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We study a modified Newton’s method with fifth-order convergence for nonlinear equations in
Banach spaces. We make an attempt to establish the semilocal convergence of this method by using
recurrence relations. The recurrence relations for the method are derived, and then an existence-
uniqueness theorem is given to establish the R-order of the method to be five and a priori error
bounds. Finally, a numerical application is presented to demonstrate our approach.

1. Introduction

Many scientific problems can be expressed in the form of a nonlinear equation
F(x) =0, (1.1)

where F : Q C X — Y is a nonlinear operator on an open convex subset Q of a Banach space
X with values in a Banach space Y.

The Newton’s method [1, 2], which has quadratically order convergence, is one of
the most well-known methods for solving nonlinear equations. Recently, numerous variants
of Newton’s method with high-order convergence are developed in the literature [3-7];
these methods improve the local order of convergence of Newton’s method by an additional
evaluation of the function. In this paper, we consider the semilocal convergence for the
method proposed in [7]. We first extend this method to Banach spaces and write it as
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Uy = Xy — [nF(xy),
Zn = Xy — [F’(yn)]_lF(xn),

Te(Xn, v) = BF (y) = 2F (x)] "' F'(v),
Xn+l = Zn — ]F(xn/ yn)rnP(Zn)r

(1.2)

where I is the identity operator on X, T, = [F'(x,)] ™", Y = %0 + (1/2) (1t — %)

In many papers, the convergence of iterative methods for solving nonlinear operator
equation in Banach spaces is established from the convergence of majorizing sequences,
which is obtained by applying the real function to a polynomial [8-10]. An alternative
approach is developed to establish this convergence by using recurrence relations. For
example, the recurrence relations are used in establishing the convergence of Newton’s
method [2] and some high-order methods [11-17]. In this paper, we consider the semilocal
convergence of the method given by (1.2) using the recurrence relations. We construct the
system of recurrence relations and prove the convergence of the method, along with an error
estimate. Finally, numerical results are presented to demonstrate our approach.

2. Preliminary Results

Let xo € Q, and the nonlinear operator F : Q C X — Y be continuously second-order Fréchet
differentiable, where € is an open set and X and Y are Banach spaces. We assume that

(C1) IToF (xo)|l < 7,
(C2) ||IToll < B,
(C3) |[F"(x)[[ <M, x€Q,

(C4) there exists a positive real number N such that

IF"G) = F" ()| < Nljx-wll, vxyeQ. (2.1)

Now, we define the following scalar functions which will be often used in the later
developments. Let

(ts)—z_t £ + £ +§s +—2
S T PP I S T o
1
h(t,s) = ——
() 1-tg(t,s)’

(2.2)

t
o(t,s) =2(1_t)2 [2(2—t)2+4—2t+4s
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Let p(t) = tg(t,s) — 1, and let o(s) be the smallest positive zero of the scalar function p(t)
for s € (0,5). Then, using MATLAB, we obtain that o(s) is decreasing and o(s) > 0 for all
s € (0,5) and

2
max o(s) = 0.6117085589952558 < 3 (2.3)

0<s<5

Some properties of the functions defined above are given in the following lemma.

Lemma 2.1. Let the real functions g, h, and ¢ be given in (2.2). Then
(a) g(t,s) and h(t,s) are increasing and g(t,s) > 1, h(t,s) > 1 forall t € (0,0(s)) and
s€(0,5),
(b) ¢(t,s) is increasing for all t € (0,0(s)) and s € (0,5),

(c) g(6t,6%s) < g(t,s), h(6t,0%s) < h(t,s), and p(6t,6%s) < O*¢p(t,s) for 6 € (0,1),t €
(0,0(s)), and s € (0,5).

Assume that the conditions (C1)—(C4) hold. we now denote 719 = 77, fo = B, a0 = MPotjo,
by = Nﬂoqg, and cg = h(agp, bo)p(ag, by). Let ap < o(s) and h(ap, bg)cy < 1, then we can define
the following sequences for n > 0:

Nn+1 = Cnlln, (2.4)

Pt = h(an, bn)pn, (2.5)

ans1 = MPuiifna1, (2.6)

bus1 = Nty (2.7)

Cns1 = h(ans1, bpi1)@(ans1, busa). (2.8)

From the definition of a,1, b,,+1, (2.4) and (2.5), we also have

ans1 = h(ay, by)cnan, (2.9)
bus1 = h(an, by)caby. (2.10)
Nextly we will study some properties of the previous scalar sequences defined in
(2.4)-(2.10), and later developments will require the following lemma.
Lemma 2.2. Lef the real functions g, h, and ¢ be given in (2.2). If
ap < o(s), h(ag, bo)co < 1, (2.11)
then one has
(a) h(ag,bp) >1and c, <1forn >0,

(b) the sequences {1}, {an}, {bn}, and {c,} are decreasing while {f,} is increasing,
(c) g(an, bp)a, <1and h(a,, b,)c, <1 forn >0.
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Proof. By Lemma 2.1 and (2.11), h(agp, bg) > 1 and ¢, < 1 hold. It follows from the definitions
that 71 < 79, a1 < ag, by < bp. Moreover, by Lemma 2.1, we have 1 < h(ay, b1) < h(ay, by) <
h(ag, bg) and (a1, b1) < ¢(ai, by) < p(ao, by). This yields ¢; < ¢, p1 > Po, and (b) holds. Based

on these results we obtain g(ai,bi)ar < g(ao, bo)ap < 1 and h(ai, bi)c1 < h(ap, bo)co < 1 and
(c) holds. By induction we can derive that the items (a), (b), and (c) hold. O

Lemma 2.3. Under the assumptions of Lemma 2.2 and defining y = h(ao, bo)co, then
cn <Ay, m>0, (2.12)

where A = 1/h(ay, by). Also, for n > 0, one has

n
[ Tei < Amty® b/, (2.13)
i=0

Proof. By the definition of a,.1 and b, given in (2.9)-(2.10), we obtain a; = h(ao, by)coap =
Yao, b1 = h(ag, bo)ciby < y*by; by Lemma 2.1 we have

s h<Y‘101Y2b0>‘/’<Y‘101Y2b0> <y*h(ao, bo)p(ao, bo) =y° co = Ay”. (2.14)

Suppose ¢k < )Ly5k, k < 1. Then, by Lemma 2.2, we have a1 < ak, bx+1 < by and h(ag, by)ck <
1. Thus,

Chs1 < h(ﬂk,bk)q)<h(ak, bk)ckakrh(ak/bk)cibk>

< h(ax, b (h(ax, b cxar, h (ax, bi)ciby )

(2.15)
< I’ (ax, be)cio(ak, bi) = h*(ax, bi)c}
< )LYSkH.
Therefore, it holds that ¢, < Ay®", n > 0.
By (2.12), we get
n n X n . 1
[T <TI0y = amty2im® = ymty G074 > 0. (2.16)
i=0 i=0
This shows that (2.13) holds. The proof is completed. O

Lemma 2.4. Under the assumptions of Lemma 2.2, let y = h(ag, bo)co and A = 1/h(ao, by). The
sequence {1, } satisfies

Mo <Ay G D4 > 0. (2.17)
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Hence, the sequence {1, } converges to 0. Moreover, for any n > 0, m > 1, it holds that
n+m 1-— )Lm+1Y5”(5"’+3)/4

< 5D/ _ 21
D <y i (2.18)

i=n

Proof. From the definition of sequence {7, } given in (2.4) and (2.13), we have

n-1

fn = CntTln-1 = CniCnalfna ="+ = rz<1_[ci> < Aty (2.19)

i=0

Because A < 1 and y < 1, it follows that 7, — 0 as n — oo; hence, the sequence {7}
converges to 0.
Since

rin)tl 5/4<)Ln 5/4+Y <Z)‘I 511/4>

i=n i=n+1

n+m-1
_)Ln 5" /4+/\Y ( Z /\1 5’/4) (220)

n n il ; i n+m
— )LnYS /4 +)‘Y5 <Z)‘IY5 /4 _)Ln+mY5 /4>/

i=n

where n > 0, m > 1, we can obtain

n+m i 5/ ; 5n/41 _)‘m+1y5"(5’”+3)/4
ZA YA < Yy T (2.21)
1=n
Furthermore,
n+m ntm : ntm .
Z’li < HZAlY@ -1)/4 _ 7”;1/42)3},5 /4
- o (222)
< Ay DA L s
- 1- Ay
Therefore, >.,” 7, exists. The proof is completed. O

3. Recurrence Relations for the Method

We firstly give an approximation of the operator F in the following lemma, which will be
used in the next derivation.
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Lemma 3.1. Assume that the nonlinear operator F : Q C X — Y is continuously second-order
Fréchet differentiable, where Q is an open set and X and Y are Banach spaces. Then, one has

1
F(z,) = fo F" (1t + 2z — 1)) (1 = )t (20 — 100

[Pt = ) = ) ()] [F () = F o] = 0
3.1)

1
+ f [F" (30 + Hun — xn)) = F" (x2)] (1 = £) At (1 — x)°
0

1 ! " _n 1 _ _ 2
+ EJO [F (xy) - F <xn + 2t(un xn)>]dt(un Xn)%,
1
F(xp1) = 4[0 [F" (xn + t(ttn — X)) = F" (xn)] (n = %) At (X1 — 23)

- g fol [F” (x,, + %t(un - xn)) - F”(xn)] (Un = xn)dt (Xps1 = Zn)

= 2F" (%) (Yn — xn) [I + 3H (xn, Yn) ] 71H(xn,yn)l"n1-"(zn) (3.2)

! I: [1:" (xn e Lt - xn)) _ F"(xn)] (14 = ) AT, F ()

1
+ f [F'(zn + t(xXpe1 — 2n)) — F' ()| At (xns1 — Zn),
0

where H (xy, yn) =1y [F,(]/n) = F'(x,)] and Jr(xy, yn) =1-2[I+3H(xy,, ]/n)]_lH(xnr ]/n)

Proof. By the Taylor Expansion, we obtain
1
F(Zn) = F(un) + F,(un)(zn - un) + J‘ F”(un + t(zn - un))(l - t)dt(zn - un)zl (33)
0
F(u,) = F(x,) + F' () (Uy, — x) + %F"(xn)(un —x,)?
1 (3.4)
+ f [F" (3 + t(un — %)) — F"(x2)] (1 = £) At (u, — xn)?,
0

1
Fun) = F(y) + | P+ 0= 9) (0= )t

F'(yn) = F'(xn) + %F”(xn)(un - X)) + % f: [F”(xn + %t(u,1 - xn)> - F"(xn)] dt(u, — x,),
(3.5)



Journal of Applied Mathematics 7

and we obtain

F,(un)(zn - un) = Fl(]/n) (Zn - un) + J‘(} F”(yn + t(un - yn)) (un - yn)dt(zn - un)r
(3.6)

[F,(yn) - F,(xn)] (n — xp) = %F”(xn)(un - xn)z
1 , (3.7)
t5 Io [F" (xn + Et(u" - xn)> - F"(xn)] dt(u, — x,)%.

By the first two steps of method given in (1.2) and (3.4), (3.6), (3.7), we obtain

F' () (zn — Un) = —%F"(xn)(un - xn)°
1 ! " I 1 _ _ 2
+ 3 ,[0 [F (xy) - F <xn + 2t(un xn)>] dt(u, — xy) (3.8)

1
+ fo F" (Y + t(n = Yn)) (tn — Yn) dt(zy — 1ty).

Substituting (3.4) and (3.8) into (3.3), we obtain (3.1).
We now consider F(x,.1). Since

[3PI (]/n) - ZFl(xn)] (xn+1 - Zn) + [F,(yn) - F,(xn)]rnp(zn) + F(Zn) =0, (3-9)

using Taylor’s formula, we have

1
F(xp41) = F(zy) + F (1) (X101 — 20) + fo [F'(zn + t(Xpe1 — 2n)) — F'(n)] dt(xns1 — zn)
= [F,(un) - F,(yn)] (xn+1 - Zn) - Z[FI (]/n) - F,(xn)] (xn+1 - Zn)

1
= [F'(yn) = F'(2xn) | TnF (zn) + ’[0 [F'(zn + t(Xpa1 = 2Zu)) = F' (1) ] dt(xns1 = Zn).
(3.10)

Similarly, we obtain

1
F'(u,) = F'(x,) + F" () (uy, — x,) + f [F" (on + t(un — x)) = F"(x)] (n — x)dt,  (3.11)
0
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It follows that

1

Fl(un) - F/(yn) = %F”(xn)(un —Xp) + IO [F"(xn +t(uy — xp)) - F,/(xn)] (Un — xp)dt

- % J‘: [F" <xn + %i(u,1 - xn)> - F"(xn)] (un — xp)dt,

1
F'(yn) — F'(xp) = %F"(xn)(un - x,) + % L [F”<xn + %t(un - xn)> - F"(xn)] (un — x,) dt.
(3.12)

Substituting (3.12) into (3.10), we can obtain (3.2). The proof is completed. O

We denote B(x,r) = {y € X : |ly—x|| <r}and B(x,r) = {y € X : |ly — x|| < r} in this
paper.

In the following, the recurrence relations are derived for the method given by (1.2)
under the assumptions mentioned in the previous section.

For n = 0, the existence of Iy implies the existence of u, yo. This gives us

[0 = x| = [IToF (x0) | < 170, (3.13)

and this means that uo, yo € B(xo, Rrj), where R = g(ao, by) /(1 —cp). By the initial hypotheses,
we have

1 1
I1H (0, yo) Il < ITolll ' (x0) = F' (yo)ll < 5 MlITolllluo = xoll < 5 ao- (3.14)

Because of the assumption ay < o(s) < 2/3, by the Banach lemma [2] it follows that

1

I1[2+3H (o, 90)] 1 £ T3 7700 (3.15)
It is followed that
| Tr (0, yo) || <1 +2[|[I + 3H(xo,yo)]_1||||H(x0,y0)|| <1+ 7 %aSOaO (3.16)
Consequently zj is well defined and
120 = xoll < [F'(0)] " F(xo)ll < I [F' ()] " F' (x0) ITo F (x0) || < Mo- (3.17)

2—a0
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It is similar to obtain

Iz0 - woll = I[F' (o) ™" = To] F(xo)|
= IIF'(y0)”™" [F'(x0) = F' (o) | FoF (o)

L (3.18)
<IIF'(yo) " IN[F'(x0) = F'(yo) [ IITo F (x0)

By Lemma 3.1, we can get

1 o 3
IF(zo)|l < EM”ZO —up|l* + M?||F' (o)™ Illluo — wollllyo — xolllluo — xoll + ZN”uO - xolP,
(3.19)

1 3
IF(x1)]| < §M||x1 - zo* + <M||Zo — up|| + §N||u0 - xollz) llox1 = zoll- (3.20)

Therefore, we have

2—ag | ap ap 2 a% 3
ol < < = = :
llxx1 = zoll < (1T (20, yo) Tl F (zo) |l < 2 3a, [ > <2_ ao> + 22-ay) + 41?0 Mo, (3.21)

ll1 = xoll < [l21 = 2ol| + [1z0 = xol| < g(ao, bo)o- (3.22)

From the assumption ¢y < 1/h(ao, by) < 1, it follows that x; € B(xy, Rrp).
By ap < o(s) and g(t, s) is increasing in t € (0,0(s)) and s € (0,5), we have

I = ToF' (x1) || < [IToll[|F'(x0) = F'(x1)

(3.23)

< Mpollx1 = xoll < aog(ao, bo) <1,

and it follows by the Banach lemma [2] that T'; = [F/(x;)] " exists and
Il € =P = (a0, by = . (G24)

1-apg(ao, bo)
Then, from (3.20) and (3.24), we have
1 = 2]l = [T F (ea) || < [Tl F (o)

(3.25)

< h(ao, bo)y(ao, bo)no = cotpo = 11
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Because of g(ag, bp) > 1, we obtain

le1 = xol| < [Jur = x1]| + [|x1 = xo0]|
< (g(ag, bo) + co) 1o (3.26)

< g(ao, bo)(1 +co)n < Ry,

which shows uy, 11 € B(xo, Ry).
In addition, we have

MI|T1|[IT1F (x1) || < h(ao, bo)coao = a1,
(3.27)
NI|ITy[[|IT1 F (x1) 1> < h(ao, bo)cbo = by.

Repeating the above derivation, we can obtain the system of recurrence relations given in the
next lemma.

Lemma 3.2. Let the assumptions and the conditions (C1)-(C4) hold. Then, the following items are
true for all n > O:

(i) there exists T, = [F'(x,)] ™" and ||Ty| < Bu,

(i) ([T F (xn) || < 712,

(iii) M|Tu[l[ITF (xn)l < an,

(iv) NIIT[[[ITnF (xu) | < bn,

(V) lltns1 = xnll < g(@n, bu)11n,

(vi) ||l¢ns1 = xol| < Ry, where R = g(ao, by) /(1 - cp).

Proof. The proof of (I)-(V) follows by using the above-mentioned way and invoking the
induction hypothesis. We only consider (VI). By (V) and Lemma 2.4, we obtain

n
llxns1 = x0ll < Z||xi+1 - xill

pary
< Zg(ai,bi)ﬂi

= (3.28)
< g(ao,bo)Zﬂi

i=0

1- J\n+1y(5"+3)/4

< 8(a0, bo)1——— % < Rn.

So the lemma is proved. O
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4. Semilocal Convergence
Lemma 4.1. Let R = g(ag, bo)/ (1 —co). If h(ao, bo)co < 1, then R <1/ ay.

Proof. Since

1

cp < —— =1-agg(ag, by), 4.1
0 < (a0, o) 08(ao, bo) (4.1)

we obtain R < 1/ ay. O

Now we give a theorem to establish the semilocal convergence of (1.2), the existence
and uniqueness of the solution, and the domain in which it is located, along with a priori
error bounds, which lead to the R-order of convergence at least five of iteration (1.2).

Theorem 4.2. Let F : Q ¢ X — Y be a nonlinear two times Fréchet differentiable operator in an
open convex subset € of a Banach space X with values in a Banach space Y. Assume that xo € &
and all conditions (C1)—-(C4) hold. Let ay = Mpn, by = Nﬁqz, and ¢o = h(ao, bo)y(ag, by) satisfy
ag < o(s) and h(ag,bo)co < 1, where g, h, and ¢ are defined by (2.2). Let B(xo, Rn) C Q, where
R = g(ao, bo)/(1 = co), then, starting from xo, the sequence {x,} generated by the method (1.2)
converges to a solution x* of F (x) with x,, x* belonging to B(xo, Ry) and x* being the unique solution
of F(x) in B(xo, (2/Mp) — Rn) N Q. Moreover, a priori error estimate is given by

I, — x| < S b)Y

4.2
< (42)

where y = h(ag, by)co and A = 1/h(ay, by).

Proof. By Lemma 3.2, the sequence {x,} is well defined in B(xy, R7). Now we prove that {x,}
is a Cauchy sequence. Since

n+m-1
| %nm — xnl| < Z i1 — x|

i=n

n+m-1

< Z g(ai, bi)n;
(4.3)

n+m-1

< g(ao, bo) Z i

i=n
1— )Lm},sn(sm*1+3)/4
1-Ay% ’

(5"-1)/4

< g(ao, bo)n\"y

it follows that {x,} is a Cauchy sequence, and hence the sequence {x,} is convergent. So there
exists an x* such that lim,, _, . x,, = x*.
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By letting n =0, m — oo in (4.3), we obtain

[l™ = x| < Ry (4.4)

This shows that x* € B(xy, Ryp).
Now we prove that x* is a solution of F(x) = 0. Since

ITollIlF (en) | < ITwl[IIF ()l < 7, (4.5)

by letting n — oo in (4.5), we obtain ||F(x,)|| — 0 since g(a,, b,) < g(ao, by) and 17, — 0.
Hence, by the continuity of F in ©Q, we obtain F(x*) = 0.

We prove the uniqueness of x* in B(xy, (2/Mp) — Rn) N Q. Firstly we can obtain x* €
B(xo, (2/Mp) — Rn) N Q, since it follows by Lemma 3.2 that

2 2 1
M—ﬁ—Rq— <——R>7]>a—011>R71, (4.6)

and then B(xy, Ry) C B(xo, (2/Mp)—Rn)NQ. Let x** be another zero of F(x) in B(xy, (2/Mp)—-
Rn) N Q. By Taylor theorem, we have

1

0=F(x")-F(x") = J- F'((1-t)x* + tx™)dt (™ — x¥). (4.7)
0
Since
1 1
IToll f [F'((1 = t)x" +tx™) = F'(x0)] dt|| < Mﬂf [(1 = B)llx™ = xol| + t|lx™ — xol|]dt
’ ’ (4.8)
Mp 2
<T Rq+M—ﬂ—RrZ] =1,

it follows by the Banach lemma that j’é F'((1 - t)x* + tx*™)dt is invertible and hence x** = x*.
Finally, by letting m — oo in (4.3), we obtain (4.2) and furthermore

g(ao, bo)n < 1/4>5". (4.9)

— x* < = -

This means that the method given by (1.2) is of R-order of convergence at least five. This ends
the proof. O



Journal of Applied Mathematics 13

5. Numerical Example

Let X = C[0, 1] be the space of continuous functions defined on the interval [0, 1], with the
max-norm, and consider the integral equation F(x) = 0, where

1 (L
F(x)(s)=x(s)-1-= f scos(x(t))dt, (5.1)
2 Jo

with s € [0,1], x € Q = B(0,2) C X. Integral equations of this kind (called Chandrasekhar
equations) arise in elasticity or neutron transport problems.
It is easy to obtain the derivatives of F as

1
F'(x)y(s) = y(s) - % fo ssin(x(t))y(t)dt, yeQ,

) (5.2)
1
Pya(s) = - [ scostxziar,  yzeQ
0
The derivative F” satisfies
" 1
IF' )l <5 =M, x€Q, (5.3)
and the Lipschitz condition with N =1/2
" " 1
IF"(x) - F'(pIl < sllx-yll, xyeQ (54)
since the norm is taken as max-norm.
Starting at xo(t) = 4/3, we have
1! 1 4
IF(x0)|| = ||z | scos(xo(t))dt|| < = cos =, (5.5)
2 ), 2 3
since
) 1. 1 . 4
II = F'(x0)|| = ||z | ssin(xp(t))dt|| < =sin—, (5.6)
2 ) 2 3
and by the Banach lemma that Iy exists and
IToll € 5o = 57)
o =2-sin@4/3) " '
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Table 1: Results of recurrence relations.
n Mn ﬁn an bn Cp
0 2.2882¢ — 001 1.9454 2.2257e — 001 5.0928¢ — 002 1.3343e — 002
1 3.0530e — 003 2.6520 4.0483e — 003 1.2360e — 005 4.7865¢ — 010
2 1.4613e — 012 2.6628 1.9456e - 012 2.8432¢ — 024 2.5141e — 047
3 3.6740e — 059 2.6628 4.8916e — 059 1.7972e — 117 1.0045e — 233
4 3.6904e — 292 2.6628 4.9134e — 292 0 0
It follow that
cos(4/3)
IyF <————— = .
IToF (xo) || < 37— sin(3/3) (5.8)
Consequently, we obtain
cos(4/3
ao = Mpn = .(—)2,
(2 —sin(4/3))
cos?(4/3 5.9
bo=Nﬁ112=—.( )3, (59)
(2 -sin(4/3))
co = h(ao, bo)p(ao, bo),
which satisfy
2
ap = 0.22257070108520 < Ir})ax o(b,) = 0.6034780649041629 < 3
n (5.10)

coh(ap, by) = 0.01818885859745 < 1.

This means that the hypothesis of Theorem 4.2 is satisfied. Hence, the recurrence relations for
the method given by (1.2) are demonstrated in Table 1. Besides, the solution x* belongs to
B(xo, Rn) = B(4/3,0.27761986977716) C Q, and it is unique in B(4/3,1.77850432749622) N Q.

6. Conclusions

A family of recurrence relations is developed for establishing the semilocal convergence of
a modified Newton’s method (1.2) used for solving F(x) = 0 in Banach spaces. Based on
these recurrence relations, an existence uniqueness theorem is established to show the R-
order convergence of the method to be five. Also a priori error bounds are given. A numerical
example is worked out to demonstrate our approach and show that our method can be of
practical interest.
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