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The paper describes a new method for numerical monitoring of discrepancies in natural gas
supply to consumers, who receive gas from gas distribution loops. This method serves to
resolve the vital problem of commercial natural gas accounting under the conditions of deficient
field measurements of gas supply volumes. Numerical monitoring makes it possible to obtain
computational estimates of actual gas deliveries over given time spans and to estimate their
difference from corresponding values reported by gas consumers. Such estimation is performed
using a computational fluid dynamics simulator of gas flows in the gas distribution system of
interest. Numerical monitoring of the discrepancy is based on a statement and numerical solution
of identification problem of a physically proved gas dynamics mode of natural gas transmission
through specified gas distribution networks. The identified mode parameters should have a
minimum discrepancy with field measurements of gas transport at specified reference points of
the simulated pipeline network.

1. Introduction

In the last 20 years, operation of complex gas distribution systems has been associatedwith an
acute problem of credible commercial accounting of natural gas supply under the deficiency
of respective field measurements [1–4]. In large communities, natural gas is supplied to the
consumers using medium or low pressure ring mains, being several dozen kilometers long.
Gas from the supplier is transmitted to such mains through a gas transmission network after
its pressure is reduced by means of a system of gas reducers installed at inlet gas distribution
stations (GDSs) (Figure 1). Major parameters of gas supplied by the gas transportation
company to the seller are also measured at the GDS outlets. Here, major parameters of natural
gas include its flow rate, pressure, and temperature.
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Figure 1: A diagram of the gas distribution network under consideration.

Gas from inlet GDSs is delivered to the ring main via the connecting gas pipelines
(CGPs) network of the gas seller. Consumers receive gas from the ring mains through
outlet CGPs leading from the ring main to the consumer. The length of the CGPs can
range from several hundred meters to several kilometers. In the first approximation, each
consumer is considered independent and provided with gas through one CGP, which
is completely associated with the consumer (called “associated CGP” as the text goes).
Consumer independence means that the consumer’s gas cannot be delivered to other
consumers.

Thus, the gas distribution network (GDN) under consideration comprises inlet CGPs
from inlet GDSs, a ring main and associated CGPs. In Figure 1, the GDN under consideration
is shown with gray color.

If the GDN operates properly, the seller seeks to sell the whole amount of gas received
from the supplier. An exception in this case is natural gas forcedly accumulated in the GDN.

For settlement of accounts, consumers submit reports to the seller, in which they
indicate estimated volumes of received gas. These reports are usually generated either by
processing the consumers’ field flow meter readings or by simplified calculations based
on the rates formally established for the given category of consumers. Verification of data
provided by the consumers consists in the comparison of their estimates with data obtained
by processing the seller’s flow meter readings in compliance with current guidelines.

The central difficulty in such verification is that the amount of field measurements
of supplied gas that can be used as a reliable basis is rather limited in the present-day
gas industry. Such a situation results in occasional discrepancies (especially during the
heating season) in analyzing the volume of natural gas supplied to the consumers. The total
discrepancy over a given time period is determined as a difference between two estimates of
the gas volume. The first estimate represents the total gas volume actually received during
the time period in question as reported by all consumers, and the second estimate represents
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the total volume of natural gas delivered by the supplier to the seller which is less than the
gas volume accumulated in the GDN.

It is necessary to note that in gas industry field measurements [4] were the basic tools
for solving a discrepancy monitoring problem for the last decades. The given methods are
effective in case of expensive high-precision measuring equipment and providing that flow
rate sensors are being installed at all associated CGPs and inlet GDSs of GDN in question. Up
to the present daymethods of GDNnumerical analysis have been of limited application. They
were used for GDN geometrical parameters estimation, GDN ultimate capacity analysis, and
gas deliveries problem solution [1, 3, 4]. This paper proposes to apply numerical simulation
for revealing discrepancy sources of gas delivered through a GDN in the event of lack of
measurement information (some of associated CGPs are not equipped with flow rate sensors) and
information with a significant level of errors.

The suggested approach to numerical monitoring of the discrepancy is based on
a statement and numerical solution of identification problem of a physically proved gas
dynamics mode of natural gas transmission through specified gas distribution networks.
Identification problem solution is aimed at restoration of space-time distribution of gas
flow parameters (pressure, flow rate, and temperature) along the pipelines which constitute
GDN in question, on the basis of the incomplete measurement information. The identified
mode parameters should have a minimum discrepancy with field measurements of gas
transmission at specified reference points of the simulated pipeline network. As such, to
numerical evaluation of space-time distribution of gas flow parameters along GDN, one
should use the computational fluid dynamics simulator (CFD simulator) [5].

Numerical estimations of gas flow parameters along GDN obtained from the
identification problem solution further can be applied for discrepancy monitoring to replace
missing measurement information on associated CGPs. Moreover, the comparison of gas
volume values calculated and declared by consumers makes it possible to reveal gas volumes
which were not paid by a particular consumer. Such approach to gas discrepancy monitoring
has never been applied in the gas industry before.

Section 2 describes a mathematical model variant which is used in CFD simulator
computational kernel for obtaining calculated estimates of gas transportation parameters.

Section 3 is devoted to statement and numerical solution of identification problem of
a physically proved gas dynamics mode of natural gas transmission through specified gas
distribution networks.

Other sections of the paper are dedicated to validation and practical application of the
approach suggested to numerical monitoring of gas discrepancy.

2. Numerical Kernel of the CFD Simulator

The kernel of the CFD simulator uses a model of gas transmission in branched graded trunk
lines [6, 7]. It can be represented as a combination of two types of models: models of gas flow
in long pipes adjoining a junction and models of gas flow in junctions.

Branched trunk lines are long, branched, multisection pipelines. For numerical
evaluation of parameters of steady and transient, non-isothermal processes of the gas mixture
flow in branched trunk lines, a CFD simulator uses a model developed by tailoring the full
set of integral fluid dynamics equations to conditions of the gas flow through long branched
pipeline systems [7]. Transform of the 3D integral problem to an equivalent one-dimensional
differential problem is implemented by accepting the minimum of required simplifications
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Figure 2: A Schematic of a pipeline junction: (a) 3D drawing; (b) plain scheme.

and projecting the initial system of equations onto the pipeline’s geometrical axis. As such,
special attention is given to the adequacy of simulation of pipeline junction nodes where the
3D nature of the gas flow is strongly displayed.

There are two mathematical models of fluid flow through branched pipeline: heat
conductive model of pipeline junction and nonconductive model of pipeline junction. These
models were developed by Pryalov and Seleznev at the turn of the century. These alternatives
differ in a way of simulation of gas heat transfer within pipeline junction. The principle
underlying the simulations is to observe the major conservation laws as strictly as possible. In
practice the simultaneous implementation of the models makes it possible to find an accurate
solution in short time.

The basis for the mathematical models of fluid flow through branched pipeline was
the geometrical model of a junction (Figure 2) proposed by Seleznev et al. [8]. In this model,
volume (0)V can be depicted as a right prism with base area Sbase and heightH (Figure 2(a)).
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For the prism lateral surface with linear dimensions (n)
δ, true is the following relation: (n)δ =

(n)f /H, where (n)f is the cross-sectional area of the pipe adjacent to the junction core (0)V .
It should be noted that the summarized volume of the joint is equal to V =

⋃N
n=0

(n)V ,
where (n)V , n = 1, . . . ,N, is the volume of an infinitely small section of the pipe adjacent
to the junction core (0)V (see Figure 2(b)). The prism base area can be represented as follows:

Sbase = ςbase
(1)
δ2, where ςbase is the factor depending on the prism base geometry only. Now

volume (0)V can be determined by the following formula: (0)V = HSbase = Hςbase(
(1)f /H)

2
=

ςbase
(1)
f2 /H, which means that limH→∞ (0)V = limH→∞[ςbase

(1)
f2 /H] = 0. The application

of this geometrical model enabled us to approximate compliance with mass, momentum, and
energy conservation laws at the pipelines junction.

Simplifications and assumptions used to construct the heat conductive model of
pipeline junction include the following: (1) when gas mixture flows join together, pressure
can change with time, but at each time step it will have the same value at the boundaries
of the pipeline junction; (2) the simulations take account of “downwind” heat and mass
exchange due to heat conduction and diffusion; (3) in the pipeline junction, the gas
mixture instantaneously becomes ideally uniform all over the pipeline junction volume (0)V
(see Figure 2(b)); (4) effects of gas mixture viscosity in the pipeline junction (inside the
volume (0)V ) can be ignored; (5) there are no heat sources in (0)V (inside the volume (0)V );
(6) pipeline diameters near the pipeline junction are constant.

Then, the heat conductive fluid dynamics model of a transient, non-isothermal,
turbulent flow of a viscous, chemically inert, compressible, multicomponent gas mixture
through multiline GPS which consist of pipes of round cross-sections and rigid rough heat
conductive walls is represented in the following way [7, 8]:

(i) for each pipe (bend or nonbranched segment of a ring collector),

∂
(
ρf
)

∂t
+

∂
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= 0, (2.1)
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(ii) for each junction (boundary sections of pipelines adjoining the junction),
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(n)(
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= 0, (2.5)
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(n) T = (ξ)T , ε = (n)ε = (ξ)ε, (n)(εm) = (ξ)(εm), ρ = (n)ρ = (ξ)ρ, (n)p = (ξ)p,

(n)
k = (ξ)

k,
(n)(Dm) = (ξ)(Dm), Ym = (n)(Ym) = (ξ)(Ym), (n)(z1) = (ξ)(z1)

for any n, ξ ∈ 1,N, m ∈ 1,NS,

(2.9)
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(iii) equations of state (EOS)

p = p({Smix}), ε = ε({Smix}); k = k({Smix}), εm = εm({Smix}),

Dm = Dm({Smix}), m = 1,NS, T1 = T2 = · · · = TNS = T,
(2.12)

where ρ is the density of the gas mixture; f is the flow cross-sectional area of pipeline; t
is time (marching variable); x is the spatial coordinate over the pipeline’s geometrical axis
(spatial variable); w is the projection of the pipeline flow cross-section averaged vector of
the mixture velocity on the pipeline’s geometrical axis (on the assumption of the developed
turbulence); Ym is a relative mass concentration of the m component of the gas mixture; Dm

is a binary diffusivity of component m in the residual mixture; NS is the number of
components of the homogeneous gas mixture; p is the pressure in the gas mixture; g is a
gravitational acceleration modulus; z1 is the coordinate of the point on the pipeline’s axis,
measured, relative to an arbitrary horizontal plane, upright; π is the Pythagorean number; λ
is the friction coefficient in the Darcy-Weisbach formula; R =

√
f/π is the pipe’s internal

radius; ε is specific (per unit mass) internal energy of the gas mixture; Q is specific (per
unit volume) heat generation rate of sources; k is thermal conductivity; T is the temperature
of gas mixture; εm is specific (per unit mass) internal energy of the m component; Tm is
the temperature of the m component; N is the number of pipes comprising one junction
(see (2.5)–(2.11)) (n)s are auxiliary function which is necessary for conjugation of axial

direction for the nth pipeline (re (0)�n ·, (n)�i; see Figure 2(b) ); (n)Θ are auxiliary weighting
function, estimating contribution of the nth pipeline for gas flow in junction; {Smix} is a
set of parameters of gas mixture. Function Φ(T, Tam) is defined by the law of heat transfer
from the pipe to the environment and expresses the aggregate heat flow through the pipe
walls along perimeter χ of the flow cross-section with area f(Φ(T, Tam) > 0 is cooling), Tam
is the ambient temperature. To denote the relationship of a value to the pipe numbered by n,
we use a parenthesized superscript on the left side of the value, for example, (n)ρ. In (2.1)–
(2.12), we use physical magnitudes averaged across the pipeline’s flow cross-section. The set
of (2.1)–(2.12) is supplemented by the boundary conditions and conjugation conditions. As
to conjugation conditions it is possible to specify boundary conditions simulating a complete
rupture of the pipeline and/or its shut-off, operation of valves, and so forth.

As was stated above, the energy equations (2.4) and (2.8) comprise function Φ(T, Tam)
describing the heat exchange between the environment and natural gas in the course of its
pipeline transmission. The space-time distribution of function Φ(T, Tam) is defined, in the
CFD simulator, at specified time steps of the numerical analysis of parameters of the transient
mode of gas transmission by solving a series of conjugate 2D or 3D problems of heat exchange
between the gas flow core and the environment [8].

As a rule, Redlich-Kwang equation [4, 8, 9] is used for thermal EOS in (2.12) and
calorific EOS—are well-known thermodynamic relations (e.g., ε(p, T) = h(p, T) − p/ρ;dh =
cpdT + (∂h/∂p)dp, where h is specific (per unit mass) enthalpy of the mixture; cp is heat
capacity at constant pressure [8]).

Simulation of steady processes of gas mixture flow through branched trunk lines is
a less complicated task compared to (2.1)–(2.12). These models can be easily derived by
simplifying the set of (2.1)–(2.12).

To solve (2.1)–(2.12) numerically, the kernel of the CFD simulator generally uses grid
methods [8, 10]. Unfortunately, distribution trunk lines contain a large number of CGPs
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located extremely irregularly at general collectors. In our case, this results in the necessity of
considerable spatial grid refinement and, consequently, in a much longer runtime. To resolve
this situation, the kernel of the CFD simulator offers a hybrid modification of the known
integro-interpolation method [11].

The solution of (2.1)–(2.12) allows to obtain calculated estimates of space-time
distribution of gas transportation alongGDN. These parameters are used in the net section for
identification problem of a physically proved gas dynamics mode of natural gas transmission
through specified gas distribution networks.

3. Numerical Detection of Discrepancy Origins

The following problem setup can be used for numerical monitoring of gas distribution
discrepancy using CFD simulator.

3.1. Input Data

The input data are Layout chart of the GDN; sensor locations in the GDN, where
gas parameters are measured; given time interval of GDN operation; results of field
measurements of gas parameters in the GDN in the given time interval; actual (or nameplate)
errors of instruments used to measure gas parameters; data on received gas volumes as
reported by each consumer for the given time interval.

3.2. Target Data

The target data are (1) Physically based gas flow parameters in the GDN in the given
time interval having a minimum discrepancy compared to respective field measurement
data at identification (control) points and providing the closest possible agreement between
calculated flow rate values at the outlet of each associated CGP and corresponding reported
values (further as the text goes, this mode will be called “the identified gas flow”); (2)
associated CGPs with underreported gas volumes as against the identified gas flow; (3)
calculated estimates of discrepancies between gas volumes delivered in the given time
interval through each associated CGP as an arithmetic difference between the calculated
gas volume corresponding to the identified gas flow and the reported value; (4) calculated
estimates of discrepancies between gas volumes delivered in the given time interval through
each inlet GDS as an arithmetic difference between the calculated gas volume corresponding
to the identified gas flow and the reported value.

Correct simulation of item 1 in the problem statement makes it possible to
obtain credible information on physically consistent space-time distributions of flow rates,
pressures, and temperatures for the gas flow, which is most reasonable for the given time
interval with the given field measurement data. Convergence of calculated and reported gas
flow values for individual consumers increases the level of objectivity of numerical analysis,
as it seeks to maintain the highest possible trust in the data on received gas volumes reported
by the consumers.

It follows from the above problem statement that numerical monitoring of gas
distribution discrepancy under items 2–4 in the list of target values in essence consists in
performing straightforward arithmetic operations with output data of item 1. Therefore,
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special attention below will be paid to the algorithm of this calculation. In the first
approximation, we consider the process of gas flow through the GDN to be steady
state.

In order to calculate non-isothermal steady-state gas flow parameters in the GDN
under consideration, the following boundary conditions of “Type I” need to be specified:
pressure, temperature, and composition are defined at the outlet of each inlet GDS; mass
flow rate and gas temperature are defined at the outlet of each associated CGP.

Using the CFD simulator with the given BC and fixed GDN characteristics, one can
unambiguously determine physically based spatial distributions of calculated estimates of
steady-state GDN operation parameters. Spatial distributions of parameters here mean their
distributions along the pipelines.

A diagram of identification locations is generated on the given layout of sensor
locations in the GDN. The preferred location of each identification point should correspond
to the key requirement: a considerable change in the fluid dynamics conditions of GDN
operation should be accompanied by considerable changes in the gas parameters actually
measured at this point. The distribution of identification points over the GDN diagram
should be as uniform as possible. An identification point can be located both inside the
GDN and at its boundaries. At each identification point, different combinations of major gas
flow parameters can be measured. These combinations can be varied for every identification
point.

The process of finding the identified gas flow comes to the statement and solution of
the problem of conditional optimization:

min
∥
∥
∥�fcalc

(
�X
)
− �fconstmeas

∥
∥
∥
L

subject to �X ∈ Ω ⊂ Rn, (3.1)

where ‖ · · · ‖L is the vector norm, the type of which is determined by the value of the
parameter L, (L = 0, 1, 2) (see below); �fcalc(�X), fcalc : Rn → Rm, is the vector function
of calculated estimates of controlled transported gas variables at the identification points
in the m-dimensional Euclidean space Rm (these calculated estimates are obtained using
the CFD simulator with application of (2.1)–(2.12), where �X is boundary condition at CFD
analysis (see below (3.3)–(3.6) and (3.10)); �fconstmeas ∈ Rm is a given vector of measured values
of controlled transported gas variables at the identification points; m is the number of given
identification points in the GDN diagram; �X ∈ Ω ⊂ Rn is the vector of independent controlled
variables in the n-dimensional Euclidean space Rn;

�X ∈ Ω =
{
�X ∈ Rn : �a ≤ �X ≤ �b;

∥
∥
∥�qGDS

calc

(
�X
)
− �qconst

meas GDS

∥
∥
∥
0
≤ τGDS

flow rate

}
; (3.2)

�a ∈ Rn and �b ∈ Rn are correctly defined vectors setting limits in simple constraints for the
range of admissible variation of the vector of independent controlled variables (see below);
n is the number of independent controlled variables (see below); ‖ · · · ‖0 is the cubic vector
norm (e.g., ‖�Y‖0 = max1≤i≤n|yi|, �Y ∈ Rn); �qGDS

calc (�X), q
GDS
calc : Rn → Rl, is the vector function

of calculated estimates of mass flow rates through inlet GDSs in the l-dimensional Euclidean
space Rl (these calculated estimates are obtained using the CFD simulator); �qconst

meas GDS ∈ Rl is
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a given vector of measured mass flow rates at GDS outlets; l is the number of GDSs; τGDS
flow rate =

const is a given upper estimate of actual (nameplate) absolute error of flow meters installed
at the inlet GDSs. The constraint in the form of a one-sidedweak inequality in (3.2) formalizes
the assumption that the probability of gas underdelivery by the supplier is small.

Components xi of the vector of independent controlled variables here mean some
boundary conditions of “Type I” specified in the simulations of steady-state fluid dynamics
conditions using the CFD simulator. As practice shows, problem (3.1)-(3.2) can be solved
successfully if as components of the vector of independent variables one uses an integrated
set of mass flow rates at outlet boundaries of associated CGPs (xi, i = 1, k) and pressures at
outlet GDSs (xi, i = k + 1, n, n = k + l), where k is the number of associated CGPs.

Components (ai, bi, i = 1, k) (see (3.2)) establish the ranges for controlled variables,
the size of which is largely attributed to the degree of the seller’s actual trust in a certain
consumer. The following conditions should be necessarily observed:

ai + τconsflow rate <
[
qconstcons

]
i < bi − τconsflow rate, i = 1, k,

ai + τconsflow rate < [x0]i < bi − τconsflow rate, i = 1, k,

(3.3)

k∑

i=1

[x0]i =
k∑

i=1

{[
qconstcons

]
i +
[
Δqconstsell

]
i

}
=

l∑

j=1

[
qconstmeas GDS

]
j
, (3.4)

where �qconst
cons ∈ Rk is a given vector of mass flow rates at outlet boundaries of associated CGPs;

τconsflow rate = const is a given upper estimate of the actual (nameplate) absolute error of flow
meters installed at outlet boundaries of associated CGPs; �X0 ∈ Rn is the starting point of the
conditional optimization problem;Δ�qconst

sell ∈ Rk is the increment vector for reportedmass flow
rates at outlet boundaries of associated CGPs, which is chosen by the gas seller depending
on the degree of trust in a certain consumer. Fulfillment of conditions (3.3) is a guaranty for
the consumers that the discrepancy analysis will necessarily account for their reported values
of received gas volumes. Constraints (3.4) serve to implement quasi-steady-state operating
conditions of the pipeline network of interest from the very starting point of the conditional
optimization problem. The values of remaining components (ai, bi, i = k + 1, n) are generally
defined in accordance with conditions

ai + τGDS
pressure < [x0]i < bi − τGDS

pressure, i = k + 1, n,

[x0]i =
[
pconstmeas GDS

]
i−k, i = k + 1, n,

(3.5)

where �pconst
meas GDS ∈ Rl is a given vector of measured pressures in the GDS; τGDS

pressure is a
given upper estimate of the actual (nameplate) absolute error of pressure gauges installed
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in the GDS. As a result of fulfillment of conditions (3.3) and (3.5), the starting point of
optimization problem (3.1)-(3.2) will be the inner point with respect to simple constraints
on controlled variables, which by far extends the range of methods that can be used for
conditional minimization.

Thus, based on (3.3)–(3.5),

ai <
{
min
(
[x0]i − τconsflow rate;

[
qconstcons

]
i − τconsflow rate

)
, i = 1, k;

[
pconstmeas GDS

]
i−k − τGDS

pressure,

i = k + 1, n
}
,

bi >
{
max
(
[x0]i + τconsflow rate;

[
qconstcons

]
i + τconsflow rate

)
, i = 1, k;

[
pconstmeas GDS

]
i−k + τGDS

pressure,

i = k + 1, n
}
.

(3.6)

Problems (3.1)–(3.6) can take different forms depending on the type of the vector norm
chosen in (3.1). For example, if we choose the cubic vector norm (L = 0), we come to a
discrete minimax problem [12] with constraints in the form of one-sided weak inequalities
and simple constraints on independent controlled variables:

min
{

max
1≤i≤m

∣
∣
∣
[
fcalc
(
�X
)]

i
− [f const

meas
]
i

∣
∣
∣

}

subject to �X ∈ Ω ⊂ Rn. (3.7)

Solution to (3.7) provides so-called uniform agreement between calculated estimates
of gas flow parameters and their measured values [13]. Choosing the octahedron vector norm
(L = 1) transforms initial problem (3.1)–(3.6) into a general nonlinear programming problem
represented in the following way:

min
m∑

i=1

∣
∣
∣
[
fcalc
(
�X
)]

i
− [f const

meas
]
i

∣
∣
∣ subject to

�X ∈ Ω∗ =
{
�X ∈ Rn : �a ≤ �X ≤ �b;

∣
∣
∣
∣

[
qGDS
calc

(
�X
)]

j
− [qconstmeas GDS

]
j

∣
∣
∣
∣ − tGDS

flow rate ≤ 0, j = 1, l
}

.

(3.8)

Choosing the Euclidean vector norm (L = 2) in (3.1) results in the statement of a new
conditional optimization problem, which is almost equivalent to (3.2)–(3.6) and (3.8):
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}

.

(3.9)
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Solution of (3.2)–(3.6) and (3.9) provides root-mean-square agreement between
calculated estimates of gas flow parameters and their measured values. It should be stressed
here that statement (3.2)–(3.7) is stricter than (3.2)–(3.6) and (3.9).

Problems (3.2)–(3.7), (3.2)–(3.6), (3.8), and (3.2)–(3.6), (3.9) can be solved numerically
using the method of modified Lagrange functions [14, 15], which is quite suitable for this
purpose. Note that in practice the time of numerical solution of (3.2)–(3.6) and (3.9) in most
cases is much shorter than the time of numerical solution of problems (3.2)–(3.7) or (3.2)–
(3.6) and (3.8).

To choose a certain type of the target function in problem (3.1)-(3.2), a series of
numerical experiments were conducted and more than a hundred applied tasks were
simulated. The best (in terms of the accuracy/runtime ratio) results in simulating the
identification problem (3.1)-(3.2)were obtained using target function (3.9).

Based on the above considerations, in order to provide efficiency and improved
accuracy of industrial applications, it is reasonable to propose the following algorithm for
finding the identified gas flow in the GDN at the initial stage.

Step 1. Define the starting point �X0 ∈ Rn in accordance with conditions (3.4) and (3.5). Define
the vectors �a and �b in simple constraints according to (3.6).

Step 2. Solve optimization problem (3.2)–(3.6) and (3.9). Results of its numerical solution
become input data in searching for the conditional minimum at Step 4.

Step 3. Analyze correctness of solution results from Step 2. The correctness criterion in this
case is the condition of necessary fulfillment of all constraints in problem (3.2)–(3.6) and (3.9).
If this criterion is satisfied, proceed to Step 4. If not, extend the variation range of independent
variables with subsequent transition to Step 2, that is, ({�a, �b} ⇒ {�a∗, �b∗}). Usually, the range
extension algorithm used here is heuristic and based on the experience gained in the course
of actual simulations.

Step 4. Find numerical solution to problem (3.2)–(3.7) from the starting point, obtained at
Step 2, by the method of modified Lagrange functions. Execution of Step 4 makes it possible
to reduce or completely eliminate individual local peaks in discrepancy between calculated
estimates and measured values, which may appear at Step 2.

Step 5. Analyze correctness of the results obtained at Step 4, that is, check the necessary
fulfillment of all constraints in problem (3.2)–(3.7). If the correctness criterion is not fulfilled,
solution of Step 3 is assumed to be the target solution.

Step 6. The vector of controlled variables corresponding to the optimal solution at Step 5
is designated as �Xinit, with �Xinit ∈ Φ ⊂ Rn. The found fluid dynamics condition of GDN
operation is taken as the primary fluid dynamics mode . Its calculated parameters have uniform
(i.e., strictest) agreement with respective measured values.

At the final stage of identification, the primary fluid dynamics mode is corrected
within the available measured information, in order to minimize possible discrepancies
between calculated and reported estimates of gas volumes transmitted through each
associated CGP in the given time interval. This stage is legal by nature, because given the
limited amount of measured data the gas seller has no right to accuse the consumer a priori
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of deliberate misrepresentation of reported received gas volumes. This stage consists in the
solution of the general nonlinear programming problem:

min
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∥
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,

(3.10)

where �qcons
calc (�X) ⊂ �X, [qcalc (x)]i = xi, i = 1, k, is the vector function of calculated mass

flow rates for outlet boundaries of associated CGPs in the k-dimensional Euclidean space Rk;
�pconst
init GDS ∈ Rl is a given vector of GDS pressure corresponding to the primary fluid dynamics

mode at �Xinit ∈ Rn; �fidentcalc (�X), fidentcalc : Rn → Rh, is the vector function of calculated estimates
of controlled variables at internal identification points in the h-dimensional Euclidean space
Rh (these calculated estimates are obtained using the CFD simulator); �fconstinit ident ∈ Rh is a given
vector of controlled variables at internal identification points corresponding to the primary
fluid dynamics mode at �Xinit ∈ Rn; h is a given number of internal identification points;
τ identpressure = const is a given upper estimate of the actual (nameplate) absolute error of pressure
gauges at internal identification points.

The first group of simple constraints on the controlled variables in (3.10) is partly
redundant. It assures that numerical search for solutions in industrial applications is always
performed in the domain of practically significant results. The second group of simple
constraints and the second group of one-sided weak inequality constraints in problem (3.10)
account for the imperfectness of corresponding existing instruments in favor of consumers.
The first group of one-sided weak inequality constraints in (3.10) formalizes the demand for
the closest possible uniform agreement between calculated estimates and reported volumes
of gas received by each consumer.

Problem (3.10) can be solved using modified Lagrange functions [14]. In accordance
with this method, we derive the modified Lagrange function L̃c(�X, �µ):
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}

, (3.11)

where �µk ∈ Rl is the vector of Lagrange multipliers at the kth iteration of the modified

Lagrange functions method; ω(�X) =
√
∑m

i=1 ([fcalc(�X)]i − [f const
meas ]i)

2
(see (3.9)); ck is the scalar
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parameter at the kth iteration of the modified Lagrange functions method; �g(�X), g : Rn →
Rl, is the constraint vector function in the form of one-sided slack inequalities in (3.2), that is,
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⎠ ∈ Rl. (3.12)

For the Lagrange multiplier vector �µk given at the kth iteration and the value of
the scalar parameter ck, the vector �Xk is defined as a minimum of function (3.11) with
simple constraints on the variables (�a ≤ �X ≤ �b) (see (3.10)). The minimization problem for
function (3.11)-(3.12)with simple constraints on variables can be solved, for example, by the
modified conjugate directions method [12], which is stable with respect to the accumulation
of arithmetic errors. Then we calculate [14]
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(3.13)

where β is a given numerical factor, 4 ≤ β ≤ 10 [14]; γ is a given numerical factor
corresponding to the linear constraint residual decay rate, 0 < γ < 1 [15]. We recommend
using the following pair [14, 15]: β = 10; γ = 0, 25.

The initial vector �µ0 is chosen as close as possible to the optimal vector �µopt. For this
purpose, we use available a priori information about the solution. The initial value of the
parameter c0 should not be too large in order to avoid making the function minimization
problem (3.11)–(3.13) artificially ill-conditioned.

As a starting point here we use �Xinit ∈ Rn. The target result of the simulation should
necessarily be correct, that is, it should fulfill all simple constraints and inequality constraints
of problem (3.10). Otherwise, the primary fluid dynamics mode is taken as a solution to
(3.10).

4. Method Validation

A series of test simulations was performed to test the performance and efficiency of the
method for the numerical detection of discrepancy origins described in Section 3. Let us
acquaint ourselves with the statement and results of one test simulation. In this test, we
considered a hypothesized GDN. Its computational diagram is shown in Figure 3. Pipeline
parameters in the model GDN are shown in Tables 1 and 2.

As a consistency test of the method developed, we performed a series of simulations
of steady-state gas transport in the hypothesized GDN. The boundary conditions for these
simulations are given in Table 3. For the purpose of the test simulation, this kind of transport
was taken as the basic identified gas dynamic mode.

The layout of identification points (or reference points) in the hypothesized GDN is
shown in Figure 4. Depending on the type of the identification parameter, these points are
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Figure 3: A testing diagram of the hypothesized gas distribution network.

Table 1: Pipe parameters in test.

Roughness,
m

Heat
conduction
coefficient

of pipe wall,
W(m·K)

Thickness
of film

insulation, m

Heat
conduction
coefficient
of film

insulation,
W(m·K)

Height
of pipe
axis of

symmetry,
m

Wall
temperature,

K

Wall
thickness,

m

0.00045 46.7 0.001 0.15 0 273.15 0.0125

Table 2: Pipeline parameters in test.

Pipe Length, m
Quantity
of nodes of
space mesh

Outer
diameter of
pipeline, m

CGP (ring) 14000 15 1.220
CGP (towards to consumers) 100 2 0.520
CGP (from GDNs) 9000 10 1.220

marked with circles or triangles. Note that the identification points are located not only at the
boundaries of the system of interest but also inside it, at Valve 2, Valve 5, and Valve 8. The
identification parameters and their values are listed in Table 4.

Stage 1 of the test simulation is usually performed to test the efficiency of numerical
implementation of the initial gas dynamic mode identification algorithm in the CFD
simulator kernel. According to the test conditions, the initial state of the given GDN should
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Table 3: Boundary Conditions.

Object Type of BC Flow rate, kg/s Pressure, Pa Temperature, K
CGP Flow rate, Q 39.40972 1147721.0 282.6
CGP 2 Flow rate, Q 39.40972 1147721.0 282.6
CGP 3 Flow rate, Q 39.40972 1147721.0 282.6
CGP 4 Flow rate, Q 39.40972 1147721.0 282.6
CGP 5 Flow rate, Q 39.40972 1147721.0 282.6
CGP 6 Flow rate, Q 39.40972 1147721,0 282.6
GDS 1 Pressure, P 78.81944 1180056.5 267.2
GDS 2 Pressure, P 78.81944 1180056.5 267.2
GDS 3 Pressure, P 78.81944 1180056.5 267.2
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Figure 4: A diagram of identification points placement (triangles indicate flow rate monitoring points,
circles indicate pressure monitoring points).

differ from the basic identifiedmode. Such an initial state is defined by a starting point, which
is characterized by a set of flow rate values at the outlet boundaries of CGPs and gas pressure
at GDS outlets. Based on this, one can distinguish three groups of test problems: (1) starting
point is shifted to a larger (with respect to the basic) flow rate at CGPs; (2) starting point
is shifted to a smaller (with respect to the basic) flow rate at CGPs; (3) starting point is
shifted to a smaller (with respect to the basic) flow rate for some CGPs, and to a larger flow
rate for other CGPs. This simulates existing inaccuracies in the consumer-reported values. In
addition, the shift in the pressure values at GDS outlets simulates the inaccuracy of sensor-
measured values of respective parameters. The objective of the test is that the simulated gas
dynamic mode of the system should return to the basic identified mode.
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Table 4: Gas flow parameters at identification points.

Object Parameter Value Dimension of value
CGP 1 pressure 1147720.99 [Pa]
CGP 2 pressure 1147720.99 [Pa]
CGP 3 pressure 1147720.99 [Pa]
CGP 4 pressure 1147720.99 [Pa]
CGP 5 pressure 1147720.99 [Pa]
CGP 6 pressure 1147720.99 [Pa]
GDS 1 flow rate 78.81944 [kg/s]
GDS 2 flow rate 78.81944 [kg/s]
GDS 3 flow rate 78.81944 [kg/s]
Valve 2 pressure 1157667.38 [Pa]
Valve 5 pressure 1157667.38 [Pa]
Valve 8 pressure 1157667.38 [Pa]

Table 5: The worst results after Stage 1 of the test simulation.

Test 1 Maximum relative accuracy (pressure), [%] 0.000001
Maximum relative accuracy (flow rate), [%] 0.002858

Test 2 Maximum relative accuracy (pressure), [%] 0.000001
Maximum relative accuracy (flow rate), [%] 0.000236

Test 3 Maximum relative accuracy (pressure), [%] 0.000261
Maximum relative accuracy (flow rate), [%] 0.055928

The simulation was performed using the Alfargus/Mosregiongaz computer analytical
system (CAS), developed by the Physical & Technical Center, LLC. (Sarov, Russia), which
employs the methods described in Sections 2 and 3 (see above). This CAS was based on the
Alfargus/Mosregiongaz CFD simulator.There were a total of more than 400 similar runs of
Stage 1 of the test simulation. The worst case is represented in Tables 5 and 6.

Stage 2 of the test simulation is aimed at revealing the minimum necessary number of internal
identification points in the test problem (see Figure 4). For this purpose, we first found the
basic mode without internal identification points. Then, internal identification points were
introduced one by one by adding gas pressure monitoring sensors at Valve 2, Valve 5, Valve
6, Valve 8, and so forth.

Test results (see Tables 7 and 8) demonstrated that the best closeness to the basic
identified mode is obtained for the scheme with three and more internal identification points.
The starting point was the same for the first four tests. In the fifth test, the starting point
was changed in order to improve reliability of testing. Note that in the tests, the upper
estimate of the actual (rated) error of flow meters installed at GDS outlets was taken equal
to tGDS

flow rate = 2, 5% (see (3.8)). Therefore, the found solutions to tests 1–5 were internal points
with respect to the assumed constraints. This evidences the existence of multiple acceptable
solutions within the problem statement. However, the identification solution becomes unique
and the closest to the basic mode only if there are three and more internal points.

Stage 3 of the test simulation included testing of the third stage of the gas dynamic
mode identification problem simulation (see (3.10)), which provides for the correction of
the primary gas dynamic mode to minimize possible discrepancies between simulated and
reported estimates of the gas volume supplied through each CGP. Thus, the objective of the third
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Table 6: Starting point of Stage 1 of the test simulation.

Test number Object Parameter Dimension of value Basic point Start point Deviation, [%]

1

CGP 6 Flow rate [kg/s] 39.40972 40.59202 3.00
CGP 5 Flow rate [kg/s] 39.40972 40.59202 3.00
CGP 4 Flow rate [kg/s] 39.40972 40.59202 3.00
CGP 3 Flow rate [kg/s] 39.40972 40.59202 3.00
CGP 2 Flow rate [kg/s] 39.40972 40.59202 3.00
CGP 1 Flow rate [kg/s] 39.40972 40.59202 3.00
GDS 3 Pressure [Pa] 1180056.46 1198885.22 1.60
GDS 2 Pressure [Pa] 1180056.46 1198885.22 1.60
GDS 1 Pressure [Pa] 1180056.46 1198885.22 1.60

2

CGP 6 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 5 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 4 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 3 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 2 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 1 Flow rate [kg/s] 39.40972 38.42448 −2.50
GDS 3 Pressure [Pa] 1180056.46 1164365.82 −1.33
GDS 2 Pressure [Pa] 1180056.46 1164365.82 −1.33
GDS 1 Pressure [Pa] 1180056.46 1164365.82 −1.33

3

CGP 6 Flow rate [kg/s] 39.40972 40.19792 2.00
CGP 5 Flow rate [kg/s] 39.40972 37.83333 −4.00
CGP 4 Flow rate [kg/s] 39.40972 40.98611 4.00
CGP 3 Flow rate [kg/s] 39.40972 37.04514 −6.00
CGP 2 Flow rate [kg/s] 39.40972 40.19792 2.00
CGP 1 Flow rate [kg/s] 39.40972 37.04514 −6.00
GDS 3 Pressure [Pa] 1180056.46 1162355.65 −1.50
GDS 2 Pressure [Pa] 1180056.46 1162355.65 −1.50
GDS 1 Pressure [Pa] 1180056.46 1162355.65 −1.50

Table 7: The results after Stage 2 of the test simulation.

Test 1 (without internal identification points) Maximum relative accuracy (pressure), [%] 0.000000
Maximum relative accuracy (flow rate), [%] 2.497864

Test 2 (1 internal identification point) Maximum relative accuracy (pressure), [%] 0.000000
Maximum relative accuracy (flow rate), [%] 2.490145

Test 3 (2 internal identification points) Maximum relative accuracy (pressure), [%] 0.000000
Maximum relative accuracy (flow rate), [%] 2.374343

Test 4 (3 internal identification points) Maximum relative accuracy (pressure), [%] 0.000001
Maximum relative accuracy (flow rate), [%] 0.002597

Test 5 (4 internal identification points) Maximum relative accuracy (pressure), [%] 0.000001
Maximum relative accuracy (flow rate), [%] 0.002589

stage of testing was to validate the numerical implementation of the maximum consumer credibility
criterion.

For this purpose, the result of the first two stages of the identification problem
simulation was taken as the primary gas dynamic mode. The resulting mode is shown in
Table 9. Here, flow rates reported by some consumers differ from the basic values: flow rates
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Table 8: Starting point of Stage 2 of the test simulation.

Test number Object Parameter Dimension of value Basic point Start point Deviation, [%]

1 – 4

CGP 6 Flow rate [kg/s] 39.40972 37.83333 −4.00
CGP 5 Flow rate [kg/s] 39.40972 37.83333 −4.00
CGP 4 Flow rate [kg/s] 39.40972 37.83333 −4.00
CGP 3 Flow rate [kg/s] 39.40972 37.83333 −4.00
CGP 2 Flow rate [kg/s] 39.40972 37.83333 −4.00
CGP 1 Flow rate [kg/s] 39.40972 37.83333 −4.00
GDS 3 Pressure [Pa] 1180056.46 1202023.35 1.86
GDS 2 Pressure [Pa] 1180056.46 1202023.35 1.86
GDS 1 Pressure [Pa] 1180056.46 1202023.35 1.86

5

CGP 6 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 5 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 4 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 3 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 2 Flow rate [kg/s] 39.40972 38.42448 −2.50
CGP 1 Flow rate [kg/s] 39.40972 38.42448 −2.50
GDS 3 Pressure [Pa] 1180056.46 1205161.15 2.13
GDS 2 Pressure [Pa] 1180056.46 1205161.15 2.13
GDS 1 Pressure [Pa] 1180056.46 1205161.15 2.13

Table 9: Starting point of Stage 3 of the test simulation.

Object Parameter Dimension
of value Basic point

The result of
Stage 2
solution

Deviation
, [%]

Initial mode

CGP 6 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 5 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 4 Flow rate [kg/s] 39.40972 39.40971 0.00
CGP 3 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 2 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 1 Flow rate [kg/s] 39.40972 39.40973 0.00
GDS 3 Pressure [Pa] 1180056.46 1180056.46 0.00
GDS 2 Pressure [Pa] 1180056.46 1180056.46 0.00
GDS 1 Pressure [Pa] 1180056.46 1180056.46 0.00

at CGP 4 and CGP 6 (see Table 10). Following this, problem (3.10) is set up and simulated
with the starting point of the primary mode.

In (3.10), the specified upper estimate of the actual (rated) error of pressure sensors
at internal identification points tidentpressure was taken equal to 0, 01% · Pscal p, where Pscal p =
1569064Pa is the given pressure sensor scale value. Also, the upper estimate of the actual
(rated) error of flow meters installed at GDS outlets was taken equal to tGDS

flow rate = 1, 5% (see
(3.10)).

Simulation results presented in Tables 11 and 12 show that the simulated flow rates
at CGP 2 and CGP 4 became as close to the reported values as possible subject to the
above constraints on monitoring sensors (see the relative deviation for GDS flow meters and



20 Journal of Applied Mathematics

Table 10: Stated mode of natural gas supply to consumers.

Object Parameter Dimension of value Basic point Stated value Deviation, [%]

Stated mode

CGP 6 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 5 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 4 Flow rate [kg/s] 39.40972 37.04514 −6.00
CGP 3 Flow rate [kg/s] 39.40972 39.40972 0.00
CGP 2 Flow rate [kg/s] 39.40972 37.04514 −6.00
CGP 1 Flow rate [kg/s] 39.40972 39.40972 0.00
GDS 3 Pressure [Pa] 1180056.46 1180056.46 0.00
GDS 2 Pressure [Pa] 1180056.46 1180056.46 0.00
GDS 1 Pressure [Pa] 1180056.46 1180056.46 0.00

Table 11: The results after Stage 3 of the test simulation.

Object Parameter Dimension of value Initial mode Resulting mode Deviation, [%]

Final mode

CGP 6 Flow rate [kg/s] 39.40972 38.79193 −1.57
CGP 5 Flow rate [kg/s] 39.40972 38.98765 −1.07
CGP 4 Flow rate [kg/s] 39.40971 38.77240 −1.62
CGP 3 Flow rate [kg/s] 39.40972 38.86608 −1.38
CGP 2 Flow rate [kg/s] 39.40972 38.77241 −1.62
CGP 1 Flow rate [kg/s] 39.40973 39.01146 −1.01
GDS 3 Pressure [Pa] 1180056.46 1179249.86 −0.07
GDS 2 Pressure [Pa] 1180056.46 1179248.98 −0.07
GDS 1 Pressure [Pa] 1180056.55 1179409.71 −0.05

Table 12: Final deviations between numerical estimates of gas flow parameters and the results of their
measurements.

Object Parameter Dimension
of value Initial mode Resulting

mode

Relative
deviation,

[%]

Absolute
deviation

CGP 1 Pressure [Pa] 1147720.899 1147759.439 0.003358 38.540622
CGP 2 Pressure [Pa] 1147720.903 1147877.809 0.013671 156.906444
CGP 3 Pressure [Pa] 1147720.902 1147830.983 0.009591 110.080606
CGP 4 Pressure [Pa] 1147720.906 1147877.812 0.013671 156.906295
CGP 5 Pressure [Pa] 1147721.174 1147771.6 0.004394 50.425668
CGP 6 Pressure [Pa] 1147721.173 1147871.127 0.013065 149.953759
GDS 1 Flow rate [kg/s] 78.819448 77.927585 1.131526 0.891863
GDS 2 Flow rate [kg/s] 78.819448 77.637163 1.499991 1.182285
GDS 3 Flow rate [kg/s] 78.819448 77.637168 1.499985 1.182280
Valve 2 Pressure [Pa] 1157667.282 1157510.376 0.013554 156.906437
Valve 5 Pressure [Pa] 1157667.279 1157510.373 0.013554 156.906265
Valve 8 Pressure [Pa] 1157667.552 1157512.29 0.013412 155.261578

absolute deviation for pressure monitoring sensors at CGP 2, CGP 4, Valve 2, Valve 5, and
Valve 8). These results indicate that the criterion of (3.10) is satisfied.
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Stage 1 of the test simulation included more than 100 tests to check the correctness of
the CAS kernel operation. Results of these tests were similar to the above results of the first
test.

5. On the Aspects of Practical Applications of the Proposed Methods

Note that as the Lagrange particles method (LPM) modification for the energy equation
discussed in Section 2 is not related directly to the finite difference grid employed for solving
the continuity and motion equations, this grid has almost no effect on the accuracy of the
proposed method. Thus, high-accuracy calculated values of gas temperature are obtained
without grid refinement, which significantly speeds up the computations.

Due to the absence of direct connection between the LPM method and the finite
difference grid, this method is free of the so-called “scheme” viscosity [10]. As a result,
the method makes it possible to obtain solutions without scheme smoothing of temperature
fronts, which corresponds to real physical processes. This significantly increases the adequacy
of simulations compared to the use of difference schemes for the energy equation.

As for the method of numerical detection of discrepancy origins (see Section 3), one
should note that it provides the closest possible approximation to consumer-reported gas
volume values to within the measurement error of instruments installed at identification
points. The simulation outcome of optimization problem (3.10) is the final solution to the
problem of finding the identification gas flow in the GDN. The target identified gas flow is
completely defined by the vector �Xident ∈ Θ ⊂ Rn+1, corresponding to the optimal solution
of problem (3.10), and is characterized by the fulfillment of the following conditions: (1)
calculated gas flow parameters at each identification point should be as close as possible to
corresponding field measurement data; (2) calculated estimates of gas volumes supplied to
the GDN in a given time interval should correspond to the supplier-reported values within
actual (nameplate) absolute errors of the flow meters installed in the GDS; (3) calculated
estimates of gas volumes received by each consumer in the given time interval should be as
uniformly close as possible to the values reported by the consumers.

6. Example of Production Simulations

The above approach to the numerical monitoring of natural gas distribution discrepancy
using the CFD simulator is successfully used in the Russian gas industry. Over the period
of 2008–2010, this method of numerical monitoring of the supplier share in gas deliveries has
demonstrated its efficiency as applied to the production simulations of Mosregiongaz for the
analysis of the mechanisms of discrepancy occurrence in the natural gas supplies through the
MoscowRingGas Distribution Pipeline System (MRGDPS). Figures 5 and 6 show an example
of production simulations by the method at Mosregiongaz. The simulation was performed
using the CAS system by Mosregiongaz operators jointly with system developers from the
Physical & Technical Center, LLC.

Different colors in Figure 5 show shares of gas supply from the given GDS. The
influence of the GDS on a specific group of consumers is denoted qualitatively by the color
of the associated branch, and quantitatively, by the representation of simulation results in
the form of tables indicating gas proportions (in percent) consumed by a specific group of
consumers from each GDS, which supplies gas to the MRGDPS.
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Figure 5: Numerical simulation of natural gas supply from GDS-17 to Moscow Ring Gas Distribution
Pipeline System (an example of instant of time).

Figure 6: Numerical simulation of natural gas transmission along MRGDPS (an example of CAS
application in Mosregiongaz Control Room).

The simulation was performed using CAS by Mosregiongaz operators. Color arrows
in the figure indicate the direction and the intensity of gas flows, and spheres of different
diameter and color correspond to the actual contribution of each consumer to the discrepancy
in MRGDPS gas supply estimates.
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7. Conclusion

The developed method enables high-accuracy numerical analysis of discrepancies in natural
gas supplies to consumers and scientifically based search for their origins. This method can be
fully computerized based on ordinary computers available to gas industry specialists. This
makes the method available to gas distribution company specialists, who have no special
knowledge in the area of mathematical modeling. With minor modifications, it can be used
for the numerical analysis of different networks of trunk and distribution pipelines at power
engineering facilities, which transport commercial gases.
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