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We consider low-Reynolds-number axisymmetric flow about two spheres using a novel,
biharmonic stream function. This enables us to calculate analytically not only the forces, but also
the dipole moments (stresslets and pressure moments) and the associated resistance functions.
In this paper the basics properties of axisymmetric flow and the stream function are discussed.
Explicit series expansions, obtained by separation in bispherical coordinates, will be presented in
a follow-up paper.

1. Introduction

The grand resistance and mobility tensors describe the hydrodynamic interaction between
rigid bodies suspended in a fluid medium and play an all-important role in colloidal science
[1–7]. More specifically, they express the linear relationship between the Cartesian force
multipole moments exerted by the particles on the fluid and the gradients of the ambient flow
velocity taken at the particle centers. Both tensors depend, in general, on the positions and
orientations of all the suspended particles. However, in the special case of just two spherical
bodies, owing toO(2)-symmetry about the line connecting the particle centers, the full tensors
can be reduced to a set of scalar resistance andmobility functions [8–15]. Accurate knowledge
of the two-body resistance functions is essential to overcome certain contact singularities—
also referred to as lubrication singularities—that dominate the many-body tensors when a
pair of particles comes close to touching [16, 17].

The calculation of the 2-body resistance functions is based on the solution of the Stokes
boundary value problem for stationary, low-Reynolds number flow about two spheres. In this
case there exists a set of curvilinear coordinates that is adapted to the physical boundaries
at hand—the bispherical coordinates—and it seems natural to try to solve the problem
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analytically by separation in these coordinates [18–21]. However, separation of the Stokes
equations in bispherical coordinates succeeds only up to a modulation factor [22], which
complicates matching of the general solution to the boundary data. In most cases, it turns
out that the matching problem can be reduced to a linear recursion problem that involves
an infinite tridiagonal matrix. Although this cannot, in general, be solved analytically, the
numerical treatment of such a tridiagonal recursion scheme [23–28] is much more efficient
than recursions based on the twin-multipole expansion [9, 12–14].

Further progress can be made if the flow is axisymmetric, which happens when the
spheres translate along or rotate around the line connecting their centers and when the
ambient flow is axially symmetric about that line. A subset of resistance functions, including
those with the strongest contact singularities, is determined by this kind of flow problems [13,
15]. It follows from the Stokes equations that for axisymmetric flow, the azimuthal velocity
component is decoupled from the remaining flow variables, namely, the pressure and the
radial and axial velocity components. Accordingly, there are two types of axisymmetric flow
problems, problem I involving only the azimuthal velocity and problem II involving the other
flow variables. Problem I can be reduced to a harmonic equation for the azimuthal velocity
with Dirichlet boundary conditions. This was solved by separation in bispherical coordinates
almost hundred years ago by Jeffery [29], who calculated, in particular, the torques acting on
two spheres that rotate with given angular velocities around the line of centers.

Problem II is more difficult, since it involves coupled equations among three variables.
However, owing to the incompressibility, the two nonvanishing velocity components, that is,
radial and axial velocities, can be expressed as derivatives of a scalar potential, the so-called
stream function, whose introduction can be traced back to Stokes [30]. This stream function
satisfies a fourth-order differential equation that can again be separated in bispherical
coordinates. In this way, Stimson and Jeffrey calculated the forces on two spheres moving
with equal velocities along the line of centers [31]. Many years later, Brenner [32] andMaude
[33] solved the same problem for spheres moving with opposite velocities along the line of
centers. The latter case, where two spheres approach each other, is the one with the strongest
contact singularity. It is possible to extract the asymptotic behavior of the forces at close
proximity from the series expansion in bispherical coordinates [34, 35], and the results agree
with those obtained from a singular perturbation theory in stretched cylindrical coordinates
[36, 37]. Singular perturbation theory, valid for two spheres near touching, has also been used
to calculate the forces and their dipole moments in the presence of an external, axisymmetric
rate-of-strain flow [14, 38, 39]. Moreover, the twin-multipole expansions, valid for large
distances, are well-known for these cases [12–14]. Yet, the corresponding series expansions
in bispherical coordinates, valid for all distances, have not been published so far.

In this and a follow-up paper [40], we generalize and complete previous studies
of axisymmetric two-sphere-flow problems in several ways. First, we suggest a slight
conceptual improvement by considering from the beginning an inhomogeneous external
flow, as generated, for example, by means of a localized external volume-force density. This
allows us to identify easily the contributions from each sphere without being obliged to
assume artificial deformations, as in [13, 38, 41]. Second, and more important, we introduce
a novel stream function that differs from the classical one [30–33, 37] but has the advantage
of being a biharmonic function. Its series expansion in bispherical coordinates matches the
corresponding expansions of the flow fields better than the old stream function. In particular,
the biharmonic stream function is expressed in associated Legendre functions instead of
Gegenbauer polynomials. Third, with the new stream function, we are able to calculate ana-
lytically not only the forces, but also their dipole moments (stresslets and pressure moments).
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And we will show that this can be accomplished without full knowledge of the pressure
(which would require solving a tridiagonal recursion scheme). This signifies some progress,
as it was claimed earlier in the literature [38] that the stresslets cannot be calculated on the
basis of the stream function alone. In this paper, we present the theory of the biharmonic
stream function for axisymmetric flow, while in the follow-up paper, we derive the series
expansions for the forces and dipole moments in bispherical coordinates.

2. Stokes Equations

We consider two spheres immersed in an unbounded, simple fluid with shear viscosity η.
The spheres—in the following labeled by Greek indices ν, μ ∈ {1, 2}—have radii aν and are
centered on the 3-axis of a Cartesian frame at positions Xν = Zν e3. To exclude overlap, we
assume that |Z1 − Z2| > a1 + a2. The dynamics of the fluid is described in terms of the local
deviation from the thermal pressure, p(x), and the flow velocity u(x) which obey the linear
Stokes equations for stationary, low-Reynolds number flow with stick boundary conditions
[8, 42]

∇ · u = 0

∇p − ηΔu = fext
(x ∈ B0),

(
p,u
)
−→ 0 (‖x‖ −→ ∞),

u = Uν +Ων × (x − Xν) (x ∈ ∂Bν, ν = 1, 2).

(2.1)

Here, B0 denotes the fluid region and ∂Bν the surface of particle ν. Moreover, fext is an
external force density acting on the fluid, whileUν andΩν are the translational and rotational
velocities of particle ν, respectively. We assume fext to have a compact support that is not
overlapping with the particles. Equations (2.1) then pose a Dirichlet boundary value problem
for (p,u) whose solution—for fixed geometry and given sources (fext,U,Ω)—is uniquely
determined [8, 43].

We are interested here in the forces and dipole moments exerted by the particles on
the fluid. These are defined by (we use Latin indices i, j, . . . ∈ {1, 2, 3} to label Cartesian
components and the summation convention over repeated upper and lower Latin indices)

Fμ

i =
∫

∂Bμ

dSF
μ

i (x),

Fμ

ij = aμ

∫

∂Bμ

dSF
μ

i (x)Nj(x),

(
μ = 1, 2

)
, (2.2)

where the surface-force density [8, 42]

Fμ = N ·
[
p1 − 2η(∇u)

]
∂B+μ

(
x ∈ ∂Bμ

)
(2.3)

is determined by the solution of (2.1). Here, N is the normal field on ∂Bμ (directed
outwards), (∇u) is the symmetrized velocity gradient, and the subscript ∂B+μ indicates
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analytic continuation from the fluid regime onto the particle surface. It is useful to split the
dipole moments into a trace, a skew-symmetric, and a symmetric-traceless part, according to

Fμ

ij = Q
μδij −

1
2
εij

mTμ
m +Sμ

ij , (2.4)

where (for an arbitrary second-rank tensor with components Bij , we use the notations B(ij) =
(1/2)(Bij + Bji), B[ij] = (1/2)(Bij − Bji), B〈ij〉 = B(ij) − (1/3)δklBkl δij)

Qμ =
1
3
δmnFμ

mn Tμ

i = −ε mn
i Fμ

[mn] Sμ

ij = Fμ

〈ij〉 (2.5)

denote the pressure moment [14], the torque, and the (deviatoric) stresslet [11, 44], respec-
tively.

We decompose the flow (p,u) in the form

p(x) = pext(x) + q(x),

u(x) = uext(x) + v(x),
(x ∈ B0), (2.6)

where (pext,uext) is the flow caused by fext in the absence of the particles and called the exter-
nal flow. The remainder (q,v) will be referred to as the excess flow. It satisfies the Dirichlet
problem

∇ · v = 0,

∇q − ηΔv = 0,
(x ∈ B0),

(
q,v
)
−→ 0, (‖x‖ −→ ∞),

v = uν, (x ∈ ∂Bν, ν = 1, 2),

(2.7)

with applied velocities

uν(x) = Uν +Ων × (x − Xν) − uext(x), (x ∈ ∂Bν,ν = 1, 2). (2.8)

Inserting (2.6) in (2.3), one obtains a decomposition of the surface-force densities of the form

Fμ = Fμext +Gμ,

Gμ = N ·
[
q1 − 2η(∇v)

]
∂B+μ

,
(2.9)

where Fμext is defined as in (2.3), with (p,u) replaced by (pext,uext). Notice that the external
flow is well defined inside the particles, where it obeys the homogeneous Stokes equations
(since the support of fext lies outside the particles). The contribution from Fμext to the force
moments (2.2) can therefore be evaluated by converting the surface integrals into volume
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integrals over the interiors Bμ of the particles. Expanding then (pext,uext) about the particle
centers, Xμ, and using isotropy, it is easy to calculate these integrals exactly.

Assuming that the external flow varies slowly on the length scale of the particle
diameters, we expand the applied velocities (2.8) up to first order about the particle centers.
This yields

ukν(x) = Uk
ν + aν

[
−εkl nW

n
ν +Eklν

]
Nl(x) + · · · (x ∈ ∂Bν, ν = 1, 2), (2.10)

where the expansion coefficients

Uk
ν = Uk

ν − ukext
∣
∣
∣
Xν

Wk
ν = Ωk

ν −
1
2
εkmn∂

[mu
n]
ext

∣
∣
∣
∣
Xν

Eklν = −∂(luk)ext
∣
∣
∣
Xν

(2.11)

are referred to as the (effective) translational and rotational velocities and the local rate of
strain, respectively. We also put

Pν = −pext
∣∣
Xν
. (2.12)

It follows from incompressibility (cf. the first equation in (2.1)) that the local rates of strain are
traceless, δmn Emnν = 0. Notice that by admitting inhomogeneous external flows, we can avoid
conceptual problems of earlier approaches which were based on a uniform shear flow and
which, therefore, either could not always resolve the individual contributions of the spheres
[11], or, in order to be able to do so, had to assume artificial deformations [13, 38, 41].

Upon inserting (2.9) in (2.2) and (2.5), and evaluating the contributions from Fμext in
the manner outlined above, one obtains

Fμ

i = Gμ

i, Qμ = −4
3
πa3μPμ +

1
3
δmnGμ

mn,

Tμ

i = −ε mn
i Gμ

[mn], Sμ

ij =
8
3
πηa3μE

ij
μ + Gμ

〈ij〉,
(2.13)

where Gμ

i and Gμ

ij are defined as in (2.2), with F
μ

i(x) replaced by Gμ

i(x). On the right-hand

side of Sμ

ij , we have neglected—consistent with the expansion (2.10)—a second-order term

proportional to a2μΔEijμ 	 Eijμ.

3. Axisymmetric Flow

Axisymmetric scalar- and vector-valued fields are of the generic form

q(x) = q(s, z),

v(x) = vs(s, z)es
(
ϕ
)
+ vϕ(s, z)eϕ

(
ϕ
)
+ vz(s, z)ez,

(3.1)
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where (s, ϕ, z) denote cylindrical coordinates about the 3-axis and (es(ϕ), eϕ(ϕ), ez) the
associated unit vectors along the coordinate curves. Explicitly,

x
(
s, ϕ, z

)
=

⎛

⎜
⎜
⎝

s cosϕ

s sinϕ

z

⎞

⎟
⎟
⎠

(
s ≥ 0, ϕ ∈ R

2π
, z ∈ R

)
,

es
(
ϕ
)
=

⎛

⎜
⎜
⎝

cosϕ

sinϕ

0

⎞

⎟
⎟
⎠, eϕ

(
ϕ
)
=

⎛

⎜
⎜
⎝

− sinϕ

cosϕ

0

⎞

⎟
⎟
⎠, ez =

⎛

⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎠.

(3.2)

Notice in (3.1) that the scalar and the vector components are independent of the azimuthal
angle ϕ. Since the Stokes operator (u1,u2) �→ (q,v), defined by the Dirchlet problem (2.7), is
invariant under rotations about the 3-axis, it follows [15] that the flow (q,v) is axisymmetric
if and only if the applied velocities (2.8) are axisymmetric. Expressing (2.10) in cylindrical
coordinates one finds that this is the case if and only if the local velocity gradients (2.11)
assume the special form

(
Uj
ν

)
= Uν

⎛

⎜⎜
⎝

0

0

1

⎞

⎟⎟
⎠

(
Wj

ν

)
= Wν

⎛

⎜⎜
⎝

0

0

1

⎞

⎟⎟
⎠

(
Ejlν
)
= Eν

1√
6

⎛

⎜⎜
⎝

−1 0 0

0 −1 0

0 0 2

⎞

⎟⎟
⎠, (3.3)

where we have used that trEν = 0. Inserting (3.3) in (2.10), one obtains

uν(x) = −

√
1
6
sEνes

(
ϕ
)
+ sWνeϕ

(
ϕ
)
+

⎡

⎣Uν +

√
2
3
(z − Zν)Eν

⎤

⎦ez
(
(s, z) ∈ ∂B̃ν

)
, (3.4)

where (s, z) ∈ ∂B̃ν means x(s, ϕ, z) ∈ ∂Bν for some (and thus all) ϕ ∈ [0, 2π). Likewise, we
will use the notation (s, z) ∈ B̃0.

Upon inserting (3.1) and (3.4) into (2.7), one obtains twoDirichlet problems: one for vϕ

and one for (q, vs, vz). For brevity, we refer to these as problem I and problem II, respectively.
Introducing the Laplace operators

Δm =
1
s
∂ss∂s −

m2

s2
+ ∂z∂z (m = 0, 1), (3.5)

problem I reads

Δ1v
ϕ = 0,

(
(s, z) ∈ B̃0

)
,

vϕ −→ 0,
(√

s2 + z2 −→ ∞
)
,

vϕ = sWν,
(
(s, z) ∈ ∂B̃ν, ν = 1, 2

)
,

(3.6)
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while problem II reads

1
s
∂ssv

s + ∂zvz = 0, ∂sq − ηΔ1v
s = 0, ∂zq − ηΔ0v

z = 0,
(
(s, z) ∈ B̃0

)
,

(
q, vs, vz

)
−→ 0,

(√
s2 + z2 −→ ∞

)
,

vs = −

√
1
6
sEν, vz = Uν +

√
2
3
(z − Zν)Eν,

(
(s, z) ∈ ∂B̃ν, ν = 1, 2

)
.

(3.7)

These two problems are completely decoupled, since (3.6) is determined by the Wν,
while (3.7) is determined by theUν and Eν. Also, from the general uniqueness theorem [8, 43],
it follows that both problems have at most one solution.

In the following, we parameterize the surfaces ∂Bν in terms of the azimuthal angle ϕ
and a polar angle ϑ according to

∂Bν =

⎧
⎪⎪⎨

⎪⎪⎩
x =

⎛

⎜⎜
⎝

sν(ϑ) cosϕ

sν(ϑ) sinϕ

zν(ϑ)

⎞

⎟⎟
⎠ | ϑ ∈ [0, π], ϕ ∈ [0, 2π)

⎫
⎪⎪⎬

⎪⎪⎭
(ν = 1, 2), (3.8)

where the mapping ϑ �→ (sν(ϑ), zν(ϑ)) ∈ ∂B̃ν parameterizes the solutions of the surface
constraint

s2 + (z − Zν)2 = a2ν. (3.9)

This mapping is assumed to be smooth and nonsingular, with żν(ϑ)/= 0 for all ϑ ∈ (0, π).
Then, sgn żν = ±1 denotes the orientation of the parameterization, and dS = a |żν(ϑ)| dϑ dϕ
is the surface element. The parameterization will be made explicit in the following paper
[40], where we introduce bispherical coordinates; for the present purpose, it is sufficient stay
general.

Since the mapping (q,v) �→ (G1,G2), defined by the constitutive equation (2.9), is
invariant under rotations about the 3-axis, it follows [15] that the surface-force densities
Gμ(x) caused by axisymmetric flow (q,v) are again axisymmetric

Gμ(x) = Gμ
s (ϑ)es

(
ϕ
)
+Gμ

ϕ(ϑ)eϕ
(
ϕ
)
+Gμ

z(ϑ)ez. (3.10)

Calculating the associated moments, defined as in (2.2), one can easily perform the azimuthal
integrations to obtain the generic form

(
Gμ

i

)
=

⎛

⎜⎜
⎝

0

0

Gμ

3

⎞

⎟⎟
⎠

(
Gμ

ij

)
=

⎛

⎜⎜
⎝

Gμ

11 −Gμ

21 0

Gμ

21 Gμ

11 0

0 0 Gμ

33

⎞

⎟⎟
⎠, (3.11)
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where the nonvanishing elements involve polar integrations over the components of (3.10).
Inserting these in (2.13), one finds

(
Fμ

i

)
= Fμ

⎛

⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎠, Qμ = −4

3
πa3μPμ + ΔQμ,

(
Sμ

ij

)
= Sμ 1√

6

⎛

⎜
⎜
⎝

−1 0 0

0 −1 0

0 0 2

⎞

⎟
⎟
⎠,

(
Tμ

i

)
= Tμ

⎛

⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎠, Sμ =

8
3
πηa3μEμ + ΔSμ,

(3.12)

with

Fμ = Gμ

3 = 2πaμ
(
sgn żμ

)
∫π

0
dϑżμG

μ
z,

Tμ = 2Gμ

21 = 2πaμ
(
sgn żμ

)
∫π

0
dϑżμsμG

μ
ϕ,

ΔQμ =
1
3

(
2Gμ

11 + Gμ

33

)
=

2
3
πaμ
(
sgn żμ

)
∫π

0
dϑżμ

[(
zμ − Zμ

)
G
μ
z + sμG

μ
s

]
,

ΔSμ =

√
2
3

(
Gμ

33 − Gμ

11

)
=

√
8
3
πaμ
(
sgn żμ

)
∫π

0
dϑżμ

[
(
zμ − Zμ

)
G
μ
z −

1
2
sμG

μ
s

]
.

(3.13)

To determine the components of (3.10), we insert (3.1) in (2.9) and use the incompressibility
condition. This yields

G
μ
s (ϑ) =

1
aμ
sq(s, z) −

η

aμ
[(∂N − 1)vs(s, z) + ∂Tvz(s, z)],

G
μ
ϕ(ϑ) = −

η

aμ
(∂N − 1)vϕ(s, z),

G
μ
z(ϑ) =

1
aμ

(
z − Zμ

)
q(s, z) +

η

aμ

[(
∂T +

z − Zμ

s

)
vs(s, z) − ∂Nvz(s, z)

]
,

(3.14)

where

∂N = s∂s +
(
z − Zμ

)
∂z,

∂T =
(
z − Zμ

)
∂s − s∂z

(3.15)
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denote the derivatives in the normal and tangential directions, respectively, and (s, z) is to be
put equal to (sμ(ϑ), zμ(ϑ)) after the differentiations have been carried out. The expressions
(3.14) must now be inserted in (3.13). To simplify the integrals we use the boundary
conditions on ∂Bμ, as specified in (3.6) and (3.7), and the relations

d

dϑ
= ṡ∂s + ż∂z sṡ +

(
z − Zμ

)
ż = 0 ż∂T = −s d

dϑ
, (3.16)

which follow from (3.9) and (3.15). Employing the notation

qμ(ϑ) = q(s, z)
∣
∣
(s,z)=(sμ(ϑ),zμ(ϑ))

(∂Nvz)μ(ϑ) = ∂Nv
z(s, z)|(s,z)=(sμ(ϑ),zμ(ϑ)), (3.17)

and so forth, and using that

(
sμ(0), zμ(0)

)
=
(
0, Zμ − a sgn żμ

) (
sμ(π), zμ(π)

)
=
(
0, Zμ + a sgn żμ

)
, (3.18)

we finally obtain

Fμ = 2πη
(
sgn żμ

)
∫π

0
dϑ

[
1
2η
s2μq̇μ − żμ(∂Nvz)μ

]
,

Tμ =
8
3
πηa3μWμ − 2πη

(
sgn żμ

)
∫π

0
dϑżμsμ(∂Nvϕ)μ,

ΔQμ =
2
3
πa3μ
[
qμ(0) + qμ(π)

]

− 2
3
πη
(
sgn żμ

)
∫π

0
dϑ

{
a2μ

η

(
zμ − Zμ

)
q̇μ + żμ

[(
zμ − Zμ

)
(∂Nvz)μ + sμ(∂Nv

s)μ
]}

,

ΔSμ = −4
3
πηa3μEμ +

√
8
3
πη
(
sgn żμ

)

×
∫π

0
dϑ

{
1
2η
(
zμ − Zμ

)
s2μq̇μ − żμ

[
(
zμ − Zμ

)
(∂Nvz)μ −

1
2
sμ(∂Nvs)μ

]}
.

(3.19)

Notice from (3.7) and (3.16) that

1
η
q̇μ = ṡμ(Δ1v

s)μ + żμ(Δ0v
z)μ. (3.20)

From (3.19), it follows immediately that for axisymmetric flow, the Tμ are determined
via vϕ by the Wν (problem I, (3.6)), while the (Fμ,Sμ,ΔQμ) are determined via (q, vs, vz) by
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the (Uν,Eν) (problem II, (3.7)). It is convenient to quantify the resulting linear relationships
between the force moments and the applied velocity gradients in the scaled form [15]

T̃μ =
∑

ν=1,2

σ
μν

TWW̃ν,

⎛

⎜
⎜
⎝

F̃μ

S̃μ

ΔQ̃μ

⎞

⎟
⎟
⎠ =

∑

ν=1,2

⎛

⎜
⎜
⎝

σ
μν

FU

σ
μν

SU

σ
μν

QU

σ
μν

FE

σ
μν

SE

σ
μν

QE

⎞

⎟
⎟
⎠

⎛

⎝
Ũν

Ẽν

⎞

⎠

(
μ = 1, 2

)
, (3.21)

where the σμν·· are dimensionless resistance functions and

F̃μ =
(
6πηaμ

)−1/2Fμ Ũν =
(
6πηaν

)1/2Uν,

T̃μ =
(
8πηa3μ

)−1/2
Tμ W̃ν =

(
8πηa3ν

)1/2
Wν,

S̃μ =
(
20
3
πηa3μ

)−1/2
Sμ Ẽν =

(
20
3
πηa3ν

)1/2

Eν,

ΔQ̃μ =
(
20
3
πηa3μ

)−1/2
ΔQμ.

(3.22)

The scaling (3.22) is based on the one-sphere results [13]

Fi = 6πηaUi,

Ti = 8πηa3Wi,

Fij =
20
3
πηa3Eij ,

(3.23)

and differs from earlier scalings [11–13]. An advantage of the present choice is that our
resistance functions satisfy σμνFU, σ

μν

TW, σ
μν

SE → δμν as the distance between the particles goes to
infinity. From Lorentz-reciprocity [8, 9], it follows that σμνSU = σνμFE.

4. Stream Function

Since problem I is already a scalar one and needs no further treatment at this point, we now
focus on problem II and the calculation of (Fμ,Sμ,ΔQμ). To solve (3.7), we make the ansatz

vs = ∂zΨ,

vz = −1
s
∂ssΨ,

(4.1)

where Ψ(s, z) is a scalar stream function. Obviously, (4.1) satisfies the condition of
incompressibility, (1/s)∂ss vs + ∂zvz = 0. Our stream function differs by a factor s from the
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classical stream function introduced by Stokes [30] and used hitherto [31–33, 36, 37] but has
the advantage of being a biharmonic function. In fact, using the identity

∂s
1
s
∂ss =

1
s
∂ss∂s −

1
s2
, (4.2)

one obtains from (3.5), (3.7), and(4.1)

∂sq = η∂zΔ1Ψ,

∂zq = −ηΔ0
1
s
∂ssΨ = −η1

s
∂ssΔ1Ψ,

(4.3)

which leads to

0 = ∂z∂sq − ∂s∂zq = η
[
∂z∂z + ∂s

1
s
∂ss

]
Δ1Ψ = ηΔ1Δ1Ψ. (4.4)

To satisfy the boundary condition (q, vs, vz) → 0 as
√
s2 + z2 → ∞, it is sufficient to require

that Ψ stay bounded at infinity.
Next, we turn to the boundary conditions on the particle surfaces. Since the applied

velocities uν satisfy the homogenous Stokes equations inside particles, they can be expressed
in terms of stream functions, too. We denote these applied stream functions by Φν, (ν = 1, 2),
and determine them from the conditions

usν = ∂zΦν = −

√
1
6
sEν,

uzν = −1
s
∂ssΦν = Uν +

√
2
3
(z − Zν)Eν

(
(s, z) ∈ B̃ν, ν = 1, 2

)
,

Φν regular(s −→ 0),

(4.5)

which follow from (3.4) and (4.1). The solutions are

Φν(s, z) = −1
2
sUν −

√
1
6
s(z − Zν)Eν

(
(s, z) ∈ B̃ν, ν = 1, 2

)
. (4.6)

It is easy to show that the boundary condition v = uν on ∂Bν is satisfied, if

Ψ = Φν

∂NΨ = ∂NΦν

(x ∈ ∂Bν). (4.7)
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The proof is based on the identities

d

dϑ
(Ψ −Φν) = −ṡ(vz − uzν) + ż(vs − usν) −

ṡ

s
(Ψ −Φν)

∂N(Ψ −Φν) = (z − Zν)(vs − usν) − s(vz − uzν) − (Ψ −Φν)
(ϑ ∈ (0, π)), (4.8)

which follow from (3.15), (3.16), (4.1), and (4.5). Now, if (4.7) holds, these identities reduce
to the homogeneous 2 × 2-system

(
ż −ṡ

z − Zν −s

)(
vs − usν
vz − uzν

)

=

(
0

0

)

, (4.9)

which has a nonzero determinant. Hence, (4.9) admits only the trivial solution, v − uν = 0.
To summarize the flow velocity (vs, vz) can be expressed by (4.1) in terms of a scalar stream

function Ψ(s, z) that satisfies the biharmonic two-body Dirichlet problem

Δ1Δ1Ψ = 0
(
(s, z) ∈ B̃0

)
,

Ψ bounded
(√

s2 + z2 −→ ∞
)
,

Ψ = Φν ∂NΨ = ∂NΦν

(
(s, z) ∈ ∂B̃ν, ν = 1, 2

)
,

(4.10)

where the applied stream functions Φν are given by (4.6).
The pressure at a given point (s, z) ∈ B̃0 can, in principle, be calculated from the stream

function by integration of (4.3) along any curve in B̃0 that starts at infinity and ends in the
point (s, z). However, for all but a few special points, these integrals cannot be performed
analytically [40].

To establish the existence of a stream function as specified by (4.10), we consider two
harmonic functions, ψ1 and ψ2, that vanish at infinity,

Δ1ψi = 0

ψi → O
(

1√
s2 + z2

) √
s2 + z2 −→ ∞

(i = 1, 2). (4.11)

It is known from potential theory that such functions exist in bispherical geometry, and this
is, of course, explicitly confirmed by the solution of problem I. Following [31], we put

Ψ(s, z) = ψ1(s, z) + zψ2(s, z), (4.12)
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and obtain

Δ1Ψ = 2 ∂zψ2 Δ1Δ1Ψ = 0,

Ψ −→ O
(

z√
s2 + z2

) (√
s2 + z2 −→ ∞

)
.

(4.13)

Thus Ψ, as given by (4.12), is biharmonic and stays bounded at infinity. Moreover, the ansatz
(4.12), with two independent harmonic functions, is general enough to allow specification of
Ψ and ∂NΨ on the boundaries, as will be confirmed explicitly in [40].

Finally, we express the force moments (Fμ,Sμ,ΔQμ) in the stream function by
inserting (3.20) and (4.1) into (3.19). We quote the auxiliary formulae, valid on ∂B̃μ,

1
η

dq

dϑ
= −ż1

s
(∂N + 1)Δ1Ψ ż∂Nv

z = −żsΔ1Ψ +
d

dϑ
svs,

ż
(
z − Zμ

)
∂Nv

z = −ż
(
z − Zμ

)
sΔ1Ψ − żsvs + d

dϑ
(· · · ),

żs∂Nv
s = ż

(
z − Zμ

)
sΔ1Ψ + żsvs +

d

dϑ
(· · · ),

(4.14)

where (s, z) = (sμ(ϑ), zμ(ϑ)) and the unquoted expressions (· · · ) tend to zero for s → 0 and,
therefore, do not contribute to the integrals in (3.19). The final results are

Fμ = −πη
(
sgn żμ

)
∫π

0
dϑżμsμ((∂N − 1)Δ1Ψ)μ,

Sμ =

√
2
3
πη
(
sgn żμ

)
∫π

0
dϑṡμs

2
μ((∂N − 2)Δ1Ψ)μ,

ΔQμ =
2
3
πa3μ
[
qμ(0) + qμ(π)

]
−
2πη
3

a2μ
(
sgn żμ

)
∫π

0
dϑṡμ((∂N + 1)Δ1Ψ)μ.

(4.15)

With (4.15), we have succeeded to express the forces and stresslets in the stream function
alone. The pressure moments require, in addition, the quantities qμ(0) and qμ(π), that is, the
pressure at the poles of the spheres. As will be shown [40], the poles belong to the few points,
where the pressure can be determined analytically in terms of the stream function.

The further evaluations in bispherical coordinates and the associated series expansions
for the resistance functions will be presented in [40].
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