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Suppose that X is a separable normed space and the operators A and Q are bounded on X. In this
paper, it is shown that if AQ = QA, A is an isometry, and Q is a nilpotent then the operator A +Q
is neither supercyclic nor weakly hypercyclic. Moreover, if the underlying space is a Hilbert space
andA is a co-isometric operator, then we give sufficient conditions under which the operatorA+Q
satisfies the supercyclicity criterion.

1. Introduction

Let x be a vector in a separable normed spaceX and T an operator onX. The orbit of x under
T is defined by

orb(T, x) = {Tnx : n = 0, 1, 2, . . .}. (1.1)

We recall that a vector x in X is cyclic for an operator T on X if the closed linear span of
orb(T, x) is X; it is supercyclic, if the set of all scalar multiples of the elements of orb(T, x)
is dense in X; also it is said to be (weakly) hypercyclic if orb(T, x) is (weakly) dense in X.
An operator T is called cyclic, supercyclic, or (weakly) hypercyclic operator, respectively, if
it has a cyclic, supercyclic, or (weakly) hypercyclic vector. Recently, the cyclicity of operators
has attracted much attention from operator theorists. For a good source on this topic, see [1].
Hilden andWallen in [2] proved that isometries on Hilbert spaces with dimension more than
one are not supercyclic. Ansari and Bourdon in [3] and Miller in [4] independently proved



2 Abstract and Applied Analysis

this fact on Banach spaces. Moreover, recently it is shown in [5] that m-isometric operators on
Hilbert spaces, which forms a larger class than isometries, are neither supercyclic nor weakly
hypercyclic. In this paper, it is shown that an isometry plus a nilpotent on normed spaces
are neither supercyclic nor weakly hypercyclic if they commute. We also discuss this fact
when the underlying space is a Hilbert space and the isometry is replaced by a co-isometry.
We begin with some elementary properties of such operators. In what follows, as usual,
for an operator T , σap(T), σp(T), and σ(T) are denoted, respectively, the approximate point
spectrum, point spectrum, and spectrum of T . Also, D denotes the open unit disc. Recall that
an operator Q on a normed space X is a nilpotent operator of order N ≥ 1 if QN = 0 and
QN−1 /= 0. From now on, we assume that Q is a nilpotent operator of order N ≥ 1 unless
stated otherwise.

Proposition 1.1. Suppose that X is a normed space, and A ∈ B(X) is an isometry such that AQ =
QA. If T = A +Q, then

(i) σ(T) = σ(A),

(ii) σp(T) = σp(A),

(iii) σap(T) = σap(A).

Proof. (i) Suppose that λ /∈ σ(A). Then it is easily seen that

(T − λ)−1 =
N∑

k=1

(−1)k−1(A − λ)−kQk−1 (1.2)

which implies that λ /∈ σ(T). Consequently, σ(T) ⊆ σ(A). SinceA = T −Q, a similar argument
shows that σ(A) ⊆ σ(T).

(ii) If λ ∈ σp(A), there exits x /= 0 such that Ax = λx. Therefore,

TQN−1x = AQN−1x = λQN−1x. (1.3)

Now, if QN−1x /= 0, then λ ∈ σp(T); otherwise,

TQN−2x = AQN−2x = λQN−2x. (1.4)

Also, if QN−2x /= 0 then λ ∈ σp(T); otherwise, consider QN−3x and continue this process to
conclude that Tx = Ax = λx which implies that λ ∈ σp(T). Hence, σp(A) ⊆ σp(T). Moreover,
since A = T −Q, using a similar method, we get σp(T) ⊆ σp(A).

(iii) Let λ ∈ σap(T); then there exists a sequence (xn)n inX such that ‖xn‖ = 1 and

Txn − λxn −→ 0 as n −→ +∞. (1.5)

Therefore,

AQN−1xn − λQN−1xn −→ 0 as n −→ +∞. (1.6)
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Suppose that there is c1 > 0 so that

∥∥∥QN−1xn

∥∥∥ > c1 (1.7)

for all n ≥ 1; then Ayn − λyn → 0 as n → +∞where

yn =
QN−1xn∥∥QN−1xn

∥∥ (1.8)

which, in turn, implies that λ ∈ σap(A).
Now, if (1.7) does not hold, then we can assume, without loss of generality, that (xn)n

satisfies

QN−1xn −→ 0 as n −→ +∞. (1.9)

So by (1.5),

AQN−2xn − λQN−2xn −→ 0 as n −→ +∞. (1.10)

Now, if there is a constant c2 > 0 such that

∥∥∥QN−2xn

∥∥∥ > c2 (1.11)

for all n, then Azn − λzn → 0 where

zn =
QN−2xn∥∥QN−2xn

∥∥ (1.12)

which implies that λ ∈ σap(A). Otherwise, we can assume, without loss of generality, that
QN−2xn → 0 as n → ∞ and by (1.5)

AQN−3xn − λQN−3xn −→ 0 (1.13)

as n → ∞. The procedure continues to conclude that λ ∈ σap(A). SinceA = T −Q, by a similar
method σap(A) ⊆ σap(T).

In the remaining results of this section, the operatorsA and T are as in Proposition 1.1.

Corollary 1.2. Suppose that X is a normed space. Then T − λI is bounded below where |λ|/= 1.

Proof. SinceA is an isometry, σap(T) = σap(A) ⊆ ∂D. In fact, let λ ∈ σap(A); then |λ| ≤ ‖A‖ = 1;
moreover, there exists a sequence (xn)n inXwith ‖xn‖ = 1 and so (A−λI)(xn) → 0 if n → ∞.
Therefore,

0 ≤ 1 − |λ| ≤ ‖(A − λI)(xn)‖ −→ 0 as n −→ ∞, (1.14)
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and so |λ| = 1. Now, if |λ|/= 1, then λ /∈ σap(T) and so T − λ is bounded below.

Corollary 1.3. Suppose that X is an infinite dimensional Banach space. Then the operator T on X is
not a compact operator.

Proof. If T is a compact operator, then 0 ∈ σ(T) = σ(A). Thus D ⊆ σ(T) which contradicts the
fact that the spectrum of a compact operator is at most countable.

Proposition 1.4. If the operators T and A are defined on a normed space X, then ker(T − λ) ⊆
ker(A − λ) for every scalar λ.

Proof. Fix λ ∈ C and suppose that Tx = λx for some nonzero vector x. By Proposition 1.1,
λ ∈ σp(A)which implies that |λ| = 1. Therefore, if n > N − 1, we have

‖x‖2 = ‖Tnx‖2

=

∥∥∥∥∥A
n−(N−1)

N−1∑

k=0

(
n

k

)
QkAN−1−kx

∥∥∥∥∥

2

=

∥∥∥∥∥

N−1∑

k=0

(
n

k

)
QkAN−1−kx

∥∥∥∥∥

2

=

(
n

N − 1

)2∥∥∥∥∥

N−1∑

k=0

(N − 1)!(n −N + 1)!
k!(n − k)!

QkAN−1−kx

∥∥∥∥∥

2

.

(1.15)

Consequently,

‖x‖ ≥
(

n

N − 1

)[∥∥∥QN−1x
∥∥∥ −

N−2∑

k=0

(N − 1)!(n −N + 1)!
k!(n − k)!

∥∥∥QkAN−1−kx
∥∥∥
]
. (1.16)

Since

lim
n→∞

(N − 1)!(n −N + 1)!
k!(n − k)!

= 0 (1.17)

for every 0 ≤ k ≤ N − 2, we conclude that ‖QN−1x‖ = 0. Continue the above process to get
Qx = 0, and so Ax = λx.

Corollary 1.5. IfX is a Hilbert space, then the eigenvectors of T corresponding to distinct eigenvalues
are orthogonal.

Proof. Let x and y be eigenvectors of T corresponding to distinct eigenvalues λ1 and λ2. So,
Tx = λ1x and Ty = λ2y. By Proposition 1.4, Ax = λ1x and Ay = λ2y which implies that
|λ1| = |λ2| = 1. Suppose that 〈·〉 denotes the inner product of X. Then

0 =
∥∥λ1x + λ2y

∥∥2 − ∥∥x + y
∥∥2 = 2Re

(
λ1λ2 − 1

)〈
x, y

〉
. (1.18)
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Replacing y by iy, we obtain Im(λ1λ2 − 1)〈x, y〉 = 0; consequently,

(
λ1
λ2

− 1
)〈

x, y
〉
=
(
λ1λ2 − 1

)〈
x, y

〉
= 0. (1.19)

But λ1 /=λ2, and so 〈x, y〉 = 0.

Recall that an operator T is power bounded if there exists some constant c > 0 such
that ‖Tn‖ ≤ c for all n = 1, 2, 3, . . ..

Proposition 1.6. LetX be a normed space and x ∈ X. If there is a constant c > 0 such that ‖Tnx‖ ≤ c
for all n ≥ 1, then Qx = 0. In particular, if T is power bounded, then Q = 0.

Proof. Since the sequence (‖Tnx‖)n is bounded, an argument similar to the proof of the
Proposition 1.4 shows that Qx = 0.

2. Supercyclicity and Hypercyclicity

We begin this section with a useful lemma.

Lemma 2.1. LetX be a normed space. For nonnegative integers k, n, if

Pk(n) = x0 + x1n + x2n
2 + · · · + xkn

k (2.1)

is a polynomial in n with coefficients in X of degree k, then the sequence (‖Pk(n)‖)n is eventually
increasing.

Proof. We prove the lemma by induction on k, the degree of the polynomial Pk(n). For k = 1,
let P1(n) = x0 + x1n. It is easily seen that for every n ≥ 1

‖P1(n + 1)‖ ≤ 1
2
(‖P1(n)‖ + ‖P1(n + 2)‖). (2.2)

Since limn→∞‖P1(n)‖ = +∞, there is a positive integer i such that

‖P1(i)‖ < ‖P1(i + 1)‖. (2.3)

This fact coupled with (2.2) implies that

0 < ‖P1(i + 1)‖ − ‖P1(i)‖ ≤ ‖P1(n + 1)‖ − ‖P1(n)‖ (2.4)

for every n ≥ i. Therefore, the sequence (‖P1(n)‖)n≥i is increasing. Suppose that (‖Pk(n)‖)n is
eventually increasing and let

Pk+1(n) = x0 + x1n + · · · + xk+1n
k+1, (2.5)
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where xk+1 /= 0. Since

lim
n→∞

∥∥∥x1 + x2(n + 1) + · · · + xk+1(n + 1)k
∥∥∥ = +∞, (2.6)

using the induction hypothesis there is a positive integer j such that for every n ≥ j

∥∥∥x1 + x2(n + 1) + · · · + xk+1(n + 1)k
∥∥∥ ≥ max

{
2‖x0‖,

∥∥∥x1 + x2n + · · · + xk+1n
k
∥∥∥
}
. (2.7)

Therefore,

‖Pk+1(n + 1)‖
‖Pk+1(n)‖ ≥

(n + 1)
∥∥∥x1 + x2(n + 1) + · · · + xk+1(n + 1)k

∥∥∥ − ‖x0‖
n
∥∥x1 + x2n + · · · + xk+1nk

∥∥ + ‖x0‖
≥ 1 (2.8)

for every n ≥ j. Hence, the sequence (‖pk+1(n)‖)n≥j is increasing.

Theorem 2.2. Suppose thatX is a normed space, andA ∈ B(X) is an isometry such thatAQ = QA.
If T = A +Q, then the operator T is neither supercyclic nor weakly hypercyclic.

Proof. Let X̃ be the completion of X and T̃ , Ã, and Q̃ the extensions of T , A, and Q on X̃,
respectively. Thus, T̃ = Ã+Q̃where Ã is an isometry and Q̃ is a nilpotent operator; moreover,
ÃQ̃ = Q̃Ã. Also, note that the supercyclicity of the operator T implies the supercyclicity of T̃ .
So we can assume, without loss of generality, that X is a Banach space.

As we have seen in the proof of Proposition 1.4, if x ∈ X then

‖Tnx‖ =

∥∥∥∥∥

N−1∑

k=0

(
n

k

)
QkAN−1−kx

∥∥∥∥∥, (2.9)

and so by Lemma 2.1, the sequence (‖Tnx‖)n is eventually increasing. Suppose that x0 is a
supercyclic vector for T . Thus, for any x ∈ X there is a sequence (ni)i of positive integers and
a sequence (αi)i of scalars such that αiT

nix0 → x. Moreover, since the sequence (‖Tnx0‖)n
is eventually increasing, we have ‖αiT

nix0‖ ≤ ‖αiT
ni+1x0‖ for large i. So letting i → ∞, we

conclude that ‖x‖ ≤ ‖Tx‖, for all x in X. On the other hand, the supercyclicity of T implies
that it has a dense range and so is invertible. Thus, in light of Proposition 1.1 we see that A is
invertible. It is easy to see that

T−1 = A−1 + P, (2.10)

where

P =
N−1∑

k=1

(−1)kA−(k+1)Qk. (2.11)
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Since PN = 0, by a similar argument the sequence (‖T−nx‖)n is eventually increasing for every
x ∈ X. But T−1 is also supercyclic (see [1, Theorem 1.12]); therefore,

‖x‖ ≤
∥∥∥T−1x

∥∥∥ (2.12)

for every x ∈ X. Thus, T is an isometry which implies that it is not a supercyclic operator.
To show that the operator T is not weakly hypercyclic, note that

‖T ∗nx∗‖ =

∥∥∥∥∥

N−1∑

k=0

(
n

k

)
Q∗kA∗n−kx∗

∥∥∥∥∥ (2.13)

for every x∗ ∈ X∗ and every positive integer n. If kerQ∗ /= {0}, then there is a nonzero x∗ ∈ X∗

such that ‖T ∗nx∗‖ = ‖A∗nx∗‖ ≤ ‖x∗‖ because ‖A∗‖ = ‖A‖ = 1. Now, suppose that x0 is a
weakly hypercyclic vector for T . Since orb(T, x0) is weakly dense in X and x∗ is nonzero, the
set {x∗(Tnx0) : n ≥ 0} is dense in C. But

‖x∗(Tnx0)‖ = ‖(T ∗nx∗)(x0)‖ ≤ ‖T ∗nx∗‖‖x0‖ ≤ ‖x∗‖‖x0‖ (2.14)

for all n ≥ 0, which is a contradiction. If kerQ∗ = {0}, then Q∗ = 0 and so T = A is not a
weakly hypercyclic operator.

We remark that there are Banach space isometries which are also weakly supercyclic.
Indeed, the unweighted bilateral weighted shift on the space lp(Z) where p > 2 is weakly
supercyclic (see [1, Corollary 10.32]). However, the question that whether an isometry plus
a nonzero nilpotent which commute with each other, are weakly supercyclic or not is still an
open question.

The following examples show that the commutativity of A and Q is essential in the
preceding theorem.

Example 2.3. Let (en)
+∞
n=−∞be the standard orthonormal basis for l2(Z). Define the isometric operator

A by Aen = en+1 for all n ∈ Z and the weighted shift operator Q by Qen = wnen+1, where w2n = 0
for all integers n, w2n−1 = 1/(2n − 1)2 for all n ≥ 1, and w2n−1 = 1/(1 − 2n) for all n ≤ 0. Note that
Q2 = 0 and AQ/=QA. Moreover, since 1 ≤ infn(1 + wn) ≤ supn(1 + wn) ≤ 2, the weighted shift
operator T = A +Q is invertible. To see that T is supercyclic by Theorem 3.4 of [6], it is sufficient to
show that

lim
n→∞

n∏

j=1

(
1 +wj

) n∏

j=1

1
1 +w−j

= 0. (2.15)
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But
∏∞

j=1(1 +wj) is finite, because
∑∞

j=1 wj < ∞. Furthermore,
∏∞

j=11/(1 +w−j) = 0, because

∞∑

j=1

(
1 − 1

1 +w−j

)
=

∞∑

j=1

w−j
1 +w−j

=
∞∑

j=1

w−(2j−1)
1 +w−(2j−1)

=
∞∑

j=1

1/
(
2j − 1

)

1 + 1/
(
2j − 1

) =
∞∑

j=1

1
2j

= ∞
(2.16)

(see [7, pages 299 and 300]). Therefore, (2.15) holds.

Example 2.4. Consider the isometric operator A on l2(Z) defined by Aen = en−1 and the weighted
shift operator Q defined by Qen = wnen−1, where w2n = 0 for all n ∈ Z, w2n−1 = 1/(2n − 1), for
n ≥ 1, and w2n−1 = 1/(2n − 1)2 for n ≤ 0. Note that Q2 = 0 and AQ/=QA. Also, since

(1 +w1)(1 +w2) · · · (1 +wn) ≥ w1 +w2 + · · · +wn (2.17)

for all n ≥ 1, and
∑∞

n=1 wn = ∞, we conclude that

lim
n→∞

(1 +w1)(1 +w2) · · · (1 +wn) = ∞. (2.18)

Furthermore,

lim
n→∞

(1 +w−1)(1 +w−2) · · · (1 +w−n) < ∞, (2.19)

because

∞∑

n=1

w−n < ∞. (2.20)

Hence, using Corollary 10.27 of [1], we observe that the operator A +Q is weakly hypercyclic.

3. A Co-isometry Plus a Nilpotent

From now on, we assume thatH is a separable Hilbert space with orthonormal basis {en}∞n=0.
Recall that the unilateral shift operator S : H → H is given by Sen = en+1 for all n and the
backward shift operator B : H → H is defined by Be0 = 0 and Ben = en−1 for all n ≥ 1. It is
known that the operator B is supercyclic (see [1, page 9]). It follows that a co-isometry can be
supercyclic. In this section, we give sufficient conditions such that the sum of a co-isometry
and a nilpotent is supercyclic onH.

Theorem 3.1. Suppose that A is a co-isometric operator on a Hilbert spaceH. Then A is supercyclic
if and only if ∩n≥0A∗nH = (0).

Proof. First assume that ∩n≥0A∗nH = (0). Then by the von Neumann-Wold decomposition,
A∗ = Sm for some positive integer m (see [8]). Therefore, A = Bm which is a positive
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power of a supercyclic operator and so is supercyclic [9]. For the converse, assume that
M = ∩n≥0A∗nH/= (0), and let PM denote the orthogonal projection on M. By the von
Neumann-Wold decomposition, M is a reducing subspace for A and A∗|M is unitary. Since
(A|M)∗ = PMA∗|M is also unitary, the operator A|M is not supercyclic. Assume that A is
supercyclic, and h = g ⊕ k is a supercyclic vector for A, where g ∈ M and k ∈ M⊥. If g = 0,
thenH = M⊥ which is impossible; so g /= 0. Take f ∈ M, and let ε > 0 be arbitrary. Then there
is a nonnegative integer n and a scalar α ∈ C such that

∥∥αAng − f
∥∥ ≤ ∥∥αAn(g ⊕ k

) − (
f ⊕ 0

)∥∥ < ε. (3.1)

Hence, g is a supercyclic vector for A|M which is impossible.

To prove the next theorem, we need the supercyclicity criterion due to H. N. Salas (see
[10], or more generally [11]).

Supercyclicity Criterion

Suppose that X is a separable Banach space and T is a bounded operator on X. If there is an
increasing sequence of positive integers {nk}k∈N

, and two dense sets Y and Z of X such that

(1) there exists a function S : Z → Z satisfying TSx = x for all x ∈ Z,

(2) ‖Tnkx‖ · ‖Snky‖ → 0 for every x ∈ Y and y ∈ Z,

then T is supercyclic.

Theorem 3.2. Suppose that A is a co-isometry on a Hilbert space H such that ∩n≥0A∗nH = (0). If
AQ = QA, then the operator T = A +Q satisfies the supercyclicity criterion.

Proof. By Corollary 1.2, the operator T ∗ is bounded below and so is left invertible.
Consequently, T is a right invertible operator. Let x ∈ ∩n≥0T ∗nH. For every i ≥ 0, there is
a vector xN+i inH such that T ∗N+ixN+i = x. Since QN = 0, we have

x = T ∗N+ixN+i

=
N+i∑

k=0

(
N + i

k

)(
A∗kQ∗N+i−k

)
(xN+i)

=
N+i∑

k=i+1

(
N + i

k

)(
A∗kQ∗N+i−k

)
(xN+i)

(3.2)

which implies that x ∈ A∗i+1H. Hence, x ∈ ∩n≥0T ∗nH = (0) and so the operator T admits a
complete set of eigenvectors that is, H = ∨μ∈Dr ker(T − μ) for every positive real number r,
where Dr = {z ∈ C : |z| < r} (see [12], Part (A) of the lemma). Since T ∗ is bounded below,
TT ∗ is invertible. Take S = T ∗(TT ∗)−1. Choose r > 0 so that r < 1/‖S‖, and let

Y = Z = span
{
ker

(
T − μ

)
: μ ∈ Dr

}
. (3.3)
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Now, if h ∈ Y = Z, then

‖Tnh‖‖Snh‖ ≤ ∣∣μ
∣∣n‖S‖n‖h‖ ≤ (r‖S‖)n‖h‖ −→ 0 (3.4)

as n → ∞. Finally, TnSnh = h for every h ∈ H and every n ≥ 0. Thus, the operator T satisfies
the supercyclicity criterion.

The Hilbert-Schmidt class, C2(H), is the class of all bounded operators S defined on a
Hilbert space H, satisfying

‖S‖22 =
∞∑

n=1

‖Sen‖2 < +∞, (3.5)

where ‖ · ‖ is the norm on H induced by its inner product. We recall that C2(H) is a Hilbert
space equipped with the inner product 〈S, T〉 = tr(ST ∗) in which tr(S∗T) denotes the trace
of S∗T . Furthermore, C2(H) is an ideal of the algebra of all bounded operators on H, see [8].
For any bounded operator B on a Hilbert spaceH, the left multiplication operator LB and the
right multiplication operator RB on C2 (H) are defined by LB (S) = BS and RB (S) = SB for
all S ∈ C2(H). It is known that an operator B satisfies the supercyclicity criterion if and only
if LB is supercyclic on the space C2(H) (see [13, page 37]). In the following proposition, we
see that an operator T may satisfy the supercyclicity criterion although RT is not a supercyclic
operator on C2(H).

Proposition 3.3. Suppose that H is a Hilbert space and A ∈ B(H) is a co-isometry such that
∩n≥0A∗nH = (0) and AQ = QA. Then the operator T = A + Q satisfies the supercyclicity criterion
but the operator RT is not supercyclic on C2(H).

Proof. By Theorem 3.2, the operator T satisfies the supercyclicity criterion. Moreover, for
every S ∈ C2 (H)we have

‖RA(S)‖22 = ‖SA‖22 =
∥∥(SA)∗

∥∥2
2 = ‖A∗S∗‖22

=
∞∑

n=1

‖A∗S∗en‖2 =
∞∑

n=1

‖S∗en‖2 = ‖S‖22,
(3.6)

which implies that RA is an isometry. Also, if S ∈ C2(H), then RN
Q (S) = 0. Since RT (S) =

RA(S) + RQ(S), Theorem 2.2 implies that RT is not supercyclic.

The proof of the following proposition is similar to the proof of the second part of
Theorem 2.2, and we omit it.

Proposition 3.4. Suppose that X is a normed space and A ∈ B(X) is a co-isometry such that AQ =
QA. Then the operator T = A +Q is not weakly hypercyclic.
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