)
T,S of a linear operator is

studied. Moreover, we consider the fundamental problem of solving a general linear operator
equation of the type Ax = b, where A ∈ L(X,Y).

Now we are ready to present the representation theorem.

Theorem 2.1 (representation theorem). Let A ∈ L(X,Y) be given and T and S, respectively, be
closed subspaces of X and Y such that there exists the generalized inverse A(2)

T,S. And let G ∈ L(Y,X)
with R(G) = T , N(G) = S, GA = M − N be a proper splitting of GA, that is, N(M) =
N(GA), R(M) = R(GA). Then, one has

A
(2)
T,S =

(
I −M

(2)
T,KN

)−1
M

(2)
T,KG, (2.1)

where K is a subspace of X.
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Proof. By Lemma 1.2, it is easy to verify that

(
I −M

(2)
T,KN

)
A

(2)
T,S = A

(2)
T,S −M

(2)
T,KNA

(2)
T,S

= A
(2)
T,S −M

(2)
T,K(M −GA)A(2)

T,S

= A
(2)
T,S −M

(2)
T,KMA

(2)
T,S +M

(2)
T,KGAA

(2)
T,S

= M
(2)
T,KG.

(2.2)

Now, we will show that I −M
(2)
T,KN is invertible. Notice that

I −M
(2)
T,KN = I −M

(2)
T,KM +M

(2)
T,KGA. (2.3)

Since I − M
(2)
T,KM is a projection from Y onto L parallel to T and M

(2)
T,KGA is an invertible

operator from T to T , we get that I − M
(2)
T,KM + M

(2)
T,KGA is invertible. Thus, the proof is

completed.

Now, we are in position to state the main result of this section.

Theorem 2.2. Under the hypotheses of Theorem 2.1, we have that

Xk+1 = M
(2)
T,KNXk +M

(2)
T,KG (2.4)

converges to A(2)
T,S for every X0 ∈ X if and only if ρ(M(2)

T,KN) < 1. Then we get that Xk has the error
estimation

‖Xk+1 −Xk‖ ≤
∥∥∥M(2)

T,KN
∥∥∥
k
‖X1 −X0‖. (2.5)

Moreover, one has

∥∥∥Xk −A
(2)
T,S

∥∥∥ ≤
∥∥∥M(2)

T,KN
∥∥∥
k+1∥∥∥X0 −A

(2)
T,S

∥∥∥, (2.6)

where K is a subspace of X.
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Proof. “⇐” Suppose that ρ(M(2)
T,KN) < 1. According to Representation theorem, we obtain

that

Xk+1 −A
(2)
T,S = M

(2)
T,KNXk +M

(2)
T,KG −

(
I −M

(2)
T,KN

)−1
M

(2)
T,KG

= M
(2)
T,KNXk +M

(2)
T,KG −

∞∑
k=0

(
M

(2)
T,KN

)k
M

(2)
T,KG

= M
(2)
T,KNXk −

∞∑
k=1

(
M

(2)
T,KN

)k
M

(2)
T,KG

= M
(2)
T,KN

(
Xk −

∞∑
k=0

(
M

(2)
T,KN

)k
M

(2)
T,KG

)

= M
(2)
T,KN

(
Xk −A

(2)
T,S

)

=
(
M

(2)
T,KN

)k+1(
X0 −A

(2)
T,S

)
.

(2.7)

By the hypothesis and (2.7), it is to see that Xk converges to A
(2)
T,S for every X0 ∈ X.

“⇒” A simple computation shows that

Xk+1 −Xk = M
(2)
T,KNXk −M

(2)
T,KNXk−1

= M
(2)
T,KN(Xk −Xk−1)

= · · ·

=
(
M

(2)
T,KN

)k
(X1 −X0),

(2.8)

it follows that (M(2)
T,KN)

k → 0 as k → ∞, which implies that ρ(M(2)
T,KN) < 1. Now the results

follow immediately.

From Theorem 2.2, we can immediately obtain the following theorem.

Theorem 2.3. Under the hypotheses of Theorem 2.1, we have that

Xk+1 = M
(2)
T,KNXk +M

(2)
T,KGb (2.9)

converges to A(2)
T,Sb (the unique solution of linear operator system Ax = b.) for every X0 ∈ X if and

only if ρ(M(2)
T,KN) < 1. Then we get that Xk has the error bounded

‖Xk+1 −Xk‖ ≤
∥∥∥M(2)

T,KN
∥∥∥
k
‖X1 −X0‖. (2.10)
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Moreover, one has

∥∥∥Xk −A
(2)
T,Sb
∥∥∥ ≤
∥∥∥M(2)

T,KN
∥∥∥
k+1∥∥∥X0 −A

(2)
T,Sb
∥∥∥, (2.11)

where K is a subspace of X.

Proof. The proof is similar to that of Theorem 2.2.

Similar to [7, Theorems 3.1 and 3.3]. In the case when K = L, the previous theorems
reduce to the following corollary.

Corollary 2.4. Let A, T and S be the same as Theorem 2.1 and let G ∈ L(X,Y), R(G) = T and
N(G) = S. Let GA = M −N be a proper splitting of GA, that is,

N(M) = N(GA), R(M) = R(GA). (2.12)

Then, one has

(i) ind(M) = 1,

(ii) A(2)
T,S = (I −MgN)−1MgG, and

(iii) the iteration Xi+1 = MgNXi + MgG converges to A
(2)
T,S for each X0 ∈ X if and only if

ρ(MgN) < 1.

Now, we will consider the proper splitting of AG.

Theorem 2.5. Let A ∈ L(X,Y) be given and T and S, respectively, be closed subspaces of X and Y,
such that there exists the generalized inverse A(2)

T,S. And let G ∈ L(Y,X) with R(G) = T , N(G) = S,
AG = M −N be a proper splitting of AG, that is, N(M) = N(AG), R(M) = R(AG). Then, one
has

A
(2)
T,S = GM

(2)
K,S

(
I −NM

(2)
K,S

)−1
, (2.13)

where K is a subspace of Y.

Theorem 2.6. Under the hypotheses of Theorem 2.5, we have that

Xk+1 = NM
(2)
K,SXk +GM

(2)
K,S

(2.14)

converges to A(2)
T,S for every X0 ∈ X if and only if ρ(NM

(2)
K,S) < 1. Then we get that Xk has the error

estimation as follows:

∥∥∥Xk −A
(2)
T,S

∥∥∥ ≤
∥∥∥NM

(2)
K,S

∥∥∥
k+1∥∥∥X0 −A

(2)
T,S

∥∥∥. (2.15)
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Moreover, consider that

‖Xk+1 −Xk‖ ≤
∥∥∥NM

(2)
K,S

∥∥∥
k
‖X1 −X0‖, (2.16)

where K is a subspace of Y.

It is well known that Ad = A
(2)
R(Ak),N(Ak). Let G = Ak; thus, the following result follows

from Corollary 2.4.

Corollary 2.7. Let A ∈ L(X,Y), G ∈ L(Y,X), T , S be closed subspaces of X and Y such that A(2)
T,S

exists with Ind(A) = k. Suppose that R(Ak) = T,N(Ak) = S and Ak+1 = M − N be a proper
splitting of GA, that is,

N(M) = N
(
Ak+1

)
, R(M) = R

(
Ak+1

)
. (2.17)

Then the iteration

xi+1 = MgNxi +MgA
k (2.18)

or

xi+1 = MgNxi +MgA
kb (2.19)

converges to Ad or Adb for every X0 ∈ X if and only if ρ(MgN) < 1.

Remark 2.8. In [11], the author present {T, S} splitting for computing the generalized inverse
A

(2)
T,S, particular result concerning the computation Drazin inverse. Let T = R(Ak), S =

N(Ak), k = ind(A), and A = U − V be a {T, S} splitting of A. Then the iteration

Xi+1 = UdVXi +Udb (2.20)

converges to Adb for every X0 ∈ X if and only if ρ(UdV ) < 1. Moreover, the iteration (2.20)
can be reduced to

R
(
Uk
)
= R
(
Ak
)
, N

(
Uk
)
= N

(
Ak
)
. (2.21)

The splitting (2.17) is more practical than (2.21). Since M in (2.17) can easily be
calculated by Lemmas 1.3 and 1.4, while U in (2.21) is more difficult to be getten.
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Table 1: Convergence of (2.6) with any choice of initial x0.

xT
0 k rk Rk XT

k

[10; 2;−5; 9] 98 0.0016 0.0014 [5.0001, 5.0001,−2.0000,−2.0000]
[1; 20; 84; 9] 98 0.0039 0.0027 [5.0008, 5.0009,−2.0003,−2.0003]
[55; 6; 5; 2; 4] 98 0.0065 0.0013 [4.9990, 4.9993,−1.9997,−1.9997]
[0; 45; 600; 87] 98 0.0222 0.0088 [5.0058, 5.0058,−2.0023,−2.0023]
[66; 22; 1;−9] 98 0 3.1765e − 004 [4.9998, 4.9998,−1.9999,−1.9999]
[−1;−99; 8;−7] 98 0.0023 6.3226e − 004 [4.9997, 4.9995,−1.9998,−1.9998]
[−555; 0; 99; 34] 98 0.0004 0.0019 [4.9984, 4.9993,−1.9995,−1.9995]

3. Illustration Example

The following matrix A is from [11]. Let

A =

⎡
⎢⎢⎣

2 4 6 5
1 4 5 4
0 −1 −1 0
−1 −2 −3 −3

⎤
⎥⎥⎦ ∈ R4×4, (3.1)

where ind(A) = 2, rank(A2) = 2.
We will use Corollary 2.7 to compute the unique solution Adb of the restricted linear

equation Ax = b, x ∈ R(A2) = T and b = (8, 7,−3,−3)T ∈ R(A2). Take

N =

⎡
⎢⎢⎣

0 −8 −8 −8
−2 0 −2 −2
0.4 1.6 2.0 2.0
0.4 1.6 2.0 2.0

⎤
⎥⎥⎦, M =

⎡
⎢⎢⎣

3 0 3 3
0 7 7 7

−0.6 −1.4 −2.0 −2.0
−0.6 −1.4 −2.0 −2.0

⎤
⎥⎥⎦ (3.2)

which satisfies the conditions of Corollary 2.7. Therefore, by Lemmas 1.3 and 1.4,

Md =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

25
7

20
7

45
7

45
7

20
7

55
21

115
21

115
21

−9
7

−23
21

−50
21

−50
21

−9
7

−23
21

−50
21

−50
21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ad =

⎡
⎢⎢⎣

3 −1 2 2
2 1 3 3
−1 0 −1 −1
−1 0 −1 −1

⎤
⎥⎥⎦.

(3.3)

Denote that rk = ‖xk+1 − xk‖ and Rk = ‖xk −ADb‖. We have Table 1 for the norm ‖ · ‖2,
and from which we conclude that Xk is an approximation of the exact solution x of Ax = b.
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[10] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, John Wiley & Sons,
New York, NY, USA, 1974.
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