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The spaces with a random variable exponent Lp(ω)(D×Ω) andWk,p(ω)(D×Ω) are introduced. After
discussing the properties of the spaces Lp(ω)(D ×Ω) andWk,p(ω)(D ×Ω), we give an application of
these spaces to the stochastic partial differential equations with random variable growth.

1. Introduction

In the study of some nonlinear problems in natural science and engineering, for example,
a class of nonlinear problems with variable exponential growth, variable exponent function
spaces play an important role. In recent years, there is a great development in the field of
variable exponent analysis. In [1], basic properties of the spaces Lp(x)(Ω) andWk,p(x)(Ω) have
been discussed by Kováčik and Rákosnı́k. Some theories of variable exponent spaces can also
be found in [2, 3]. In [4], Harjulehto et al. present an overview about applications of variable
exponent spaces to differential equations with nonstandard growth. In [5], Diening et al.
summarize a lot of the existing literature of theory of function spaces with variable exponents
and applications to partial differential equations. In [6], Aoyama discusses the properties of
Lebesgue spaces with variable exponent on a probability space.

Motivated by [6, 7], we first introduce Lp(ω)(D × Ω) and Wk,p(ω)(D × Ω) in Section 2,
which are function spaces with a random variable exponent. We also discuss some properties
of these spaces. Stochastic partial differential equations have many applications in finance,
such as option pricing. In Section 3, an application of the random variable exponent spaces to
the stochastic partial differential equations with random variable growth is given. We discuss
the existence and uniqueness of weak solution for the following equation:

−divA(x,ω, u,∇u) + B(x,ω, u,∇u) = f(x,ω), (x,ω) ∈ D ×Ω,

u = 0, (x,ω) ∈ ∂D ×Ω.
(1.1)
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A and B are Carathéodory functions, which are integrable on D × Ω and continuous
for u and ∇u. f(x,ω) is an integrable function on D × Ω. (Ω,F, P) is a complete probability
space, and D is a bounded open subset of Rn (n > 1). The random variable p : Ω → [1,∞)
satisfies 1 < p− ≤ p(ω) ≤ p+ < ∞. Furthermore,

A : Rn ×Ω × R × Rn −→ Rn, B : Rn ×Ω × R × Rn −→ R, f : Rn ×Ω −→ R (1.2)

satisfy the following growth conditions:

(H1) |A(x,ω, s, ξ)|β1(ω)|ξ|p(ω)−1 +β2(ω)|s|p(ω)−1 +K1(x,ω), |B(x,ω, s, ξ)| ≤ β3(ω)|ξ|p(ω)−1 +
β4(ω)|s|p(ω)−1 +K2(x,ω),

(H2) E((A(x,ω, s1, ξ) − A(x,ω, s2, η))(ξ − η) + (B(x,ω, s1, ξ) − B(x,ω, s2, η))(s1 − s2)) >
0, ξ /=η or s1 /= s2,

(H3) E(A(x,ω, s, ξ)ξ + B(x,ω, s, ξ)s) ≥ βE(|ξ|p(ω) + |s|p(ω)), a.e. in D,

whereK1(x,ω), K2(x,ω) ∈ Lp′(ω)(D×Ω), β > 0, βi(ω) (i = 1, 2, 3, 4) are nonnegative bounded
random variables, f ∈ Lp′(ω)(D ×Ω), and 1/p(ω) + 1/p′(ω) = 1.

2. Some Properties of Function Spaces with a Random
Variable Exponent

Let λ be a product measure on D ×Ω and u(x,ω) a Lebesgue measurable function on D ×Ω.
In this section, p : Ω → [1,∞) is a random variable.

On the set of all functions defined on D ×Ω, the functional ρp(ω) is defined by

ρp(ω)(u) = E

(∫
D

|u(x,ω)|p(ω)dx

)
. (2.1)

Definition 2.1. The space Lp(ω)(D ×Ω) is the set of Lebesgue measurable functions u on D ×Ω
such that

∫
D×Ω |u(x,ω)|p(ω)dλ < ∞, and it is endowed with the following norm:

‖u‖p(ω) = inf
{
λ > 0 : ρp(ω)

(u
λ

)
≤ 1

}
. (2.2)

Definition 2.2. The spaceWk,p(ω)(D ×Ω) is the set of functions such that Dαu ∈ Lp(ω)(D ×Ω),
|α| ≤ k, and it is endowed with the following norm:

‖u‖k,p(ω) =
∑
|α|≤k

‖Dαu‖p(ω). (2.3)

HereDαu is the derivative of u with respect to x in the distribution sense.

Definition 2.3. The space W
k,p(ω)
0 (D × Ω) is the closure of C(D × Ω) = {u ∈ Wk,p(ω)(D × Ω) :

u(·, ω) ∈ C∞
0 (D) for each ω ∈ Ω} inWk,p(ω)(D ×Ω).
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Theorem 2.4. If p(ω) satisfies 1 < p− ≤ p(ω) ≤ p+ < ∞, then the inequality

E

(∫
D

∣∣f(x,ω)g(x,ω)
∣∣dx

)
≤ C

∥∥f∥∥
p(ω)

∥∥g∥∥
p′(ω) (2.4)

holds for every f ∈ Lp(ω)(D × Ω) and g ∈ Lp′(ω)(D × Ω) with the constant C dependent on p(ω)
only.

Proof. By Young inequality, we have

∣∣f(x,ω)
∣∣∥∥f∥∥p(ω)

∣∣g(x,ω)
∣∣∥∥g∥∥p′(ω)

≤ 1
p(ω)

(∣∣f(x,ω)
∣∣∥∥f∥∥p(ω)

)p(ω)

+
1

p′(ω)

(∣∣g(x,ω)
∣∣∥∥g∥∥p′(ω)

)p′(ω)

. (2.5)

Integrating overD ×Ω, we obtain

E

(∫
D

∣∣f(x,ω)
∣∣

‖f‖p(ω)

∣∣g(x,ω)
∣∣

‖g‖p′(ω)
dx

)
≤ 1 +

1
p−

− 1
p+

. (2.6)

So

E

(∫
D

∣∣f(x,ω)g(x,ω)
∣∣dx

)
≤
(
1 +

1
p−

− 1
p+

)∥∥f∥∥
p(ω)

∥∥g∥∥
p′(ω). (2.7)

Now the proof is completed.

Theorem 2.5. Suppose that p(ω) satisfies 1 < p− ≤ p(ω) ≤ p+ < ∞. If uk, u ∈ Lp(ω)(D ×Ω), then

(1) if ‖u‖p(ω) ≥ 1, then ‖u‖p−
p(ω) ≤ ρp(ω)(u) ≤ ‖u‖p+

p(ω),

(2) if ‖u‖p(ω) ≥ 1, then ‖u‖p+
p(ω) ≤ ρp(ω)(u) ≤ ‖u‖p−

p(ω),

(3) limk→∞‖uk‖p(ω) = 0 if and only if limk→∞ρp(ω)(uk) = 0,

(4) limk→∞‖uk‖p(ω) = ∞ if and only if limk→∞ρp(ω)(uk) = ∞.

Proof. (1) By ‖u‖p(ω) ≥ 1 and the definition of the norm,

E

⎛
⎝

∫
D

|u|p(ω)

‖u‖p+p(ω)

dx

⎞
⎠ ≤ E

⎛
⎝

∫
D

(
|u|

‖u‖p(ω)

)p(ω)

dx

⎞
⎠ ≤ 1. (2.8)

So ρp(ω)(u) ≤ ‖u‖p+
p(ω). As

‖u‖p
−/p(ω)

p(ω) ≤ ‖u‖p(ω), (2.9)



4 Abstract and Applied Analysis

we also have

E

⎛
⎜⎝

∫
D

⎛
⎝ |u|

‖u‖p−/p(ω)
p(ω)

⎞
⎠

p(ω)

dx

⎞
⎟⎠ ≥ 1. (2.10)

That is to say ‖u‖p−
p(ω) ≤ ρp(ω)(u). The proof is completed. (2), (3), and (4) can be easily proved

with similar methods.

Theorem 2.6. If p(ω) satisfies 1 < p− ≤ p(ω) ≤ p+ < ∞, the space Lp(ω)(D ×Ω) is complete.

Proof. Let un be a Cauchy sequence in Lp(ω)(D ×Ω). Then, by Theorem 2.4,

E

(∫
D

|um(x,ω) − un(x,ω)|dx
)

≤ C‖um − un‖p(ω)

∥∥χD

∥∥
p′(ω), (2.11)

where C is constant. That is to say un is a Cauchy sequence in L1(D × Ω). In view of the
completeness of L1(D ×Ω), un converges in L1(D ×Ω). Suppose that un → u, u ∈ L1(D ×Ω)
and further suppose that un(x,ω) → u(x,ω) a.e. in D × Ω (subtracting a subsequence if
necessary). For each 0 < ε < 1, there exists n0 such that ‖um − un‖ < ε for m,n ≥ n0. Fix n, by
Fatou’s lemma

E

(∫
D

( |un(x,ω) − u(x,ω)|
ε

)p(ω)

dx

)
≤ E

(
lim sup
m→∞

∫
D

( |un(x,ω) − um(x,ω)|
ε

)p(ω)

dx

)

≤ lim sup
m→∞

E

(∫
D

( |un(x,ω) − um(x,ω)|
ε

)p(ω)

dx

)

≤ 1.
(2.12)

So ‖un − u‖p(ω) ≤ ε, and further ρp(ω)(un − u) ≤ ‖un − u‖p−
p(ω) ≤ εp

−
; that is to say, un − u ∈

Lp(ω)(D×Ω). Next as un ∈ Lp(ω)(D×Ω), we have u ∈ Lp(ω)(D×Ω). Now the proof is completed.

Theorem 2.7. If p(ω) satisfies 1 < p− ≤ p(ω) ≤ p+ < ∞, then the space Lp(ω)(D ×Ω) is reflexive.

Proof. First, suppose that v ∈ Lp′(ω)(D ×Ω) is fixed, and let

Lv(u) = E

(∫
D

uv dx

)
, (2.13)

for every u ∈ Lp(ω)(D ×Ω).
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Note that

|Lv(u)| ≤ C‖u‖p(ω)‖v‖p′(ω). (2.14)

So Lv(u) ∈ [Lp(ω)(D ×Ω)]′.
Second, we show that each bounded linear functional on Lp(ω)(D × Ω) is of the form

Lv(u) = E(
∫
D uvdx) for every v ∈ Lp′(ω)(D ×Ω). Let L ∈ [Lp(ω)(D ×Ω)]′ be given. Let S be a

subset of D ×Ω. We define

μ(S) = L
(
χS

)
, (2.15)

where χS is the characteristic function of S; then

∣∣μ(S)∣∣ ≤ ‖L‖∥∥χS

∥∥
p(ω)

≤ ‖L‖max
{
ρp(ω)

(
χS

)1/p−
, ρp(ω)

(
χS

)1/p+}

= ‖L‖max
{
meas (S)1/p

−
, meas (S)1/p

+
}
,

(2.16)

so μ is absolutely continuous with respect to the measure λ. Also we have that μ is σ finite
measure. By Radon-Nikodym theorem, there is an integrable function ṽ on D ×Ω such that

μ(S) =
∫
S

ṽdλ = E

(∫
D

ṽχSdx

)
. (2.17)

Now L(u) = E(
∫
D
uṽdx) holds for simple functions u. If u ∈ Lp(ω)(D ×Ω), there is a sequence

of simple function uj , converging a.e. to u and |uj(x,ω)| ≤ |u(x,ω)| on D × Ω. By Fatou’s
lemma

∣∣∣∣E
(∫

D

uṽ dx

)∣∣∣∣ ≤ lim sup
j→∞

E

(∫
D

∣∣uj ṽ
∣∣dx

)

= lim sup
j→∞

L
(∣∣uj

∣∣ sgn ṽ
)

≤ ‖L‖lim sup
j→∞

∥∥uj

∥∥
p(ω)

≤ ‖L‖‖u‖p(ω).

(2.18)

Then

Lṽ(u) = E

(∫
D

uṽ dx

)
(2.19)
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is also a bounded linear functional on Lp(ω)(D ×Ω). By Lebesgue theorem

lim
j→∞

E

(∫
D

∣∣uj − u
∣∣p(ω)

dx

)
= E

(∫
D

lim
j→∞

∣∣uj − u
∣∣p(ω)

dx

)
= 0. (2.20)

By Theorem 2.5, we have that

lim
j→∞

∥∥uj − u
∥∥
p(ω) = 0, (2.21)

that is, uj → u. As L(uj) = Lṽ(uj), by letting j → ∞, we have that L(u) = Lṽ(u).
At last, we show that ṽ ∈ Lp′(ω)(D ×Ω). Let

El = {(x,ω) ∈ D ×Ω : |ṽ(x,ω)| ≤ l}. (2.22)

As

∫
D×Ω

∣∣ṽχEl

∣∣p′(ω)
dλ≤

∫
El

|l|p′(ω)dλ ≤ ∞, (2.23)

ṽχEl ∈ Lp′(ω)(D ×Ω). Suppose that ‖ṽχEl‖ > 0, and take

u = χEl

(
|ṽ|∥∥ṽχEl

∥∥
p′(ω)

)1/(p(ω)−1)
sgn ṽ. (2.24)

Then

∣∣∣∣E
(∫

D

uṽ dx

)∣∣∣∣ =
∣∣∣∣∣∣E

⎛
⎝

∫
D

χEl

(
|ṽ|∥∥ṽχEl

∥∥
p′(ω)

)p′(ω)∥∥ṽχEl

∥∥
p′(ω)dx

⎞
⎠

∣∣∣∣∣∣

≥
∥∥ṽχEl

∥∥
p′(ω)

2p+
E

⎛
⎝

∫
D

χEl

(
|ṽ|

(1/2)
∥∥ṽχEl

∥∥
p′(ω)

)p′(ω)

dx

⎞
⎠

>

∥∥ṽχEl

∥∥
p′(ω)

2p+
.

(2.25)

As

‖u‖p(ω) = inf

⎧⎨
⎩λ > 0 : E

⎛
⎝

∫
D

χEl

(
|ṽ|

λ
∥∥ṽχEl

∥∥
p′(ω)

)p′(ω)

dx

⎞
⎠ ≤ 1

⎫⎬
⎭ = 1, (2.26)
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we have that

∥∥ṽχEl

∥∥
p′(ω) ≤ 2p

+‖L‖,

E

⎛
⎝

∫
D

( ∣∣ṽχEl

∣∣
2p+‖L‖

)p′(ω)

dx

⎞
⎠ ≤ 1.

(2.27)

By Fatou’s lemma

E

(∫
D

( |ṽ|
2p+‖L‖

)p′(ω)

dx

)
≤ lim sup

l→∞
E

⎛
⎝

∫
D

( ∣∣ṽχEl

∣∣
2p+‖L‖

)p′(ω)

dx

⎞
⎠ ≤ 1. (2.28)

So ṽ ∈ Lp′(ω)(D×Ω). Nowwe reach the conclusion that Lp′(ω)(D×Ω) = [Lp(ω)(D ×Ω)]′,
and, furthermore, Lp(ω)(D ×Ω) is reflexive.

Theorem 2.8. If p(ω) satisfies 1 < p− ≤ p(ω) ≤ p+ < ∞, then the spaceWk,p(ω)(D×Ω) is a reflexive
Banach space.

Proof. Wk,p(ω)(D ×Ω) can be treated as a subspace of the product space

∏
m

Lp(ω)(D ×Ω), (2.29)

where m is the number of multi-indices α with |α| ≤ k.
Thenwe need only to show thatWk,p(ω)(D×Ω) is a closed subspace of

∏
mL

p(ω)(D×Ω).
Let {un} ⊂ Wk,p(ω)(D ×Ω) be a convergent sequence. Then {un} is a convergent sequence in
Lp(ω)(D×Ω), so there exists u ∈ Lp(ω)(D×Ω) such that un → u in Lp(ω)(D×Ω) by Theorem 2.6.

Similarly, there exists uα ∈ Lp(ω)(D × Ω) such that Dαun → uα in Lp(ω)(D × Ω) for
|α| ≤ k. As, for ϕ ∈ C(D ×Ω),

(−1)|α|E
(∫

D

Dαunϕ dx

)
= E

(∫
D

unD
αϕdx

)
, (2.30)

we have

(−1)|α|E
(∫

D

uαϕ dx

)
= E

(∫
D

uDαϕdx

)
, (2.31)

as n → ∞. By the definition of weak derivative, Dαu = uα holds for each |α| ≤ k. So Dαu ∈
Lp(ω)(D ×Ω). ThenWk,p(ω)(D ×Ω) is a closed subspace of

∏
mL

p(ω)(D ×Ω).

Theorem 2.9. Suppose that the sequence un ∈ Lp(ω)(D×Ω) is bounded in Lp(ω)(D×Ω). If un → u
a.e. in D ×Ω, then un ⇀ u in Lp(ω)(D ×Ω).
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Proof. By Theorem 2.7, we need only to show that

E

(∫
D

ung dx

)
−→ E

(∫
D

ug dx

)
(2.32)

for each g ∈ Lp′(ω) (D ×Ω).
Let ‖un‖p(ω) ≤ C for each n ∈ N. By Fatou’s lemma,

E

(∫
D

∣∣∣∣ uC
∣∣∣∣
p(ω)

dx

)
≤ lim sup

n→∞
E

(∫
D

∣∣∣∣un

C

∣∣∣∣
p(ω)

dx

)
≤ 1, (2.33)

so ‖u‖p(ω) ≤ C. By the absolute continuity of Lebesgue integral,

lim
meas(E)→ 0

∫
D×Ω

∣∣gχE

∣∣p′(ω)
dλ = 0, (2.34)

where g ∈ Lp′(ω)(D ×Ω) and E ⊂ D ×Ω. By Theorem 2.5, limmeas(E)→ 0‖gχE‖p′(ω) = 0. So there
exists δ > 0, such that

∥∥gχE

∥∥
p′(ω)<

1
4C

ε

(
1 +

1
p−

− 1
p+

)−1
, (2.35)

for meas(E) < δ. By Egorov theorem, there exists a set B ⊂ D×Ω such that un → u uniformly
on B with meas(Ω \ B) < δ. Choose n0 such that n > n0 implies

max
(x,ω)∈B

|u − un|
∥∥g∥∥p′(ω)

∥∥χB

∥∥
p′(ω)

(
1 +

1
p−

− 1
p+

)
<

ε

2
. (2.36)

Taking E = D ×Ω \ B,
∣∣∣∣E

(∫
D

ug dx

)
− E

(∫
D

ung dx

)∣∣∣∣

≤
∫
B

|un − u|∣∣g∣∣dλ +
∫
E

|un − u|∣∣g∣∣dλ

≤ max
(x,ω)∈B

|u − un|E
(∫

D

∣∣gχB

∣∣dx
)
+ E

(∫
D

|un − u|
∣∣gχE

∣∣dx
)

≤ max
(x,ω)∈B

|u − un|
∥∥g∥∥

p′(ω)

∥∥χB

∥∥
p′(ω)

(
1 +

1
p−

− 1
p+

)

+ ‖un − u‖p(ω)

∥∥gχE

∥∥
p′(ω)

(
1 +

1
p−

− 1
p+

)

< ε.

(2.37)
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That is to say un ⇀ u weakly in Lp(ω)(D ×Ω).

3. An Application to Partial Differential Equations with
Random Variable Growth

Definition 3.1. u ∈ W
1,p(ω)
0 (D ×Ω) is said to be the weak solution of (1.1) if

E

(∫
D

A(x,ω, u,∇u)∇ϕ + B(x,ω, u,∇u)ϕdx

)
= E

(∫
D

f(x,ω)ϕdx

)
(3.1)

for all ϕ ∈ W1,p(ω)(D ×Ω).

Definition 3.2. Let X be a reflexive Banach space with dual X′, and let 〈·, ·〉 denote a pairing
between X and X′. If K ⊂ X is a closed convex set, then a mapping L : K → X′ is called
monotone if 〈Lu − Lv, u − v〉 ≥ 0 for all u, v ∈ K. Further, L is called coercive on K if there
exists φ ∈ K such that

〈Luj − Lϕ, uj − ϕ
〉

∥∥uj − ϕ
∥∥
X

−→ ∞, (3.2)

whenever uj is sequence in K with ‖uj − ϕ‖
X

→ ∞.

Theorem 3.3 (see [8]). Let K be a nonempty closed convex subset of X, and let L : K → X′ be
monotone, coercive and strong-weakly continuous on K. Then there exists an element u in K such
that 〈Lu, v − u〉 ≥ 0 for all v ∈ K.

In the following, let K = W
1,p(ω)
0 (D ×Ω). Then it is obvious that K is a closed convex

subset of X = W1,p(ω)(D ×Ω). Let L : K → X′,

〈Lu, v〉 = E

(∫
D

A(x,ω, u,∇u)∇v + B(x,ω, u,∇u)v dx −
∫
D

f(x,ω)v dx

)
, (3.3)

where v ∈ X.

Lemma 3.4. L is monotone and coercive on K.

Proof. In the view of (H2), it is immediate that L is monotone. Next that L is coercive is
shown. Fixing ϕ ∈ K, for all u ∈ K, by (H1), (H3), and Young Equality,

〈L(u) − L(
ϕ
)
, u − ϕ

〉

= E

(∫
D

A(x,ω, u,∇u)∇u + B(x,ω, u,∇u)udx +
∫
D

A
(
x,ω, ϕ,∇ϕ

)∇ϕ

+ B
(
x,ω, ϕ,∇ϕ

)
ϕdx −

∫
D

A(x,ω, u,∇u)∇ϕ +A
(
x,ω, ϕ,∇ϕ

)∇u
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+B(x,ω, u,∇u)ϕ + B
(
x,ω, ϕ,∇ϕ

)
udx

)

≥ (
β − (

4β0 + 1
)
ε
)(
ρp(ω)(|∇u|) + ρp(ω)(u)

)
+
(
β − (

4β0 + 1
)
C(ε)

)(
ρp(ω)

(∣∣∇ϕ
∣∣) + ρp(ω)

(
ϕ
))

− (C(ε) + ε)
(
ρp′(ω)(K1(x,ω)) + ρp′(ω)(K2(x,ω))

)
, (3.4)

where β0 is the bound of nonnegative bounded random variable βi(ω), (i = 1, 2, 3, 4), ε is
small enough such that (β − (4β0 + 1)ε) > 0, and C(ε) is constant only dependent on ε. Then

〈L(u) − L(
ϕ
)
, u − ϕ

〉
∥∥u − ϕ

∥∥
W

1,p(ω)
0 (D×Ω)

≥
(
β − (

4β0 + 1
)
ε
)(
ρp(ω)(|∇(u)|) + ρp(ω)(u)

)
‖u‖

W
1,p(ω)
0 (D×Ω) +

∥∥ϕ∥∥
W

1,p(ω)
0 (D×Ω)

+
C
(
ϕ,∇ϕ,K1, K2, ε

)
∥∥u − ϕ

∥∥
W

1,p(ω)
0 (D×Ω)

.

(3.5)

For ε1, ε2 > 0 small enough, we have that

ρp(ω)(|∇(u)|) + ρp(ω)(u)

= E

⎛
⎜⎝
∫
D

⎛
⎜⎝ |∇u|p(ω)

(
‖∇u‖p(ω)−ε1

)p(ω)

(‖∇u‖p(ω)−ε1
)p(ω) +

|u|p(ω)

(
‖u‖p(ω)−ε2

)p(ω)

(
‖u‖p(ω)−ε2

)p(ω)

⎞
⎟⎠dx

⎞
⎟⎠

≥ min
{(

‖∇u‖p(ω)−ε1
)p−

,
(
‖∇u‖p(ω)−ε1

)p+
}
+min

{(
‖u‖p(ω)−ε2

)p−

,
(
‖u‖p(ω)−ε2

)p+
}
.

(3.6)

Thus, we have that

〈L(u) − L(
ϕ
)
, u − ϕ

〉
∥∥u − ϕ

∥∥
W

1,p(ω)
0 (D×Ω)

−→ ∞, (3.7)

as ‖u‖
W

1,p(ω)
0 (D×Ω) → ∞. The proof is completed.

Lemma 3.5. L is strong-weakly continuous.

Proof. Let un ∈ W
1,p(ω)
0 (D × Ω) be a sequence that converges to u ∈ W

1,p(ω)
0 (D × Ω). Then

‖un‖ ≤ C for some constant C, and there exists a subsequence such that

unk −→ u,

∇unk −→ ∇u,
(3.8)
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a.e. in D ×Ω. A,B are Caratheodory functions, so

A(x,ω, unk ,∇unk) −→ A(x,ω, u,∇u),

B(x,ω, unk ,∇unk) −→ B(x,ω, u,∇u),
(3.9)

a.e. in D ×Ω. By Theorem 2.9,

A(x,ω, unk ,∇unk) ⇀ A(x,ω, u,∇u),

B(x,ω, unk ,∇unk) ⇀ B(x,ω, u,∇u),
(3.10)

and A(x,ω, unk ,∇unk) and B(x,ω, unk ,∇unk) are bounded. For all ϕ ∈ W1,p(ω)(D × Ω), we
have that

〈
L(unk ), ϕ

〉
= E

(∫
D

A(x,ω, unk ,∇unk)∇ϕ + B(x,ω, unk ,∇unk)ϕdx −
∫
D

f(x,ω)ϕdx

)

−→ E

(∫
D

A(x,ω, u,∇u)∇ϕ + B(x,ω, u,∇u)ϕdx −
∫
D

f(x,ω)ϕdx

)

=
〈
L(u), ϕ

〉
,

(3.11)

that is to say L is strong-weakly continuous.

Theorem 3.6. Under conditions (H1)–(H3), there exists a unique weak solution u ∈ W
1,p(ω)
0 (D×Ω)

to (1.1) for any f ∈ Lp′(ω)(D ×Ω).

Proof. From Theorem 3.3, Lemmas 3.4, and 3.5, there exists u ∈ W
1,p(ω)
0 (D ×Ω) such that

〈Lu, v − u〉 ≥ 0, (3.12)

for all v ∈ W
1,p(ω)
0 (D ×Ω). Let ϕ ∈ W

1,p(ω)
0 (D ×Ω), then u − ϕ, u + ϕ ∈ W

1,p(ω)
0 (D ×Ω). So

〈Lu, ϕ
〉
= 0. (3.13)

That is to say u is the weak solution of (1.1). If u1, u2 ∈ W
1,p(ω)
0 (D×Ω) are both weak solutions,

then

E
(∫

D(A(x,ω, u1,∇u1) −A(x,ω, u2,∇u2))∇(u1 − u2)

+(B(x,ω, u1,∇u1) − B(x,ω, u2,∇u2))(u1 − u2)dx) = 0, (3.14)

so u1 = u2, a.e. in D ×Ω. If not, it is contradicting to (H2). Thus, the weak solution is unique.
Now the proof is completed.
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