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Regularity criterion for the 3D micropolar fluid equations is investigated. We prove that, for some
T > 0, if

∫T
0 ‖vx3‖ρL�dt <∞, where 3/� + 2/ρ ≤ 1 and � ≥ 3, then the solution (v,w) can be extended

smoothly beyond t = T . The derivative vx3 can be substituted with any directional derivative of
v.

1. Introduction

In the paper, we investigate the initial value problem for the micropolar fluid equations in R
3:

∂tv − (ν + κ)Δv + v · ∇v +∇π − 2κ∇ ×w = 0,

∂tw − γΔw − (
α + β

)∇∇ ·w + 4κw + v · ∇w − 2κ∇ × v = 0,

∇ · v = 0

(1.1)

with the initial value

t = 0 : v = v0(x), w = w0(x), (1.2)

where v(t, x), w(t, x), and π(t, x) stand for the divergence free velocity field, nondivergence
free microrotation field (angular velocity of the rotation of the particles of the fluid), the
scalar pressure, respectively ν > 0 is the Newtonian kinetic viscosity, κ > 0 is the dynamics
microrotation viscosity, and α, β, γ > 0 are the angular viscosity (see, e.g., Lukaszewicz [1]).
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The micropolar fluid equations was first proposed by Eringen [2]. It is a type of fluids
which exhibits the microrotational effects and microrotational inertia and can be viewed as
a non-Newtonian fluid. Physically, micropolar fluid may represent fluids that consists of
rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the
deformation of fluid particles is ignored. It can describe many phenomena appeared in a large
number of complex fluids such as the suspensions, animal blood, and liquid crystals which
cannot be characterized appropriately by the Navier-Stokes equations, and that is important
to the scientists working with the hydrodynamic fluid problems and phenomena. For more
background, we refer to [1] and references therein. Besides their physical applications, the
micropolar fluid equations are also mathematically significant. The existences of weak and
strong solutions for micropolar fluid equations were treated by Galdi and Rionero [3] and
Yamaguchi [4], respectively. The convergence of weak solutions of the micropolar fluids in
bounded domains of R

n was investigated (see [5]). When the viscosities tend to zero, in the
limit, a fluid governed by an Euler-like system was found. Fundamental mathematical issues
such as the global regularity of their solutions have generated extensive research, and many
interesting results have been obtained (see [6–8]). A Beale-Kato-Madja criterion (see [9]) of
smooth solutions to a related model with (1.1)was established in [10].

If κ = 0 and w = 0, then (1.1) reduces to be the Navier-Stokes equations. Besides
its physical applications, the Navier-Stokes equations are also mathematically significant. In
the last century, Leray [11] and Hopf [12] constructed weak solutions to the Navier-Stokes
equations. The solution is called the Leray-Hopf weak solution. Later on, much effort has
been devoted to establish the global existence and uniqueness of smooth solutions to the
Navier-Stokes equations. Different criteria for regularity of the weak solutions have been
proposed, and many interesting results are established (see [13–31]).

The purpose of this paper is to establish the regularity criteria of weak solutions to
(1.1), (1.2) via the derivative of the velocity in one direction. It is proved that if

∫T
0 ‖vx3‖ρL�dt <

∞with

3
�
+
2
ρ
≤ 1, � ≥ 3, (1.3)

then the solution (v,w) can be extended smoothly beyond t = T .
The paper is organized as follows. We first state some important inequalities in

Section 2, which play an important roles in the proof of our main result. Then, we give def-
inition of weak solution and state main results in Section 3 and then prove main result in
Section 4.

2. Preliminaries

In order to prove our main result, we need the following Lemma, which may be found in [32]
(see also [33, 34]). For the convenience of the readers, the proof of the Lemmas are provided.

Lemma 2.1. Assume that μ, λ, ι ∈ R and satisfy

1 ≤ μ, λ <∞,
1
μ
+
2
λ
> 1, 1 +

3
ι
=

1
μ
+
2
λ
. (2.1)
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Assume that f ∈ H1(R3), fx1 , fx2 ∈ Lλ(R3), and fx3 ∈ Lμ(R3). Then, there exists a positive constant
such that

∥
∥f

∥
∥
Lι ≤ C

∥
∥fx1

∥
∥1/3
Lλ

∥
∥fx2

∥
∥1/3
Lλ

∥
∥fx3

∥
∥1/3
Lμ . (2.2)

Especially, when λ = 2, there exists a positive constant C = C(μ) such that

∥
∥f

∥
∥
L3μ ≤ C

∥
∥fx1

∥
∥1/3
L2

∥
∥fx2

∥
∥1/3
L2

∥
∥fx3

∥
∥1/3
Lμ , (2.3)

which holds for any f ∈ H1(R3) and fx3 ∈ Lμ(R3) with 1 ≤ μ <∞.

Proof. It is not difficult to find

∣∣f(x1, x2, x3)
∣∣1+(1−1/λ)ι ≤ C

∫x1

−∞

∣∣f(x1, x2, x3)
∣∣(1−(1/λ))ι∣∣∂τf(τ, x2, x3)

∣∣dτ.

∣∣f(x1, x2, x3)
∣∣1+(1−1/λ)ι ≤ C

∫x2

−∞

∣∣f(x1, x2, x3)
∣∣(1−(1/λ))ι∣∣∂τf(x1, τ, x3)

∣∣dτ,

∣∣f(x1, x2, x3)
∣∣1+(1−1/μ)ι ≤ C

∫x3

−∞

∣∣f(x1, x2, x3)
∣∣(1−(1/μ))ι∣∣∂τf(x1, x2, τ)

∣∣dτ.

(2.4)

Then, we obtain

∣∣f(x1, x2, x3)
∣∣ι ≤ C

[∫∞

−∞

∣∣f(x1, x2, x3)
∣∣(1−1/λ)ι∣∣∂x1f(x1, x2, x3)

∣∣dx1

]1/2

×
[∫∞

−∞

∣∣f(x1, x2, x3)
∣∣(1−1/λ)ι∣∣∂x2f(x1, x2, x3)

∣∣dx2

]1/2

×
[∫∞

−∞

∣∣f(x1, x2, x3)
∣∣(1−1/μ)ι∣∣∂x3f(x1, x2, x3)

∣∣dx3

]1/2
.

(2.5)

Integrating with respect to x1 and using Hölder inequality, we have

∫∞

−∞

∣∣f(x1, x2, x3)
∣∣ιdx1 ≤ C

[∫∞

−∞

∣∣f(x1, x2, x3)
∣∣(1−1/λ)ι∣∣∂x1f(x1, x2, x3)

∣∣dx1

]1/2

×
[∫∞

−∞

∫∞

−∞

∣∣f(x1, x2, x3)
∣∣(1−1/λ)ι∣∣∂x2f(x1, x2, x3)

∣∣dx2dx1

]1/2

×
[∫∞

−∞

∫∞

−∞

∣∣f(x1, x2, x3)
∣∣(1−1/μ)ι∣∣∂x3f(x1, x2, x3)

∣∣dx3dx1

]1/2
.

(2.6)
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Integrating with respect to x2, x3 and using Hölder inequality, we obtain

∫

R3

∣
∣f(x1, x2, x3)

∣
∣ιdx ≤ C

[∫∞

−∞

∣
∣f(x1, x2, x3)

∣
∣(1−1/λ)ι∣∣∂x1f(x1, x2, x3)

∣
∣dx

]1/2

×
[∫

R3

∣
∣f(x1, x2, x3)

∣
∣(1−1/λ)ι∣∣∂x2f(x1, x2, x3)

∣
∣dx

]1/2

×
[∫

R3

∣
∣f(x1, x2, x3)

∣
∣(1−1/μ)ι∣∣∂x3f(x1, x2, x3)

∣
∣dx

]1/2
.

(2.7)

It follows from Hölder inequality that

∥
∥f

∥
∥ι
Lι ≤ C

∥
∥f

∥
∥(1−1/λ)ι/2
Lι

∥
∥∂x1f

∥
∥1/2
Lλ

∥
∥f

∥
∥(1−1/λ)ι/2
Lι

∥
∥∂x2f

∥
∥1/2
Lλ

∥
∥f

∥
∥(1−1/μ)ι/2
Lι

∥
∥∂x3f

∥
∥1/2
Lμ . (2.8)

By the above inequality, we get (2.2).

Lemma 2.2. Let 2 ≤ q ≤ 6 and assume that f ∈ H1(R3). Then, there exists a positive constant
C = C(q) such that

∥∥f
∥∥
Lq ≤ C

∥∥f
∥∥(6−q)/2q
L2

∥∥∂x1f
∥∥(q−2)/2q
L2

∥∥∂x2f
∥∥(q−2)/2q
L2

∥∥∂x3f
∥∥(q−2)/2q
L2 . (2.9)

Proof. Using the interpolating inequality, we obtain

∥∥f
∥∥
Lq ≤ C

∥∥f
∥∥(6−q)/2q
L2

∥∥f
∥∥(3q−6)/2q
L6 . (2.10)

By (2.3)with μ = 2, we have

∥∥f
∥∥
L6 ≤ C

∥∥∂x1f
∥∥1/3
L2

∥∥∂x2f
∥∥1/3
L2

∥∥∂x3f
∥∥1/3
L2 . (2.11)

Combining (2.10) and (2.11) yields (2.9).

3. Main Results

Before stating our main results, we introduce some function spaces. Let

C∞
0,σ

(
R

3
)
=
{
ϕ ∈

(
C∞

(
R

3
))3

: ∇ · ϕ = 0
}

⊂
(
C∞

(
R

3
))3

. (3.1)

The subspace

L2
σ = C∞

0,σ(R
3)

‖·‖L2 =
{
ϕ ∈ L2

(
R

3
)
: ∇ · ϕ = 0

}
(3.2)
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is obtained as the closure of C∞
0,σ with respect to L2-norm ‖ · ‖L2 .Hr

σ is the closure of C∞
0,σ with

respect to theHr-norm

∥
∥ϕ

∥
∥
Hr =

∥
∥
∥(I −Δ)r/2ϕ

∥
∥
∥
L2
, r ≥ 0. (3.3)

Before stating our main results, we give the definition of weak solution to (1.1), (1.2) (see
[6]).

Definition 3.1 (Weak solutions). Let T > 0, v0 ∈ L2
σ(R

3), and w0 ∈ L2(R3). A measurable
R

3-valued triple (v,w) is said to be a weak solution to (1.1), (1.2) on [0, T] if the following
conditions hold the following.

(1)

v ∈ L∞
(
0, T ;L2

σ

(
R

3
))⋂

L2
(
0, T ;H1

σ

(
R

3
))
,

w ∈ L∞
(
0, T ;L2

(
R

3
))⋂

L2
(
0, T ;H1

(
R

3
))
.

(3.4)

(2) Equations (1.1), (1.2) are satisfied in the sense of distributions; that is, for every
ϕ ∈ H1((0, T);H1

σ) and ψ ∈ H1((0, T);H1)with ϕ(T) = ψ(T) = 0, hold

∫T

0

{−〈v, ∂τϕ
〉
+
〈
v · ∇v, ϕ〉 + (ν + κ)

〈∇v,∇ϕ〉}dτ −
∫T

0

{
2κ

〈∇ ×w,ϕ〉}dτ

=
〈
v0, ϕ(0)

〉
,

(3.5)

∫T

0

{−〈w, ∂τψ
〉}

+ γ
〈∇w,∇ψ〉 + (

α + β
)〈∇ ·w,∇ψ〉 + 4κ

〈
w,ψ

〉
dτ

+
∫T

0

{〈
v · ∇w,ψ〉 − 2κ

〈∇ × v, ψ〉}dτ

=
〈
w0, ψ(0)

〉
.

(3.6)

(3) The energy inequality, that is,

‖v(t)‖2L2 + ‖w(t)‖2L2 + 2
∫ t

0

(
ν‖∇v(τ)‖2L2 + γ‖∇w(τ)‖2L2

)
dτ + 2

(
α + β

)
∫ t

0
‖∇ ·w(τ)‖2L2dτ

≤ ‖v0‖2L2 + ‖w0‖2L2 .

(3.7)

Theorem 3.2. Let v0 ∈ H1
σ(R

3) with w0 ∈ H1(R3). Assume that (v,w) is a weak solution to (1.1),
(1.2) on some interval [0, T]. If

Θ(T) ≡
∫T

0
‖vx3‖ρL�dt <∞, (3.8)



6 Journal of Applied Mathematics

where

3
�
+
2
ρ
≤ 1, � ≥ 3, (3.9)

then the solution (v,w) can be extended smoothly beyond t = T .

4. Proof of Theorem 3.2

Proof. Multiplying the first equation of (1.1) by v and integrating with respect to x on R
3,

using integration by parts, we obtain

1
2
d

dt
‖v(t)‖2L2 + (ν + κ)‖∇v(t)‖2L2 = 2κ

∫

R3
(∇ ×w) · vdx. (4.1)

Similarly, we get

1
2
d

dt
‖w(t)‖2L2 + γ‖∇w(t)‖2L2 +

(
α + β

)‖∇ ·w‖2L2 + 4κ‖w‖2L2 = 2κ
∫

R3
(∇ × v) ·wdx. (4.2)

Summing up (4.1)-(4.2), we deduce that

1
2
d

dt

(
‖v(t)‖2L2 + ‖w(t)‖2L2

)
+ (ν + κ)‖∇v(t)‖2L2

+ γ‖∇w(t)‖2L2 +
(
α + β

)‖∇ ·w‖2L2 + 4κ‖w‖2L2

= 2κ
∫

R3
(∇ ×w) · vdx + 2κ

∫

R3
(∇ × v) ·wdx.

(4.3)

By integration by parts and Cauchy inequality, we obtain

2κ
∫

R3
(∇ ×w) · vdx + 2κ

∫

R3
(∇ × v) ·wdx ≤ κ‖∇v‖2L2 + 4κ‖w‖2L2 . (4.4)

Combining (4.3)-(4.4) yields

1
2
d

dt

(
‖v(t)‖2L2 + ‖w(t)‖2L2

)
+ ν‖∇v(t)‖2L2 + γ‖∇w(t)‖2L2 +

(
α + β

)‖∇ ·w‖2L2 ≤ 0. (4.5)

Integrating with respect to t, we have

‖v(t)‖2L2 + ‖w(t)‖2L2 + 2
∫ t

0

(
ν‖∇v(τ)‖2L2 + γ‖∇w(τ)‖2L2

)
dτ + 2

(
α + β

)
∫ t

0
‖∇ ·w(τ)‖2L2dτ

≤ ‖v0‖2L2 + ‖w0‖2L2 .

(4.6)
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Differentiating (1.1)with respect to x3, we obtain

∂tvx3 − (ν + κ)Δvx3 + vx3 · ∇v + v · ∇vx3 +∇πx3 − 2κ∇ ×wx3 = 0,

∂twx3 − γΔwx3 −
(
α + β

)∇ · ∇wx3 + 4κwx3 + vx3 · ∇w + v · ∇wx3 − 2κ∇ × vx3 = 0.
(4.7)

Taking the inner product of vx3 with the first equation of (4.7) and using integration by parts
yields

1
2
d

dt
‖vx3(t)‖2L2 + (ν + κ)‖∇vx3(t)‖2L2 = −

∫

R3
vx3 · ∇v · vx3dx + 2κ

∫

R3
(∇ ×wx3) · vx3dx.

(4.8)

Similarly, we get

1
2
d

dt
‖wx3(t)‖2L2 + γ‖∇wx3(t)‖2L2 +

(
α + β

)‖∇ ·wx3‖2L2 + 4κ‖wx3‖2L2

= −
∫

R3
vx3 · ∇w ·wx3dx + 2κ

∫

R3
(∇ × vx3) ·wx3dx.

(4.9)

Combining (4.8)–(4.9) yields

1
2
d

dt

(
‖vx3(t)‖2L2 + ‖wx3(t)‖2L2

)
+ (ν + κ)‖∇vx3(t)‖2L2

+ γ‖∇wx3(t)‖2L2 +
(
α + β

)‖∇ ·wx3‖2L2 + 4κ‖wx3‖2L2

= −
∫

R3
vx3 · ∇v · vx3dx + 2κ

∫

R3
(∇ ×wx3) · vx3dx

−
∫

R3
vx3 · ∇w ·wx3dx + 2κ

∫

R3
(∇ × vx3) ·wx3dx.

(4.10)

Using integration by parts and Cauchy inequality, we obtain

2κ
∫

R3
(∇ ×wx3) · vx3dx + 2κ

∫

R3
(∇ × vx3) ·wx3dx ≤ κ‖∇vx3‖2L2 + 4κ‖wx3‖2L2 . (4.11)

Combining (4.10)–(4.11) yields

1
2
d

dt

(
‖vx3(t)‖2L2 + ‖wx3(t)‖2L2

)
+ ν‖∇vx3(t)‖2L2

+ γ‖∇wx3(t)‖2L2 +
(
α + β

)‖∇ ·wx3‖2L2

≤ −
∫

R3
vx3 · ∇v · vx3dx −

∫

R3
vx3 · ∇w ·wx3dx

� I1 + I2.

(4.12)
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In what follows, we estimate Ij (j = 1, 2 . . . , 5). By integration by parts and Hölder
inequality, we obtain

I1 ≤ C‖∇vx3‖L2‖vx3‖Lσ‖v‖L3� , (4.13)

where

1
σ
+

1
3�

=
1
2
, 2 ≤ σ ≤ 6. (4.14)

It follows from the interpolating inequality that

‖vx3‖Lσ ≤ C‖vx3‖1−3(1/2−1/σ)L2 ‖∇vx3‖3(1/2−1/σ)L2 . (4.15)

From (2.3), we get

I1 ≤ C‖∇vx3‖L2‖vx3‖1−3(1/2−1/σ)L2 ‖∇vx3‖3(1/2−1/σ)L2 ‖∇v‖2/3
L2 ‖vx3‖1/3L�

≤ C‖∇vx3‖1+3(1/2−1/σ)L2 ‖vx3‖1−3(1/2−1/σ)L2 ‖∇v‖2/3
L2 ‖vx3‖1/3L�

≤ ν

2
‖∇vx3‖2L2 + C‖vx3‖2L2‖∇v‖2qL2‖vx3‖qL2 ,

(4.16)

where

q =
2

3 − 9(1/2 − 1/σ)
=

2
3
(
1 − 1/�

) . (4.17)

When � ≥ 3, we have 2q ≤ 2 and application of Young inequality yields

I1 ≤ ν

2
‖∇vx3‖2L2 + C‖vx3‖2L2

(
‖∇v‖2L2 + ‖vx3‖δL�

)
, (4.18)

where

3
�
+
2
δ
= 1. (4.19)

From Hölder inequality, we obtain

I2 ≤ C‖∇w‖L2‖wx3‖L2�/(�−2)‖vx3‖L�

≤ C‖∇w‖L2‖vx3‖L�‖wx3‖1−3/�L2 ‖∇wx3‖3/�L2

≤ C‖∇wx3‖2L2 + ‖∇w‖2�/(2�−3)
L2 ‖vx3‖2�/(2�−3)L� ‖wx3‖(2�−6)/(2�−3)L2

≤ γ

2
‖∇wx3‖2L2 + C

(
‖∇w‖2L2 + ‖vx3‖δL�

)
‖wx3‖(2�−6)/(2�−3)L2 ,

(4.20)
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where

3
�
+
2
δ
= 1. (4.21)

Combining (4.12)–(4.20) yields

d

dt

(
‖vx3‖2L2 + ‖wx3‖2L2

)
+ ν‖∇vx3‖2L2 + γ‖∇wx3‖2L2 +

(
α + β

)‖∇ ·wx3‖2L2

≤ C‖vx3‖2L2

(
‖∇v‖2L2 + ‖vx3‖δL�

)
+ C

(
‖∇w‖2L2 + ‖vx3‖δL�

)
‖wx3‖(2�−6)/(2�−3)L2 .

(4.22)

From Gronwall inequality, we get

‖vx3‖2L2 + ‖wx3‖2L2 + ν
∫ t

0
‖∇vx3‖2L2dτ +

∫ t

0

(
γ‖∇wx3‖2L2 +

(
α + β

)‖∇ ·wx3‖2L2

)
dτ

≤ Ce(‖v0‖2L2+‖w0‖2L2 )eΘ(t)
[
‖v0‖2H1 + ‖w0‖2H1 + C

(
‖v0‖2L2 + ‖w0‖2L2 + Θ(t)

)2�−3/�]
.

(4.23)

Multiplying the first equation of (1.1) by −Δv and integrating with respect to x on R
3,

then using integration by parts, we obtain

1
2
d

dt
‖∇v(t)‖2L2 + (ν + κ)‖Δv‖2L2 =

∫

R3
v · ∇v ·Δvdx − 2κ

∫

R3
(∇ ×w) ·Δvdx. (4.24)

Similarly, we get

1
2
d

dt
‖∇w(t)‖2L2 + γ‖Δw‖2L2 +

(
α + β

)‖∇∇ ·w‖2L2 + 4κ‖∇w‖2L2

=
∫

R3
v · ∇w ·Δwdx − 2κ

∫

R3
(∇ × v) ·Δwdx.

(4.25)

Collecting (4.24) and (4.25) yields

1
2
d

dt

(
‖∇v(t)‖2L2 + ‖∇w(t)‖2L2

)
+ (ν + κ)‖Δv‖2L2

+ γ‖Δw‖2L2 +
(
α + β

)‖∇∇ ·w‖2L2 + 4κ‖∇w‖2L2

=
∫

R3
v · ∇v ·Δvdx − 2κ

∫

R3
(∇ ×w) ·Δvdx

+
∫

R3
v · ∇w ·Δwdx − 2κ

∫

R3
(∇ × v) ·Δwdx.

(4.26)
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Thanks to integration by parts and Cauchy inequality, we get

−2κ
∫

R3
(∇ ×w) ·Δvdx − 2κ

∫

R3
(∇ × v) ·Δwdx ≤ κ‖Δv‖2L2 + 4κ‖∇w‖2L2 . (4.27)

It follows from (4.26)-(4.27) and integration by parts that

1
2
d

dt

(
‖∇v(t)‖2L2 + ‖∇w(t)‖2L2

)
+ ν‖Δv‖2L2 + γ‖Δw‖2L2 +

(
α + β

)‖∇∇ ·w‖2L2

≤ −
∫

R3
∇v · ∇v · ∇vdx −

∫

R3
∇v · ∇w · ∇wdx

� J1 + J2.

(4.28)

In what follows, we estimate Ji(i = 1, 2).
By (2.9) and Young inequality, we deduce that

J1 ≤ C‖∇v‖3L3

≤ C‖∇v‖3/2
L2 ‖∇x̃∇v‖L2‖∇vx3‖1/2L2

≤ ν

4
‖∇x̃∇v‖2L2 + C‖∇v‖3L2‖∇vx3‖L2

≤ ν

4
‖∇x̃∇v‖2L2 + C

(
‖∇v‖2L2 + ‖∇vx3‖2L2

)
‖∇v‖2L2 ,

(4.29)

where ∇x̃ = (∂x1 , ∂x2).
By (2.9) and Young inequality, we have

J2 ≤ ‖∇v‖L3‖∇w‖2L3

≤ C‖∇v‖1/2
L2 ‖∇x̃∇v‖1/3L2 ‖∇vx3‖1/6L2 ‖∇w‖L2‖∇x̃∇w‖2/3

L2 ‖∇wx3‖1/3L2

≤ ν

4
‖∇x̃∇v‖2L2 + C‖∇v‖3/5L2 ‖∇vx3‖1/5L2 ‖∇w‖6/5

L2 ‖∇∇x̃w‖4/5
L2 ‖∇wx3‖2/5L2

≤ ν

4
‖∇x̃∇v‖2L2 +

γ

2
‖∇x̃∇w‖2L2 + C‖∇v‖L2‖∇vx3‖1/3L2 ‖∇w‖2L2‖∇wx3‖2/3L2

≤ ν

4
‖∇x̃∇v‖2L2 +

γ

2
‖∇x̃∇w‖2L2 + C‖∇w‖2L2

(
‖∇v‖2L2 + ‖∇vx3‖2L2 + ‖∇wx3‖2L2

)
,

(4.30)

where ∇x̃ = (∂x1 , ∂x2).
Combining (4.28)–(4.30) yields

d

dt

(
‖∇v(t)‖2L2 + ‖∇w(t)‖2L2

)
+ ν‖Δv‖2L2 + γ‖Δv‖2L2 +

(
α + β

)‖∇∇ ·w‖2L2

≤ C
(
‖∇v‖2L2 + ‖∇w‖2L2

)(
‖∇v‖2L2 + ‖∇vx3‖2L2 + ‖∇wx3‖2L2

)
.

(4.31)



Journal of Applied Mathematics 11

From (4.31), Gronwall inequality, (4.6), and (4.23), we know that (v,w) ∈ L∞(0, T ;H1(R3)).
Thus, (v,w) can be extended smoothly beyond t = T . We have completed the proof of
Theorem 3.2.
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