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We investigate the stable perturbation of the generalized Drazin inverses of closed linear operators
in Banach spaces and obtain some new characterizations for the generalized Drazin inverses to
have prescribed range and null space. As special cases of our results, we recover the perturbation
theorems of Wei and Wang, Castro and Koliha, Rakocevic and Wei, Castro and Koliha and Wei.

1. Introduction and Preliminaries

Let X be a Banach spaces. Let L(X), C(X), and B(X) denote the linear space of all linear
operators, the homogeneous set of all densely defined closed linear operators and the Banach
space of all bounded linear operators from X into itself, respectively. For any T ∈ L(X), we
denote by D(T), N(T), and R(T) the domain, the null space, and, respectively, the range of
T . The identity operator will be denoted by I.

As an important extension of the conventional Drazin inverse, the generalized Drazin
inverse in Banach algebra was introduced firstly by Koliha [1]. Later, this notion was
extended to closed linear operators by Koliha and Tran [2]. Recall that an operator S ∈ B(X)
is said to be the generalized Drazin inverse of T ∈ C(X) if R(S) ⊂ D(T), R(I − TS) ⊂ D(T)
and

ST = TS on D(T), STS = S, T(I − TS) is quasinilpotent. (1.1)
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An operator T ∈ C(X) that possesses a generalized Drazin inverse is said to be
generalized Drazin invertible, and its generalized Drazin inverse is denoted by Td. From
[3–5], we know that T is generalized Drazin invertible if and only if 0 is not an accumulation
of σ(T). In this case, we write Tπ = I − TTd for the spectral idempotent of T .

Perturbations of the conventional Drazin inverse and the generalized Drazin inverse
were studied inmany papers [3–13]. For example, Castro González andKoliha [3] introduced
the concept of T -compatible and gave the stability theorem of generalized Drazin inverse
under the inverse-compatible perturbation (Theorem 1.1). Let T ∈ C(X) be generalized
Drazin invertible. An operator δT ∈ B(X) is called T -compatible if it commutes with Tπ

and if the operator TπδT is quasinilpotent and commutes with T , that is,

TπδT = δTTπ, σ(TπδT) = {0}, TTπδT = δTTTπ. (1.2)

Theorem 1.1 (see [3]). Let T ∈ C(X) have the generalized Drazin inverse Td ∈ B(X) and δT ∈
B(X) be T -compatible. If I + TdδT : X → X is invertible, then T = T + δT is generalized Drazin

invertible and T
d
= Td(I + δTTd)−1 = (I + TdδT)−1Td.

In this paper, we investigate the stable perturbation of the generalized Drazin inverses
of closed linear operators in Banach spaces and obtain some new characterizations for the
generalized Drazin inverses to have prescribed range and null space. As special cases of
our results, we recover the perturbation theorems of Castro González and Koliha [3], Castro
González et al. [4], Wei and Wang [6], Rakočević and Wei [7].

2. Main Results

First we will characterize the invertibility of I + δTTd, which is inspired from [8].

Lemma 2.1. Let T ∈ C(X) have a generalized Drazin inverse Td ∈ B(X) and δT ∈ L(X) with
D(T) ⊂ D(δT). Then the following statements are equivalent:

(1) I + δTTd : X → X is bijective;

(2) I + TdδT : D(T) → D(T) is bijective;

(3) N(T) ∩ R(Td) = {0} and X = TR(Td)+̇N(Td),

where T = T + δT and +̇ denotes the algebraic direct sum.

Proof. (1) ⇒ (2). We first claim that I + TdδT : D(T) → D(T) is injective. In fact, if x ∈ D(T)
satisfies (I + TdδT)x = 0, then δT(I + TdδT)x = 0, that is,

(
I + δTTd

)
δTx = 0. (2.1)
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Combining it with statement (1), we obtain δTx = 0 and so x = −TdδTx = 0. Next, we will
show that I + TdδT : D(T) → D(T) is surjective, that is, for all q ∈ D(T), we need to find a
p ∈ D(T) such that (I + TdδT)p = q. Let B = Td(I + δTTd)−1, then

(
I + TdδT

)
BδTq =

(
I + TdδT

)
Td

(
I + δTTd

)−1
δTq

= Td
(
I + δTTd

)(
I + δTTd

)−1
δTq = TdδTq

(2.2)

and (I + TdδT)(I − BδT)q = (I + TdδT)q − TdδTq = q. Set p = (I − BδT)q, then p ∈ D(T) and
(I + TdδT)p = q. Hence, I + TdδT : D(T) → D(T) is bijective.

(2) ⇒ (3). If I + TdδT : D(T) → D(T) is bijective, let x ∈ N(T) ∩ R(Td), then there
exists y ∈ X satisfying x = Tdy and TTdy = Tx = 0. Hence

(
I + TdδT

)
Tdy = Tdy + TdδTTdy = TdTTdy + TdδTTdy = TdTTdy = 0. (2.3)

Thus Tdy = 0, that is, x = 0. Therefore, N(T) ∩ R(Td) = {0}. Next we will show TR(Td) ∩
N(Td) = {0}. Let q ∈ TR(Td) ∩N(Td), then there exists p ∈ X with q = TTdp. Hence

0 = Tdq = TdTTdp = Td(T + δT)Tdp

= TdTTdp + TdδTTdp = Tdp + TdδTTdp

=
(
I + TdδT

)
Tdp.

(2.4)

Then Tdp = 0 and q = TTdp = 0. Finally, we prove X = TR(Td) + N(Td). For all x ∈ X,
Tdx ∈ D(T). Since I + TdδT : D(T) → D(T) is bijective, we can find y ∈ D(T) such that
Tdx = (I + TdδT)y, that is, Tdx = (I − TdT)y + TdTy. Hence

Td
(
x − Ty

)
=
(
I − TdT

)
y ∈ R

(
Td

)
∩N

(
TdT

)
= {0}. (2.5)

Thus y = TdTy ∈ R(Td) and Tdx = TdTy, which implies x − Ty ∈ N(Td). Since x = Ty + (x −
Ty) ∈ TR(Td) +N(Td), we obtain X = TR(Td) +N(Td).

(3) ⇒ (1). IfN(T)∩R(Td) = {0} andX = TR(Td)+̇N(Td), we first prove that I +δTTd :
X → X is injective. In fact, if x ∈ X satisfies (I + δTTd)x = 0, then

TTdx = TTdx − x ∈ TR
(
Td

)
∩N

(
Td

)
= {0}, (2.6)

which means x = TTdx and TTdx = 0. Thus Tdx ∈ N(T) ∩ R(Td), that is, Tdx = 0. Hence
x = TTdx = 0. Next, we will show that I + δTTd : X → X is surjective. In fact, for all
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y ∈ X, since X = TR(Td) +N(Td), y can be expressed by y = TTdy1 + y2, where y1 ∈ X and
y2 ∈ N(Td). Hence

(
I + δTTd

)(
TTdy1 + y2

)
=
(
TTdy1 + y2

)
+
(
T − T

)
TdTTdy1

= TTdy1 + y2 + TTdy1 − TTdy1

= y2 + TTdy1 = y.

(2.7)

Therefore, I + δTTd : X → X is bijective.

Lemma 2.2. Let T ∈ C(X) have the generalized Drazin inverse Td ∈ B(X), and let δT ∈ L(X)
satisfyD(T) ⊂ D(δT) and T = T+δT ∈ C(X), then I+δTTd ∈ B(X). Further, if I+δTTd : X → X
is bijective, then its inverse (I + δTTd)−1 ∈ B(X) and

B = Td
(
I + δTTd

)−1
=
(
I + TdδT

)−1
Td : X −→ X (2.8)

is a well-defined bounded linear operator with R(B) = R(Td) and N(B) = N(Td).

Proof. Since Td is bounded and T is closed, by the Closed Operator Theorem, we know that
TTd is bounded and so is I + δTTd = I − TTd + TTd. Further, if I + δTTd : X → X is bijective,
it follows from the Inverse Operator Theorem that (I + δTTd)−1 ∈ B(X). By Lemma 2.1 and
(I + TdδT)Td = Td(I + δTTd), we can see that

B = Td
(
I + δTTd

)−1
=
(
I + TdδT

)−1
Td : X −→ R

(
Td

)
(2.9)

is a well-defined bounded linear operator. Easily, we can obtain R(B) = R(Td) and N(B) =
N(Td).

The following theorem points out that the generalized Drazin inverse with the
prescribed range and null space must possess the expression Td(I + δTTd)−1.

Theorem 2.3. Let T ∈ C(X) have the generalized Drazin inverse Td ∈ B(X), and let δT ∈ L(X)
satisfy D(T) ⊂ D(δT) and T = T + δT ∈ C(X). Then the following statements are equivalent:

(1) T is generalized Drazin invertible with T
π
= Tπ ;

(2) T is generalized Drazin invertible withN(T
d
) = N(Td) and R(T

d
) = R(Td);

(3) I + δTTd : X → X is bijective and

B = Td
(
I + δTTd

)−1
=
(
I + TdδT

)−1
Td (2.10)

is the generalized Drazin inverse of T ;

(4) T is generalized Drazin invertible with Td − T
d
= TdδTT

d
= T

d
δTTd;

(5) T is generalized Drazin invertible with Td − T
d
= T

d
δTTd.
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Proof. It is easy to see (1) ⇒ (2) and (4) ⇒ (5).

(2) ⇒ (3). Suppose that T is generalized Drazin invertible with N(T
d
) = N(Td) and

R(T
d
) = R(Td). We first show that I + δTTd : X → X is bijective. From Lemma 2.1, it suffices

to show N(T) ∩ R(Td) = {0} and X = TR(Td)+̇N(Td). Since T
d
is the generalized Drazin

inverse of T , we can obtainN(T)∩R(Td
) = {0} andX = R(TT

d
)⊕N(TT

d
) = TR(T

d
)⊕N(T

d
).

Hence

N
(
T
)
∩ R

(
Td

)
= {0}, X = TR

(
Td

)
⊕N

(
Td

)
. (2.11)

Next, byN(T
d
) = N(Td) and R(T

d
) = R(Td), we can obtain T

d
(I−TTd) = 0 and (T

d
T −I)Td =

0, that is,

T
d
= T

d
TTd, T

d
TTd = Td. (2.12)

Then T
d
+ T

d
TTd − T

d
TTd = Td, that is,

T
d(

I + δTTd
)
= T

d[
I +

(
T − T

)
Td

]
= Td. (2.13)

Therefore, T
d
= Td(I + δTTd)−1. By Lemma 2.2, we have T

d
= (I + TdδT)−1Td.

(3) ⇒ (4). Since the generalized Drazin inverse is unique, we get

T
d
= Td

(
I + δTTd

)−1
=
(
I + TdδT

)−1
Td. (2.14)

Then T
d
(I + δTTd) = Td and (I + TdδT)T

d
= Td. Hence

Td − T
d
= T

d
δTTd = TdδTT

d
. (2.15)

(5) ⇒ (1). We only need to prove TT
d
= TTd. In fact, by Td − T

d
= T

d
δTTd, we obtain

Td = T
d
(I + δTTd) and T

d
= (I − T

d
δT)Td. Hence

T
d
TTd = T

d
TT

d(
I + δTTd

)
= T

d(
I + δTTd

)
= Td,

T
d
TTd =

(
I − T

d
δT

)
TdTTd =

(
I − T

d
δT

)
Td = T

d
.

(2.16)

Thus

TT
d
= TT

d
TTd = TT

d
TdT = T

d
TTdT = TdT = TTd on D(T). (2.17)

Since D(T) is dense in X, TT
d
and TTd are bounded, we can get TT

d
= TTd and so T

π
=

I − TT
d
= I − TTd = Tπ .
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Remark 2.4. To guarantee T ∈ C(X), a general condition of T boundedness is often assumed,
see [14].

Theorem 2.5. Let T ∈ C(X) have the generalized Drazin inverse Td ∈ B(X) and δT ∈ L(X) satisfy
D(T) ⊂ D(δT) and T = T + δT ∈ C(X). Assume that I + δTTd : X → X is bijective, then the
following statements are equivalent:

(1)

B = Td
(
I + δTTd

)−1
=
(
I + TdδT

)−1
Td (2.18)

is the generalized Drazin inverse of T ;

(2) TTd = TTdTTd, TdT = TdTTdT and limn→+∞‖T
n
(I − TdT)‖1/n = 0;

(3) TTdT = TTdT and limn→+∞‖T
n
(I − TdT)‖1/n = 0;

(4) TTdT = TTdT and TTπ is quasinilpotent;

(5) TTd = TTdTTd, TdT = TdTTdT and TTπ is quasinilpotent.

In this case, T
π
= Tπ and

∥∥∥∥T
d − Td

∥∥∥∥ ≤
∥∥∥Td

∥∥∥ ·
∥∥∥δTTd

∥∥∥ ·
∥∥∥∥
(
I + δTTd

)−1∥∥∥∥. (2.19)

Proof. (1) ⇒ (2). If B is the generalized Drazin inverse of T , then by Theorem 2.3, we get
T
π
= Tπ and so TB = TTd and BT = TdT . Hence TTd = TTd[I + (T − T)Td] = TTdTTd and

TdT = [I + Td(T − T)]TdT = TdTTdT . Also, for all x ∈ D(T),

[
T
(
I − TB

)]2
x =

[
T
(
I − TB

)
T
(
I − TB

)]
x

= T
(
I − TB

)
T
(
I − BT

)
x

= TT
(
I − BT

)(
I − BT

)
x

= T
2(
I − BT

)
x

= T
2(
I − TdT

)
x.

(2.20)

Thus we obtain T(I − BT)x = Tx − TBTx = (I − TB)Tx ∈ D(T) and

[
T
(
I − TB

)]3
x =

[
T
(
I − TB

)]2[
T
(
I − TB

)]
x

=
[
T
(
I − TB

)]2[
T
(
I − BT

)]
x
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= T
2(
I − BT

)
T
(
I − BT

)
x

(
by (2.20)

)

= T
2(
I − TB

)
T
(
I − BT

)
x

= T
3(
I − BT

)(
I − BT

)
x

= T
3(
I − BT

)
x

= T
3(
I − TdT

)
x.

(2.21)

Hence for all n ∈ N,

[
T
(
I − TB

)]n
= T

n(
I − TdT

)
on D(T). (2.22)

Therefore limn→+∞‖T
n
(I − TdT)‖1/n = limn→+∞‖[T(I − TB)]n‖1/n = 0.

(2) ⇒ (1). It follows from Lemma 2.2 that B = Td(I + δTTd)−1 = (I + TdδT)−1Td is a
well-defined bounded linear operator with R(B) = R(Td) ⊂ D(T) = D(T). By TTd = TTdTTd

and TdT = TdTTdT , we can verify

TB = TTd
(
I + δTTd

)−1

= TTdTTd
(
I + δTTd

)−1

= TTd(T + δT)Td
(
I + δTTd

)−1

=
(
TTd + TTdδTTd

)(
I + δTTd

)−1

= TTd
(
I + δTTd

)(
I + δTTd

)−1
= TTd

(2.23)

and by Lemma 2.1,

BT =
(
I + TdδT

)−1
TdT

=
(
I + TdδT

)−1
TdTTdT

=
(
I + TdδT

)−1
Td(T + δT)TdT

=
(
I + TdδT

)−1(
TdT + TdδT

)
TdT

=
(
I + TdδT

)−1(
I + TdδT

)
TdT = TdT.

(2.24)
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Thus TB = BT on D(T). Obviously, R(I − TB) = R(I − TTd) ⊂ D(T) = D(T). Also, we can see

BTB = Td
(
I + δTTd

)−1
TTd

(
I + δTTd

)−1

= Td
(
I + δTTd

)−1
(T + δT)Td

(
I + δTTd

)−1

= Td
(
I + δTTd

)−1(
TTd + δTTdTTd

)(
I + δTTd

)−1

= Td
(
I + δTTd

)−1(
I + δTTd

)
TTd

(
I + δTTd

)−1

= Td
(
I + δTTd

)−1
= B.

(2.25)

To the aim, we need show T(I − TB) is quasinilpotent. In fact, as in (1) ⇒ (2), we can obtain
(2.22) and so

lim
n→+∞

∥∥∥
[
T
(
I − TB

)]n∥∥∥
1/n

= lim
n→+∞

∥∥∥Tn(
I − TdT

)∥∥∥
1/n

= 0. (2.26)

Therefore, B is the generalized Drazin inverse of T .
(2) ⇔ (3). If TTd = TTdTTd and TdT = TdTTdT , then

TTdT = TTdTTdT = TTdT. (2.27)

Conversely, if TTdT = TTdT , then

TTd = TTdTTd = TTdTTd, TdT = TdTTdT = TdTTdT. (2.28)

(3) ⇔ (4). It follows from TTdT = TTdT that

(
TTπ

)2
= TTπTTπ = T

(
I − TTd

)
TTπ

= T
(
T − TTdT

)
Tπ = T

(
T − TTdT

)
Tπ

= T
2(
I − TdT

)
Tπ = T

2(
I − TdT

)
on D(T)

(2.29)

and then for all n ∈ N,

(
TTπ

)n
= T

n(
I − TdT

)
on D(T). (2.30)

Therefore, TTπ is quasinilpotent if and only if limn→+∞‖T
n
(I − TdT)‖1/n = 0.



Abstract and Applied Analysis 9

(4) ⇔ (5). It is similar to (2) ⇔ (3). In this case,

∥∥∥B − Td
∥∥∥ =

∥∥∥∥Td
(
I + δTTd

)−1 − Td

∥∥∥∥

≤
∥∥∥∥TdδTTd

(
I + δTTd

)−1∥∥∥∥

≤
∥∥∥Td

∥∥∥ ·
∥∥∥δTTd

∥∥∥ ·
∥∥∥∥
(
I + δTTd

)−1∥∥∥∥.

(2.31)

Remark 2.6. Theorems 2.3 and 2.5 generalize the main results in [3–8, 10, 12, 13].

As applications, we recover some known results in [3, 6, 7].

Corollary 2.7 (see [3]). Let T ∈ C(X) have the generalized Drazin inverse Td ∈ B(X) and δT ∈
B(X) be T -compatible. If I + TdδT : X → X is invertible, then T = T + δT is generalized Drazin

invertible and T
d
= Td(I + δTTd)−1 = (I + TdδT)−1Td.

Proof. It is easy to see T ∈ C(X) and TTdT = TTdT . Since

TTπ = TTπ + δTTπ (2.32)

is the sum of two commuting quasinilpotent operators, we know that TTπ is quasinilpotent.
Hence by Theorem 2.5, we can get what we desired.

Corollary 2.8. Let T ∈ C(X) have the generalized Drazin inverse Td ∈ B(X) and δT ∈ L(X) satisfy
D(T) ⊂ D(δT) and T = T + δT ∈ C(X). Assume that I + δTTd : X → X is bijective and

δT = TTdδT = δTTdT, (2.33)

then B = Td(I + δTTd)−1 = (I + TdδT)−1Td is the generalized Drazin inverse of T = T + δT .

Proof. If δT = TTdδT = δTTdT , then TTdT = TTdT and TTπ = TTπ is quasinilpotent. From
Theorem 2.5, B is the generalized Drazin inverse of T .

Remark 2.9. The condition δT = TTDδT = δTTDT is called the condition (W) in [6, 7], which
appear as a sufficient condition to ensure that TD(I + δTTD)−1 is the Drazin inverse of T .

The following theorem shows that the above condition (W) is exactly the stable
characterization of group inverse. Recall that an operator S ∈ B(X) is said to be the group
inverse of T ∈ C(X) if S satisfies R(S) ⊂ D(T) and

TST = T ; STS = S, ST = TS on D(T). (2.34)

The group inverse of T is unique if it exists, which is always denoted by T#.
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Theorem 2.10. Let T ∈ C(X) have the group inverse T# ∈ B(X) and let δT ∈ L(X) satisfy D(T) ⊂
D(δT) and T = T + δT ∈ C(X). Assume that I + δTT# : X → X is bijective, then

B = T#
(
I + δTT#

)−1
=
(
I + T#δT

)−1
T# (2.35)

is the group inverse of T if and only if

δT = TT#δT = δTT#T. (2.36)

In this case, T
π
= Tπ , R(T) = R(T) and N(T) = N(T).

Proof. If δT = TT#δT = δTT#T , then T = TT#T = TT#T and

TTπ = T
(
I − TT#

)
= T

(
I − T#T

)
= 0 on D(T). (2.37)

Hence TTπ = 0. And by (4) in Theorem 2.5, we know that B is the generalized Drazin inverse
of T with TB = TT# and BT = T#T . Hence TBT = TT#T = T . Therefore, B is also the group
inverse of T . Conversely, if B is the group inverse of T , then

R
(
T
)
= R

(
TB

)
= R

(
BT

)
= R(T#T) = R

(
TT#

)
= R(T), (2.38)

N
(
T
)
= N

(
BT

)
= N

(
TB

)
∩D

(
T
)
= N

(
TT#

)
∩D(T) = N

(
T#T

)
= R

(
I − T#T

)
. (2.39)

Hence

T − TT#T =
(
I − TT#

)
T = 0, (2.40)

T − TT#T = T
(
I − T#T

)
= 0. (2.41)

Thus T = TT#T = TT#T , that is, δT = TT#δT = δTT#T .

The following corollary extends the Proposition 4.2 in [3] to the case of closed linear
operators. Recall that T ∈ C(X) is an EP (Equal Projections) operator if T has the Moore-
Penrose inverse T† ∈ B(X) satisfying T†T = TT† on D(T).

Corollary 2.11. Let X be a Hilbert space and T ∈ C(X) be an EP operator. Let δT ∈ L(X) satisfy
D(T) ⊂ D(δT) and T = T + δT ∈ C(X). Assume that I + δTT† : X → X is bijective, then T is also
an EP operator and

B = T†
(
I + δTT†

)−1
=
(
I + T†δT

)−1
T† (2.42)
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is its Moore-Penrose inverse if and only if

δT = TT†δT = δTT†T. (2.43)

In this case, BT = TB on D(T), T
π
= Tπ , R(T) = R(T) and N(T) = N(T).

Proof. If T is an EP operator and B is its Moore-Penrose inverse, then B is also its group
inverse. By Theorem 2.10, we get δT = TT†δT = δTT†T . Conversely, if δT = TT†δT = δTT†T ,
then by Theorem 2.10 again, B is the group inverse of T , TB = TT† and BT = T†T . Therefore,
B is the Moore-Penrose inverse of T .

To illustrate our results, we give an example of a closed EP operator.

Example 2.12 (see [15]). Let

L2[0, 1] =

{
f, f measurable complex − valued on [0, 1],

∫

[0,1]

∣∣f(x)∣∣2dx < ∞
}

(2.44)

be the Hilbert space with the inner product:

〈f, g〉 =
∫

[0,1]
f(x)g(x)dx, f, g ∈ L2[0, 1]. (2.45)

Set t : [0, 1] → C by

t(x) =

⎧
⎨
⎩
1 x = 0
1√
x

0 < x ≤ 1
(2.46)

and define the maximal operator of multiplication T by t on L2[0, 1], that is,

Tf = tf, for f ∈ D(T) =
{
f ∈ L2[0, 1], tf ∈ L2[0, 1]

}
, (2.47)

then T is a densely defined closed linear operator [16]. Since |t(x)| ≥ 1, for all x ∈ [0, 1],
R(T) = L2[0, 1] and T has a bounded inverse T−1 : L2[0, 1] → L2[0, 1] defined by

T−1g = t1g, ∀g ∈ L2[0, 1], (2.48)

where

t1(x) =

{
1 x = 0,√
x 0 < x ≤ 1.

(2.49)

Therefore, T is a closed operator on L2[0, 1] with a bounded inverse T−1, which is both the
Moore-Penrose inverse and the group inverse of T .
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[3] N. Castro González and J. J. Koliha, “Perturbation of the Drazin inverse for closed linear operators,”
Integral Equations and Operator Theory, vol. 36, no. 1, pp. 92–106, 2000.
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