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1. Introduction

In this paper, we study the following nonlinear nonautonomous second-order periodic
system driven by the one-dimensional p-Laplacian:

−(∥∥x′(t)∥∥p−2
x′(t)

)′ ∈ ∂ j(t,x(t)
)

+h(t), a.e. on T = [0,b],

x(0)= x(b), x′(0)= x′(b), 1 < p < +∞.
(I)

Here h ∈ L1(T ,RN ), the potential function j(t,x) is in general nondifferentiable, locally
Lipschitz and by ∂ j(t,x) we denote the generalized subdifferential. So problem (I) is a
periodic hemivariational inequality. Hemivariational inequalities are a new type of vari-
ational expressions which arise naturally in mechanics and engineering when one wants
to consider more realistic nonmonotone and multivalued laws. For several concrete ap-
plications we refer to the book of Naniewicz and Panagiotopoulos [1].

In the past, the works on nonautonomous periodic systems in which the existence of
solutions is obtained as a critical point of the energy functional, focused on the semilinear
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case (i.e., p = 2) with a smooth potential (i.e., j(t,·) ∈ C1(RN )). We can mention the
works of Berger and Schechter [2] who employ a coercivity condition, Mawhin [3], where
the potential function is convex, Mawhin and Willem [4], where the right-hand side is
L1-bounded, Tang [5, 6] where the potential exhibits a strictly subquadratic growth, and
Tang and Wu [7] who use a nonuniform coercivity condition which generalizes the con-
dition in use in the aforementioned work of M. S. Berger and M. Schechter. In this paper,
one can find also multiplicity results.

On the other hand, recently there has been increasing interest for nonlinear nonau-
tonomous periodic problems driven by the ordinary p-Laplacian. Most works deal with
scalar equations. Systems driven by the vector p-Laplacian or p-Laplacian-like opera-
tors were studied by Manásevich and Mawhin [8], Mawhin [9, 10], Kyritsi et al. [11], E.
H. Papageorgiou and N. S. Papageorgiou [12]. In these works, the approach is different
based on degree theory or nonlinear operators of monotone type and only the problem
of existence of solutions is addressed. No multiplicity results are proved.

In the last years, using variational methods on the nonsmooth critical point theory
(see [13]), the problem (I) has been studied in order to obtain existence and multiplicity
results. We can mention the papers of E. H. Papageorgiou and N. S. Papageorgiou [14,
15], or the numerous results collected in the book of Gasiński and Papageorgiou (see [13,
Section 3.4.1]).

In this paper, using the same critical point theory, under minimal and natural hy-
potheses we prove some existence results and a multiplicity theorem. In particular in
Theorem 3.3, using a result obtained by Tang and Wu [7], we prove the existence of non-
trivial solutions requiring, among the others, that the potential function j(t,x) satisfies
a locally, nonuniform anticoercivity condition (i.e., j(t,x)→−∞ as ‖x‖ →∞ for almost
t in some positive-measure subset of T). Moreover we do not assume any polynomial
growth of the subdifferential ∂ j(t,x). The result so obtained extends the analogous and
just mentioned results of [13–15], in the sense that there exist potential functions satisfy-
ing our hypotheses but not those of the mentioned theorems (see Remark 3.5).

While in this first theorem we obtain the coercivity of the energy functional and so
the result is obtained by an application of the least action principle, in Theorem 3.10 we
consider the case in which the energy functional is bounded below but not coercive and
in Theorem 3.14 this functional is indefinite (i.e., unbounded from both above and be-
low). In particular in Theorem 3.14 we make an Ambrosetti-Rabinowitz-type assumption
(seeH( j)4(iv)) which, together with the other hypotheses, implies a growth condition on
j(t,x) strictly less than p. Moreover, Theorem 4.1 gives us the existence of multiple solu-
tions in the setting of local, nonuniform anticoercive potential function. All the last three
theorems extend, in the sense explained above, analogous results of [13–15].

Finally in the last section, we consider a scalar problem, for which we prove (see The-
orem 5.1) the existence of a solution by permitting, asymptotically at ∞, a partial in-
teraction with λ0 and λ1, being λ0 and λ1 the first two eigenvalues of the negative scalar
p-Laplacian with periodic boundary conditions. This theorem generalizes the results of
[16] and [13, Theorem 3.4.9].

Many examples are given for showing the various comparisons.
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2. Mathematical preliminaries

As we have said in the introduction, our approach is variational, based on the nonsmooth
critical point theory. For the convenience of the reader, in this section we recall the main
items of the mathematical background needed to follow this paper. Our main references
are the books of Hu and Papageorgiou [17, 18] and Gasiński and Papageorgiou [13, 19].

Let X be a reflexive Banach space and X∗ its topological dual. A function Φ : X →R is
said to be locally Lipschitz, if for every bounded open set U ⊂ X , there exists a constant
kU > 0 such that |Φ(z)−Φ(y)| ≤ kU‖z− y‖ for all z, y ∈ U . For this kind of functions,
define the generalized directional derivative Φo(x;h) at x ∈ X in the direction h ∈ X in
this way:

Φo(x;h)= limsup
x′→x λ↓0

Φ(x′ + λh)−Φ(x′)
λ

. (2.1)

It is known that the function h→Φo(x;h) is sublinear, continuous and it is the support
function of the nonempty, convex and w∗-compact set

∂Φ(x)= {x∗ ∈ X∗ :
(
x∗,h

)≤Φo(x;h)∀h∈ X}. (2.2)

The set ∂Φ(x) is called the generalized or Clarke subdifferential of Φ at x. If Φ,Ψ :
X → R are locally Lipschitz functions, then ∂(Φ+Ψ)(x)⊆ ∂Φ(x) + ∂Ψ(x), while for any
λ∈R we have ∂(λΦ)(x)= λ∂Φ(x). Moreover, if Φ : X →R is also convex, then this sub-
differential coincides with the subdifferential in the sense of convex analysis. If Φ : X →R
is strictly differentiable, then ∂Φ(x) = {Φ′(x)}. A point x ∈ X is a critical point of Φ if
0∈ ∂Φ(x) while a critical value is the value assumed by Φ in a critical point. It is easy to
check that if x ∈ X is a local extremum (i.e., a local minimum or maximum), then x is a
critical point.

The compactness conditions for locally Lipschitz functionals Φ : X → R that we con-
sider are the following.

Φ satisfies the “Palais-Smale condition” ((PS)-condition in short) if any sequence
{xn}n≥1 ⊂ X such that {Φ(xn)}n≥1 is bounded and m(xn)→ 0, as n→∞, has a conver-
gent subsequence (where m(xn)=minx∗∈∂Φ(xn)‖x∗‖X∗ ; the existence of such an element
follows from the fact that ∂Φ(xn) is weakly compact and the norm functional on X∗ is
weakly lower semicontinuous).

A weaker compactness condition is given by the following.
Φ satisfies the “Cerami Palais-Smale condition” (C-(PS)-condition) if any sequence

{xn}n≥1 ⊂ X such that {Φ(xn)}n≥1 is bounded and (1 +‖xn‖)m(xn)→ 0, as n→∞, has a
convergent subsequence.

We say that Φ : X →R is coercive if Φ(x)→ +∞ as ‖x‖→∞, while Φ is anticoercive if
Φ(x)→−∞ when ‖x‖→∞.

Finally, let A : X → X∗ be an operator. We recall the following definitions:
A is said to be monotone if 〈Ax1−Ax2,x1− x2〉 ≥ 0 for all x1,x2 ∈ X ;
A is said to be pseudomonotone if for any sequence {xn}n≥1 ⊂ X such that xn→ x
weakly in X and limsupn→∞〈Axn,xn − x〉 ≤ 0 it follows that 〈Ax,x − w〉 ≤
liminfn→∞〈Axn,xn−w〉, for all w ∈ X ;
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A is said to be demicontinuous if for any sequence {xn}n≥1 ⊂ X such that xn→ x
in X it follows that Axn→ Ax weakly in X∗.

In what follows we employ on RN where the Euclidean norm is denoted by ‖ · ‖
and the usual inner product is denoted by (·,·). Also by ‖ · ‖p (1 ≤ p ≤ +∞) we de-
note the Lp norm. For the Sobolev space W1,p(T ,RN ) the norm will be denoted by ‖ · ‖
(there will not be confusion with the norm in RN because it will be clear from the con-
text which norm is used). Finally, by 〈·,·〉 we denote the duality brackets for the pair

(W1,p(T ,RN ),W1,p(T ,RN )∗) or for (W
1,p
0 (T ,RN ),W−1,q(T ,RN )) (1/p+ 1/q = 1) and by

(·,·)pq the duality brackets for the pair (Lp(T ,RN ),Lq(T ,RN )) (1/p+ 1/q = 1).

3. Existence results

In this section, we will prove some existence theorems under different conditions on the
potential function j(t,x) in order to cover a large class of problems for which we obtain
the existence of nontrivial solutions.

For the first existence result our hypotheses on the nonsmooth potential function
j(t,x) are the following:
H( j)1: j : T ×RN →R is a function such that

(i) for all x ∈ RN , t �→ j(t,x) is measurable;
(ii) for almost all t ∈ T , x �→ j(t,x) is locally Lipschitz;

(iii) for every r > 0 there exists ar ∈ L1(T)+ such that for almost all t ∈ T , all
‖x‖ ≤ r and all u∈ ∂ j(t,x), we have ‖u‖ ≤ ar(t);

(iv) there exists C ⊂ T , |C| > 0, such that j(t,x)→−∞ as ‖x‖→∞ for almost all
t ∈ C;

(v) there exists β ∈ L1(T)+ such that for almost all t ∈ T and all x ∈RN , we have
j(t,x)≤ β(t);

(v) j(·,0)∈L1(T) and∃x0∈RN\{0} such that
∫ b

0 j(t,x0)dt > 0 and
∫ b

0 j(t,0)dt ≤
0.

Remark 3.1. From the assumption that the function j(·,0) is in L1(T), from the mean
value theorem (see [19, page 552]), and from H( j)1(iii) we obtain that, for all x ∈ RN ,
j(·,x)∈ L1(T).

Moreover, we observe that condition H( j)1(iii) is general enough since we do not as-
sume any polynomial growth on the subdifferential ∂ j(t,x). The following example puts
in evidence this fact.

Example 3.2. Let j : T ×RN →R be defined as

j(t,x)= k(t)
(− e‖x‖p +α‖x‖+ 1

)
, (3.1)

where α > 1 and

k(t)=
⎧
⎨

⎩
t−β, t ∈ (0,b],

1, t = b,
(3.2)
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for some β ∈ (0,1). The function j(t,x) satisfies hypotheses H( j)1 since

∂ j(t,x)=
⎧
⎪⎨

⎪⎩

αk(t)B1, ‖x‖ = 0,

k(t)
(
− e‖x‖p p‖x‖p−2x+α

x

‖x‖
)

, ‖x‖ �= 0,
(3.3)

where B1 is the closed unit ball in RN .

Theorem 3.3. If hypotheses H( j)1 hold and h∈ L1(T ,RN ) is such that
∫ b

0 h(t)dt = 0, then
problem (I) has a nontrivial solution x ∈ C1

per(T ,RN ).

Proof. We start by observing that, because of hypothesesH( j)1(iii), using again the mean
value theorem, we have that for almost all t ∈ T and all x ∈RN with ‖x‖ ≤ r

∣
∣ j(t,x)

∣
∣≤ br(t)ã

(‖x‖), (3.4)

where br(t)= | j(t,0)|+ ar(t) and

ã(s)=
⎧
⎨

⎩
1, 0≤ s≤ 1,

s, s > 1.
(3.5)

Hence, taking into account H( j)1(iv), by virtue of [7, Lemma 2] applied to the function
− j(t,x), for all δ > 0, there exists Cδ ⊂ C such that |C − Cδ| < δ and j(t,x) → −∞ as
‖x‖→∞ uniformly for almost all t ∈ Cδ .

Apply [7, Lemma 3] to the function− j(t,x) in Cδ to obtain the existence of a function
G∈ C(RN ,R) and a function γ ∈ L1(Cδ), such that, for almost all t ∈ Cδ and all x ∈RN ,
we have

j(t,x)≤−G(x) + γ(t), (3.6)

where G satisfies the following properties:
(a) G(x+ y)≤G(x) +G(y) for all x, y ∈RN (i.e., G is subadditive),

(aa) G(x)→ +∞ as ‖x‖→∞ (i.e., G is coercive),
(aaa) G(x)≤ ‖x‖+ 4, for all x ∈RN .

Let W
1,p
per (T ,RN ) = {x ∈W1,p(T ,RN ) : x(0) = x(b)} and let ϕ : W

1,p
per (T ,RN )→ R be the

energy functional defined by

ϕ(x)= 1
p
‖x′‖pp−

∫ b

0
j
(
t,x(t)

)
dt−

∫ b

0

(
h(t),x(t)

)
dt, (3.7)

for all x ∈W
1,p
per (T ,RN ). From Remark 3.1, ϕ is well defined and it is locally Lipschitz

(see [20, page 617]). Moreover, we know that W
1,p
per (T ,RN ) = V ⊕RN with V = {x ∈

W
1,p
per (T ,RN ) :

∫ b
0 x(t)dt = 0}. So let x = x̂ + x, with x̂ ∈ V and x ∈ RN . The properties

(a) and (aaa) imply that

G(x)≤G(x(t)
)

+
∥
∥x̂(t)

∥
∥+ 4, ∀t ∈ T , (3.8)
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therefore, from (3.6), we obtain

− j(t,x(t)
)≥G(x)−∥∥x̂(t)

∥
∥− 4− γ(t), a.e. on Cδ. (3.9)

Using the previous inequality and H( j)1(v), we have

ϕ(x)= 1
p
‖x′‖pp−

∫ b

0
j
(
t,x(t)

)
dt−

∫ b

0

(
h(t),x(t)

)
dt

≥ 1
p
‖x̂′‖pp +G(x)

∣
∣Cδ

∣
∣−

∫

T\Cδ
j
(
t,x(t)

)
dt−‖x̂‖1−‖h‖1‖x‖∞ − c1

≥ 1
p
‖x̂′‖pp +G(x)

∣
∣Cδ

∣
∣− c2‖x̂′‖p− c1−‖β‖1,

(3.10)

for some c1,c2 > 0. Here we have used the Poincaré-Wirtinger inequality (see [18, page
866]). From (3.10), (aa), and since ‖x‖ ≤ k‖x̂′‖p +‖x‖, for a constant k > 0, we infer that
ϕ is coercive.

By virtue of the compact embedding of W
1,p
per (T ,RN ) into C(T ,RN ) and the weakly

lower semicontinuity of the norm functional in a Banach space, we have that ϕ is weakly
lower semicontinuous. So invoking Weierstrass theorem (see [13, page 711]), we can find

x ∈W1,p
per (T ,RN ) such that

−∞ <m= inf
W

1,p
per (T ,RN )

ϕ= ϕ(x). (3.11)

From H( j)1(vi), we deduce that ϕ(x)≤ ϕ(x0) < 0≤ ϕ(0), so

x �= 0, 0∈ ∂ϕ(x). (3.12)

Now let A : W
1,p
per (T ,RN )→W

1,p
per (T ,RN )∗ and J : W

1,p
per (T ,RN )→ R be, respectively, the

nonlinear operator and the integral functional defined by

〈
A(x), y

〉=
∫ b

0

∥
∥x′(t)

∥
∥p−2(

x′(t), y′(t)
)
dt, ∀x, y ∈W1,p

per
(
T ,RN

)
,

J(x)=
∫ b

0
j
(
t,x(t)

)
dt, ∀x ∈W1,p

per
(
T ,RN

)
.

(3.13)

It is simple to see that J is locally Lipschitz and ∂J(x)⊂ L1(T ,RN ) (see [21, Theorem 2.2]).
Moreover there exists u∈ ∂J(x) such that

0=A(x)−u−h, (3.14)

so (see [22, page 76]) u(t)∈ ∂ j(t,x(t)), a.e. onT , and for every test functionψ ∈ C1
0((0,b),

RN ) we have

〈
A(x),ψ

〉=
∫ b

0

(
u(t) +h(t),ψ(t)

)
dt, (3.15)
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that means

∫ b

0

∥
∥x′(t)

∥
∥p−2(

x′(t),ψ′(t)
)
dt =

∫ b

0

(
u(t) +h(t),ψ(t)

)
dt. (3.16)

Since (‖x′‖p−2x′)′ ∈W−1,q(T ,RN ) (where 1/p+ 1/q = 1) (see [20, page 362] or [13, The-

orem 1.1.8]), if by 〈·,·〉0 we denote the duality brackets for the pair (W
1,p
0 (T ,

RN ),W−1,q(T ,RN )), we deduce that

−〈(‖x′‖p−2x′
)′

,ψ
〉

0 = 〈u+h,ψ〉0. (3.17)

Note that C1
0((0,b),RN ) is dense in W

1,p
0 (T ,RN ), therefore (‖x′(t)‖p−2x′(t))′ = u(t) +

h(t), a.e. on T , which implies that ‖x′‖p−2x′ ∈W1,1(T ,RN )↩C(T ,RN ) and

−(∥∥x′(t)∥∥p−2
x′(t)

)′ ∈ ∂ j(t,x(t)
)

+h(t), a.e. on T = [0,b] (3.18)

with x(0) = x(b). Now the function ξ : RN → RN defined as ξ(v) = ‖v‖p−2v if v �= 0,
ξ(0) = 0 is a homeomorphism, so, since ξ−1(‖x′(t)‖p−2x′(t)) = x′(t), we obtain that
x ∈ C1(T ,RN ).

Finally, for every ϑ∈ C1(T ,RN ) from (3.14) we have

〈
A(x),ϑ

〉=
∫ b

0

(
u(t) +h(t),ϑ(t)

)
dt (3.19)

and so, using Green’s identity we obtain

∥
∥x′(b)

∥
∥p−2(

x′(b),ϑ(b)
)−∥∥x′(0)

∥
∥p−2(

x′(0),ϑ(0)
)

−
∫ b

0

((∥∥x′(t)
∥
∥p−2

x′(t)
)′

,ϑ(t)
)
dt =

∫ b

0

(
u(t) +h(t),ϑ(t)

)
dt.

(3.20)

This implies that

∥
∥x′(b)

∥
∥p−2(

x′(b),ϑ(b)
)= ∥∥x′(0)

∥
∥p−2(

x′(0),ϑ(0)
)
, ∀ϑ∈ C1(T ,RN

)
, (3.21)

therefore x′(0)= x′(b). So x ∈ C1(T ,RN ) is a nontrivial solution of problem (I). �

Remark 3.4. If we drop hypothesis H( j)1(vi), assuming only that j(·,0)∈ L1(T), we can
still have a solution but we cannot guarantee that it is nontrivial.

Remark 3.5. We want to observe that our Theorem 3.3 extends the analogous existence
results given in [14, 15] and the analogous theorems collected in [13, Section 3.4.1], as it
is evident by considering again Example 3.2.

Consider now the following hypotheses on j(t,x):
H( j)2: j : T ×RN →R is a function such that

(i) for all x ∈RN , t �→ j(t,x) is measurable;
(ii) for almost all t ∈ T , x �→ j(t,x) is locally Lipschitz;
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(iii) for every r > 0 there exists ar ∈ L1(T)+ such that for almost all t ∈ T , all
‖x‖ ≤ r and all u∈ ∂ j(t,x), we have ‖u‖ ≤ ar(t);

(iv) j(t,x)→−∞ as ‖x‖→∞ uniformly for almost all t ∈ T ;

(v) j(·,0)∈L1(T) and∃ x0∈RN\{0} such that
∫ b

0 j(t,x0)dt > 0 and
∫ b

0 j(t,0)dt≤
0.

As a simple consequence of the previous theorem we can state the following.

Corollary 3.6. If hypotheses H( j)2 hold and h ∈ L1(T ,RN ) is such that
∫ b

0 h(t)dt = 0,
then problem (I) has a nontrivial solution x ∈ C1

per(T ,RN ).

Proof. It is sufficient to show that under conditions H( j)2, the potential function j(t,x)
satisfies the hypotheses of the previous theorem. In fact from H( j)2(iv), fixed L > 0, there
exists M > 0 such that j(t,x)≤−L, a.e. on T and for all ‖x‖ >M. So from the mean value
theorem (see [19, page 552]) and H( j)2(iii) we obtain that j(t,x)≤ j(t,0) + aM(t)M, a.e.
on T , for all ‖x‖ ≤M. Denoting, therefore, by β(t) the function β(t)= | j(t,0)|+ aM(t)M,
we have that H( j)1(v) is satisfied. Applying the previous result we obtain the existence of
a nontrivial solution for our problem (I). �

Remark 3.7. The function given in Example 3.2 satisfies also hypotheses H( j)2 while in
the next example we show a function satisfying H( j)1 but not H( j)2.

Example 3.8. Let j : T ×RN →R be defined as

j(t,x)=− 1
p
χC(t)‖x‖p +‖x‖, (3.22)

where χC is the characteristic function of a set C strictly contained in T and with positive
measure.

In the previous existence results, the energy functional ϕ was coercive and so the so-
lution was obtained by an application of the least action principle. In the next existence
theorem, the energy functional ϕ is bounded below but not necessarily coercive. In this
case, the hypotheses on the nonsmooth potential j(t,x) are the following:
H( j)3: j : T ×RN →R is a function such that

(i) for all x ∈ RN , t �→ j(t,x) is measurable;
(ii) for almost all t ∈ T , x �→ j(t,x) is locally Lipschitz;

(iii) for every r > 0 there exists ar ∈ L1(T)+ such that for almost all t ∈ T , all
‖x‖ ≤ r and all u∈ ∂ j(t,x), we have ‖u‖ ≤ ar(t);

(iv) there exist j∞ ∈ L1(T) and M > 0 such that lim‖x‖→∞ j(t,x) = j∞(t) for al-
most all t ∈ T and j(t,x)≥ j∞(t) for almost all t ∈ T and all ‖x‖ ≥M;

(v) there exists β ∈ L1(T)+ such that for almost all t ∈ T and all x ∈RN , we have
j(t,x)≤ β(t);

(v) j(·,0)∈L1(T) and∃ x0∈RN\{0} such that
∫ b

0 j(t,x0)dt>0 and
∫ b

0 j(t,0)dt ≤
0.
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To deal with this case, first we consider the following auxiliary periodic problem:

−(∥∥x′(t)∥∥p−2
x′(t)

)′ = h(t), a.e. on T = [0,b]

x(0)= x(b), x′(0)= x′(b), 1 < p < +∞,
(II)

for which it is simple to prove the next proposition. For the convenience of the reader, we
give also the relative proof.

Proposition 3.9. If h ∈ L1(T ,RN ) is such that
∫ b

0 h(t)dt = 0, then problem (II) has a

unique solution x ∈ C1
per(T ,RN ) such that

∫ b
0 x(t)dt = 0.

Proof. We start by considering the C1-functional ψ :W
1,p
per (T ,RN )→R, defined by

ψ(x)= 1
p
‖x′‖pp−

∫ b

0

(
h(t),x(t)

)
dt, ∀x ∈W1,p

per
(
T ,RN

)
. (3.23)

SinceW
1,p
per (T ,RN )=V ⊕RN , let ψ̂ be the restriction of ψ toV . Using again the Poincaré-

Wirtinger inequality it is simple to see that ψ̂ is coercive on V and weakly lower semicon-
tinuous. Therefore, we can find v0 ∈V such that

inf
V
ψ̂ = ψ̂(v0

)
, (3.24)

and so, from the differentiability of ψ̂ we obtain that ψ̂′(v0)= 0.

But the subspace V ⊂W1,p
per (T ,RN ) has finite codimension, so we can find a projection

operator p :W
1,p
per (T ,RN )→V such that ψ = ψ̂ ◦ p and, if p∗ :V∗ →W

1,p
per (T ,RN )∗ is the

adjoint operator of p, from the Chain-Rule theorem (see [19, page 553]) we obtain

ψ′(x)= ψ̂′(p(x)
)(
p(x)

)= p∗
(
ψ̂′
(
p(x)

))
, ∀x ∈W1,p

per
(
T ,RN

)
. (3.25)

If 〈·,·〉V denotes the duality brackets for the pair (V ,V∗), then for all x, y ∈W1,p
per (T ,RN )

we have

〈
ψ′(x), y

〉= 〈p∗(ψ̂′(p(x)
))

, y
〉= 〈ψ̂′(p(x)

)
, p∗(y)

〉
V , (3.26)

and so

〈
ψ′
(
v0
)
, y
〉= 〈ψ̂′(p(v0

))
, p∗(y)

〉
V =

〈
ψ̂′
(
v0
)
, p∗(y)

〉
V = 0, ∀y ∈W1,p

per
(
T ,RN

)
.

(3.27)

This implies that ψ′(v0)= 0 and so A(v0)= h.
From this equality, as in the proof of Theorem 3.3, via Green’s identity, we conclude

that v0 ∈ C1(T ,RN ) is a solution of problem (II). Moreover, from the strict monotonicity
of A, we have that this solution is unique. �

Now we can prove the following.

Theorem 3.10. If hypothesesH( j)3 hold and h∈ L1(T ,RN ) is such that
∫ b

0 h(t)dt = 0, then
problem (I) has a nontrivial solution x ∈ C1

per(T ,RN ).
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Proof. As in Theorem 3.3, we consider the usual energy functional ϕ :W
1,p
per (T ,RN )→R,

ϕ(x)= 1
p
‖x′‖pp−

∫ b

0
j
(
t,x(t)

)
dt−

∫ b

0

(
h(t),x(t)

)
dt, ∀x ∈W1,p

per
(
T ,RN

)
. (3.28)

Let x ∈W
1,p
per (T ,RN ), then x = x̂ + x, with x̂ ∈ V and x ∈ RN . From our hypotheses,

using the Poincaré-Wirtinger inequality, we have

ϕ(x)≥ 1
p
‖x̂′‖pp− c3‖h‖1‖x̂′‖p−‖β‖1, (3.29)

for some c3 > 0. It follows that ϕ is bounded below and so

−∞ <m= inf
W

1,p
per (T ,RN )

ϕ. (3.30)

Let {xn}n ⊂W1,p
per (T ,RN ) be a minimizing sequence, that is, ϕ(xn) ↓m, as n→∞. So from

(3.29) we have

ϕ
(
xn
)≥ 1

p

∥
∥x̂′n
∥
∥p
p− c3‖h‖1

∥
∥x̂′n
∥
∥
p−‖β‖1, (3.31)

where xn = x̂n + xn, x̂n ∈ V and xn ∈ RN . We deduce that {x̂n}n is bounded in V , there-
fore, by passing to a suitable subsequence, if necessary, we may assume that x̂n → x̂ ∈ V

weakly in W
1,p
per (T ,RN ) and x̂n → x̂ in C(T ,RN ). If also {xn}n is bounded, then there ex-

ists a subsequence, denoted again with {xn}n which converges weakly to x ∈W1,p
per (T ,RN ).

Therefore from the weak-lower semicontinuity of ϕ in W
1,p
per (T ,RN ), we deduce that

ϕ(x)=m. Now proceeding as in Theorem 3.3 it follows that x ∈ C1(T ,RN ) is a solution
of problem (I). Suppose now that {xn}n is unbounded. Since xn = x̂n + xn, {xn}n must be
unbounded in RN , so, at least for a subsequence, we must have ‖xn‖→ +∞. Clearly there
exists ξ > 0 such that

∥
∥xn(t)

∥
∥= ∥∥x̂n(t) + xn

∥
∥≥ ∥∥xn

∥
∥− ξ, ∀t ∈ T , (3.32)

and so ‖xn(t)‖→ +∞ uniformly in T as n→∞.
From H( j)3(iv) and (v) we can apply Fatou’s lemma for obtaining

∫ b

0
j∞(t)dt ≥ limsup

n→∞

∫ b

0
j
(
t,xn(t)

)
dt, (3.33)

and from our assumptions we have also

∫ b

0

(
h(t),xn(t)

)
dt =

∫ b

0

(
h(t), x̂n(t)

)
dt −→

∫ b

0

(
h(t), x̂(t)

)
dt, as n−→∞. (3.34)

Moreover, we know that

m= lim
n→∞ϕ

(
xn
)= lim

n→∞

[
1
p

∥
∥x̂′n
∥
∥p
p−
∫ b

0
j
(
t,xn(t)

)
dt−

∫ b

0

(
h(t),xn(t)

)
dt
]
. (3.35)
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Hence, using (3.33) and (3.34), we obtain

m≥ liminf
n→∞

1
p

∥
∥x̂′n
∥
∥p
p + liminf

n→∞

[
−
∫ b

0
j
(
t,xn(t)

)
dt−

∫ b

0

(
h(t),xn(t)

)
dt
]

≥ 1
p

∥
∥x̂′
∥
∥p
p− limsup

n→∞

∫ b

0
j
(
t,xn(t)

)
dt−

∫ b

0

(
h(t), x̂(t)

)
dt

= ψ(x̂)−
∫ b

0
j∞(t)dt,

(3.36)

where ψ : W
1,p
per (T ,RN )→R is the functional introduced in the proof of Proposition 3.9.

According to the same proposition let v0 ∈ V be the unique solution of problem (II),
therefore there exists n ≥ 1 such that, for all n ≥ n, it follows ‖xn + v0(t)‖ ≥M, for all
t ∈ T . So, using H( j)3(iv), we deduce that

j
(
t,xn + v0(t)

)≥ j∞(t), a.e. t ∈ T , ∀n≥ n, (3.37)

which used in (3.36) gives us

m≥ ψ(x̂)−
∫ b

0
j
(
t,xn + v0(t)

)
dt ≥ ϕ(v0 + xn

)
, ∀n≥ n, (3.38)

but this implies that m= ϕ(v0 + xn), for all n≥ n. Therefore there exists x ∈W1,p
per (T ,RN )

for which ϕ(x) = m and so, also in this case, following the proof of Theorem 3.3, we
conclude that x ∈ C1(T ,RN ) is a solution of problem (I). �

Remark 3.11. IfN = 1, we may assume in conditionH( j)3(iv) different limits j± ∈ L1(T),
as x→±∞.

Remark 3.12. Consider now the following example.

Example 3.13. Let j : RN →R be defined as

j(x)=
⎧
⎪⎨

⎪⎩

‖x‖, ‖x‖ ≤ 1,
2

‖x‖+ 1
, ‖x‖ > 1,

(3.39)

in which, for simplicity, we have dropped the t-dependence. This function satisfies hy-
potheses H( j)3 but it verifies none of the previous conditions and none of the assump-
tions required in the existence theorems mentioned in Remark 3.5.

Finally, we consider the case h= 0. So the problem under consideration is the follow-
ing:

−(∥∥x′(t)∥∥p−2
x′(t)

)′ ∈ ∂ j(t,x(t)
)
, a.e. on T = [0,b],

x(0)= x(b), x′(0)= x′(b), 1 < p < +∞. (III)

In Theorem 3.3, we assumed that j(t,x)→−∞ as ‖x‖ →∞, for almost all t in some
positive-measure subset of T . It is natural to ask what can be said about the existence of
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a solution for problem (III) when j(t,x)→ +∞ uniformly for almost all t ∈ T as ‖x‖ →
∞. In this case, the corresponding energy functional is indefinite, in contrast to what
happened in the previous existence results. So now we look for critical points which are
of the saddle-point variety.

The new hypotheses on the nonsmooth potential are the following:
H( j)4: j : T ×RN →R is a function such that j(·,0)∈ L1(T) and

(i) for all x ∈ RN , t �→ j(t,x) is measurable;
(ii) for almost all t ∈ T , x �→ j(t,x) is locally Lipschitz;

(iii) for every r > 0 there exists ar ∈ L1(T)+ such that for almost all t ∈ T , all
‖x‖ ≤ r and all u∈ ∂ j(t,x), we have ‖u‖ ≤ ar(t);

(iv) there exist μ∈ (0, p) and M > 0 such that μ j(t,x)≥ j0(t,x;x) for almost all
t ∈ T and all ‖x‖ ≥M;

(v) j(t,x)→ +∞ as ‖x‖→∞ uniformly for almost all t ∈ T ;
(vi) there exists C ⊂ T , |C| > 0, such that 0 /∈ ∂ j(t,0) for almost all t ∈ C.

Theorem 3.14. If hypotheses H( j)4 hold, then problem (III) has a nontrivial solution x ∈
C1

per(T ,RN ).

Proof. Consider again the energy functional ϕ :W
1,p
per (T ,RN )→R,

ϕ(x)= 1
p
‖x′‖pp−

∫ b

0
j
(
t,x(t)

)
dt, ∀x ∈W1,p

per
(
T ,RN

)
. (3.40)

Claim 1. ϕ satisfies the C-(PS)-condition.

Let {xn}n⊂W1,p
per (T ,RN ) be a sequence for which there existsM1>0 such that |ϕ(xn)|≤

M1 for all n≥ 1 and (1 + ‖xn‖)m(xn)→ 0 as n→∞. Let also x∗n ∈ ∂ϕ(xn), n≥ 1, be such
that m(xn) = ‖x∗n ‖∗. Following the notations introduced in Theorem 3.3, we have that
there exists un ∈ L1(T), un(t) ∈ ∂ j(t,xn(t)), a.e. on T , such that x∗n = A(xn)− un, n ≥ 1.

Recall that A :W
1,p
per (T ,RN )→W

1,p
per (T ,RN )∗ is the nonlinear operator defined by

〈
A(x), y

〉=
∫ b

0

∥
∥x′(t)

∥
∥p−2(

x′(t), y′(t)
)
dt, ∀x, y ∈W1,p

per
(
T ,RN

)
. (3.41)

Moreover applying [7, Lemma 3], we have j(t,x)≥ G(x)− γ(t), for almost all t ∈ T and
all x ∈RN , where G∈ C(RN ,R) and γ ∈ L1(T) are as in Theorem 3.3. So if xn = x̂n + xn,
with x̂n ∈V and xn ∈RN , we obtain

M1 ≤ ϕ
(
xn
)≤ 1

p

∥
∥x̂′n
∥
∥p
p−G

(
xn
)
b+ c4

∥
∥x̂′n
∥
∥
p− c5, (3.42)

for some c4,c5 > 0. From the choice of the sequence {xn}n ⊂W1,p
per (T ,RN ), we have

〈
x∗n ,xn

〉= 〈A(xn
)
,xn
〉−

∫ b

0

(
un(t),xn(t)

)
dt = ∥∥x′n

∥
∥p
p−
∫ b

0

(
un(t),xn(t)

)
dt ≤ εn,

(3.43)
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where εn ↓ 0. Therefore, since un(t)∈ ∂ j(t,xn(t)), n≥ 1, we deduce

∥
∥x′n
∥
∥p
p−
∫ b

0
j0
(
t,xn(t);xn(t)

)
dt ≤ εn (3.44)

and, since |ϕ(xn)| ≤M1, we obtain

− μ
p

∥
∥x′n
∥
∥p
p +μ

∫ b

0
j
(
t,xn(t)

)
dt ≤ μM1, (3.45)

for all n≥ 1. Adding (3.44) and (3.45), we have then

(
1− μ

p

)∥
∥x′n
∥
∥p
p +
∫ b

0

(
μ j
(
t,xn(t)

)− j0
(
t,xn(t);xn(t)

))
dt ≤ εn +μM1. (3.46)

Now, denoted byAn = {t ∈ T : ‖xn(t)‖ <M} andBn = {t ∈ T : ‖xn(t)‖ ≥M}, fromH( j)4

(iv), H( j)4(iii), and the properties of j0 (see [19, page 545]) we obtain
∫

Bn

(
μ j
(
t,xn(t)

)− j0
(
t,xn(t);xn(t)

))
dt ≥ 0 (3.47)

while
∣
∣
∣
∣

∫

An

(
μ j
(
t,xn(t)

)− j0
(
t,xn(t);xn(t)

))
dt
∣
∣
∣
∣≤

∫

An

(
μ
[∣∣ j(t,0)

∣
∣+ aM(t)M

]
+ c6M

)
dt ≤ c7,

(3.48)

where c6, c7 are positive constants. Using these two inequalities in (3.46), it follows that

(
1− μ

p

)∥
∥x′n
∥
∥p
p ≤ εn +μM1 + c7, ∀n≥ 1, (3.49)

which, together with the Poincaré-Wirtinger inequality, tells us that {x̂n}n is bounded in

W
1,p
per (T ,RN ).
If {xn}n is unbounded in RN , by passing to a subsequence, if necessary, we obtain that

‖xn‖ → ∞ and so, by the properties of the function G (see proof of Theorem 3.3), we
deduce that G(xn)→ +∞. Then, from (3.42), ϕ(xn)→−∞ which contradicts the choice

of {xn}n. Therefore, we have verified that {xn}n is bounded in W
1,p
per (T ,RN ). So, by pass-

ing to a subsequence, we may assume that xn → x weakly in W
1,p
per (T ,RN ) and xn → x in

C(T ,RN ). We have, from H( j)4(iii),

〈
A
(
xn
)
,xn− x

〉= 〈x∗n +un,xn− x
〉

≤ ∥∥x∗n
∥
∥∗
∥
∥xn− x

∥
∥+

∥
∥un

∥
∥

1

∥
∥xn− x

∥
∥∞

≤ c8
(
1 +
∥
∥xn
∥
∥)
∥
∥x∗n

∥
∥∗ + c9

∥
∥xn− x

∥
∥∞,

(3.50)

for some c8,c9 > 0. Hence limsupn→∞〈A(xn),xn− x〉 ≤ 0. But it is easy to check that A is
monotone, demicontinuous, thus maximal monotone and so generalized pseudomono-
tone (see [13, pages 75 and 84]). Therefore it follows that limn→∞〈A(xn),xn〉 = 〈A(x),x〉
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that is limn→∞‖x′n‖p = ‖x′‖p. Since x′n → x′ weakly in Lp(T ,RN ) and the latter space is
uniformly convex, from the Kadec-Klee property (see [17, page 28]), we have that x′n→ x′

in Lp(T ,RN ). Therefore xn→ x in W
1,p
per (T ,RN ) as n→∞ and this proves Claim 1.

Claim 2. For almost all t ∈ T , all ‖x‖ ≥M and all s≥ 1, we have j(t,sx)≤ sμ j(t,x).

On R+\{0}, the function s �→ 1/sμ is continuous and convex, thus locally Lipschitz.
Hence, for all x ∈RN and almost all t ∈ T , the function s �→ (1/sμ) j(t,sx) is locally Lips-
chitz on R+\{0} and we have (see [20, page 612])

∂s

(
1
sμ
j(t,sx)

)
⊂− μ

sμ+1 j(t,sx) +
1
sμ
(
∂x j(t,sx),x

)
. (3.51)

Using the mean value theorem for locally Lipschitz functions we can find λ∈ (1,s) such
that

1
sμ
j(t,sx)− j(t,x)∈

(
− μ

λμ+1 j(t,λx) +
1
λμ
(
∂x j(t,λx),x

)
)

(s− 1). (3.52)

From H( j)4(iv) we obtain

1
sμ
j(t,sx)− j(t,x)≤

(
− μ

λμ+1 j(t,λx) +
1
λμ
j0(t,λx;x)

)
(s− 1)

= 1
λμ+1

(−μ j(t,λx) + j0(t,λx;λx)
)
(s− 1)≤ 0,

(3.53)

provided ‖x‖ ≥M. Therefore, we infer that, for almost all t ∈ T , all ‖x‖ ≥M and all
s≥ 1, j(t,sx)≤ sμ j(t,x). This proves Claim 2.

Claim 3. ϕ is coercive on V .

For every v ∈V we have

ϕ(v)= 1
p
‖v′‖pp−

∫ b

0
j
(
t,v(t)

)
dt

= 1
p
‖v′‖pp−

∫

A
j
(
t,v(t)

)
dt−

∫

B
j
(
t,v(t)

)
dt,

(3.54)

where A= {t ∈ T : ‖v(t)‖ <M} and B = {t ∈ T : ‖v(t)‖ ≥M}. Note that, from the mean
value theorem and from H( j)4(iii), for ‖x‖ ≤M and for almost all t ∈ T , it is possible to
find r ∈ [0,1] and u∈ ∂ j(t,rx) such that

j(t,x)≤ j(t,0) + (u,x)≤ j(t,0) + aM(t)M. (3.55)

Therefore we can say that for all ‖x‖ ≤M, it follows that

j(t,x)≤ βM(t), (3.56)

where βM ∈ L1(T)+. Immediately we have
∫

A
j
(
t,v(t)

)
dt ≤ ∥∥βM

∥
∥

1. (3.57)
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Also using Claim 2, we obtain

∫

B
j
(
t,v(t)

)
dt ≤

∫

B

∥
∥v(t)

∥
∥μ

Mμ j
(
t,
Mv(t)
∥
∥v(t)

∥
∥

)
dt ≤ ‖v‖

μ
∞

Mμ

∫

B
j
(
t,
Mv(t)
∥
∥v(t)

∥
∥

)
dt, (3.58)

and so
∫

B
j
(
t,v(t)

)
dt ≤ ‖v‖

μ
∞

Mμ

∥
∥βM

∥
∥

1. (3.59)

Now, from (3.57) and (3.59), using the Poincaré-Wirtinger inequality, we obtain

ϕ(v)≥ 1
p
‖v′‖pp−‖v′‖μpc10− c11, (3.60)

for some c10,c11 > 0. Because μ < p, we conclude that ϕ is coercive on V as claimed.

Claim 4. ϕ is anticoercive on RN .

Since for y ∈RN , ϕ(y)=−∫ b0 j(t, y)dt, the claim is a direct consequence of hypothesis
H( j)4(v).

From the claims proved we are in the position of applying a saddle-point theorem for
nonsmooth functionals (see [13, Theorem 2.1.4]) and obtaining the existence of a point

x ∈W
1,p
per (T ,RN ) such that 0 ∈ ∂ϕ(x). From H( j)4(vi) x �= 0 and following the proof of

Theorem 3.3, we have that x ∈ C1
per(T ,RN ) and it is a solution of problem (III). �

Remark 3.15. Hypotheses H( j)4(vi) is assumed only to avoid the possibility that the so-
lution x is trivial.

Remark 3.16. If j(t,·) ∈ C1(RN ,R), then j0(t,x;x) = ( j′x(t,x),x), for all x ∈ RN . So hy-
pothesis H( j)4(iv) is an Ambrosetti-Rabinowitz-type condition.

Moreover, we observe that if H( j)4 hold, following the proof of Claim 3 we have that

j(t,x)≤ j(t,0) + aM(t)M := βM(t), a.e. on T , ∀‖x‖ ≤M, (3.61)

while, from Claim 2, for all ‖x‖ ≥M, we obtain

j(t,x)≤ ‖x‖
μ

Mμ j
(
t,
Mx

‖x‖
)
≤ ‖x‖

μ

Mμ βM(t), a.e. on T. (3.62)

Therefore, we deduce that

j(t,x)≤ â(t)‖x‖μ + b̂(t), a.e. on T , ∀x ∈RN , (3.63)

for some â, b̂ ∈ L1(T)+.
This shows that j satisfies a growth condition strictly less then p.

Remark 3.17. Theorem 3.14 extends Theorem 3.4.4 stated in [13] since the inequality
required in our condition H( j)4(iv) is, in a certain sense, opposite to that assumed in
H( j)4(iv) of that theorem. This is also evident by considering the following two examples
of functions satisfying our conditions but not those of [13, Theorem 3.4.4].
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Example 3.18. Let j : T ×R→R be defined as

j(t,x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3− x, |x| ≤ 1,

xμ + 1, x > 1,

|x|μ + 3, x <−1,

(3.64)

where μ∈ (0, p).

Example 3.19. Let j : T ×R2 →R be so defined,

j(t,x)=
⎧
⎨

⎩
u2 +u, ‖x‖ ≤ 1,

‖x‖2
(
u2 +u

)
, ‖x‖ > 1,

(3.65)

where x = (u,v) and 4 < μ < p.

4. A multiplicity result

In this section, we present a result in which we produce more than one solution (multiple
periodic solutions). The hypotheses on the nonsmooth potential are the following:
H( j)5: j : T ×RN →R is a function such that

(i) for all x ∈ RN , t �→ j(t,x) is measurable;
(ii) for almost all t ∈ T , x �→ j(t,x) is locally Lipschitz;

(iii) for every r > 0 there exists ar ∈ L1(T)+ such that for almost all t ∈ T , all
‖x‖ ≤ r and all u∈ ∂ j(t,x), we have ‖u‖ ≤ ar(t);

(iv) there exist σ > p and δ > 0 such that j(t,x)≤ c0‖x‖σ for almost all t ∈ T and
all x ∈ RN with c0 > 0 and j(t,x)≥ 0 for almost all t ∈ T and all ‖x‖ ≤ δ;

(v) there exists C ⊂ T , |C| > 0, such that j(t,x)→−∞ as ‖x‖→∞ for almost all
t ∈ C;

(vi) there exists β ∈ L1(T)+ such that for almost all t ∈ T and all x ∈RN , we have
j(t,x)≤ β(t);

(vii) ∃ x0 ∈RN\{0} such that
∫ b

0 j(t,x0)dt > 0 and j(t,0)= 0, a.e. on T .

Theorem 4.1. If hypotheses H( j)5 hold, then problem (III) has two nontrivial solutions
x1,x2 ∈ C1

per(T ,RN ).

Proof. We consider the locally Lipschitz energy functional ϕ : W
1,p
per (T ,RN )→ R defined

by

ϕ(x)= 1
p
‖x′‖pp−

∫ b

0
j
(
t,x(t)

)
dt, ∀x ∈W1,p

per
(
T ,RN

)
. (4.1)

Because of hypotheses H( j)5(v) and (vi), from the proof of Theorem 3.3, we have that

ϕ is coercive on W
1,p
per (T ,RN ) and so it is bounded from below. Now we are going to

prove that ϕ satisfies the (PS)-condition. To this end let {xn}n ⊂W
1,p
per (T ,RN ) be a se-

quence for which there exists M1 > 0 such that |ϕ(xn)| ≤M1 for all n≥ 1 and m(xn)→ 0
as n→∞. Let also x∗n ∈ ∂ϕ(xn),n ≥ 1, be such that m(xn) = ‖x∗n ‖∗, therefore there ex-
ists un ∈ L1(T), un(t) ∈ ∂ j(t,xn(t)), a.e. on T , such that x∗n = A(xn)− un, n ≥ 1. From
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the coercivity of ϕ we deduce that {xn}n is bounded in W
1,p
per (T ,RN ). So, by passing to a

subsequence, we may assume that xn→ x weakly in W
1,p
per (T ,RN ) and xn→ x in C(T ,RN ).

Then, since

〈
A
(
xn
)
,xn− x

〉≤ ∥∥x∗n
∥
∥∗
∥
∥xn− x

∥
∥+

∥
∥un

∥
∥

1

∥
∥xn− x

∥
∥∞, (4.2)

we deduce that limsupn→∞〈A(xn),xn − x〉 ≤ 0. But A is a generalized pseudomonotone
operator, therefore limn→∞‖x′n‖p = ‖x′‖p. Since x′n→ x′ weakly in Lp(T ,RN ) and the lat-
ter space is uniformly convex, from the Kadec-Klee property, we have that x′n → x′ in

Lp(T ,RN ). Therefore xn→ x in W
1,p
per (T ,RN ) as n→∞, as we want to show.

Observe then that from H( j)5(vii) and from the fact that ϕ is bounded below, we have

−∞ < inf
W

1,p
per (T ,RN )

ϕ≤ ϕ(x0
)
< 0= ϕ(0). (4.3)

Moreover, considering forW
1,p
per (T ,RN ) the usual decomposition, if v ∈V , fromH( j)5(iv)

it follows that

ϕ(v)= 1
p
‖v′‖pp−

∫ b

0
j
(
t,v(t)

)
dt ≥ 1

p
‖v′‖pp− c0

∫ b

0

∥
∥v(t)

∥
∥σdt, (4.4)

and so, using again the Poincaré-Wirtinger inequality, we obtain that

ϕ(v)≥ 1
p
‖v′‖pp− c12‖v′‖σp, (4.5)

for some c12 > 0. Therefore, since p < σ , there exists ρ > 0 such that if ‖v′‖p < ρ, then
ϕ(v)≥ 0.

On the other hand, always from H( j)5(iv), if y ∈ RN is such that ‖y‖ ≤ δ, then ϕ(y)=
−∫ b0 j(t, y)dt ≤ 0. Using, therefore, [13, Theorem 2.4.1], there exist two nontrivial critical

points x1,x2 ∈W
1,p
per (T ,RN ) of ϕ. As before it follows that, for i = 1,2, xi ∈ C1

per(T ,RN )
and solves problem (III). �

Remark 4.2. Our multiplicity result extends some other analogous theorems proved in
[14, Theorem 10], [13, Theorems 3.4.10 and 3.4.11], in the sense that there exists func-
tions satisfying the assumptions of our theorem, but not those of the mentioned theorems
as we can see with the following examples.

Example 4.3. Let j : T ×RN →R be so defined,

j(t,x)=

⎧
⎪⎪⎨

⎪⎪⎩

1
σ
‖x‖σ , ‖x‖ ≤ 1,

−χE(t) log‖x‖+
1
σ

, ‖x‖ > 1,
(4.6)

where σ > p > 1 and E is a subset of T with positive measure. This function satisfies our
conditions H( j)5 but it does not verify the hypotheses of [13, Theorem 3.4.10].
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Example 4.4. Let j : T ×RN →R be so defined,

j(t,x)=

⎧
⎪⎪⎨

⎪⎪⎩

1
σ
‖x‖σ , ‖x‖ ≤ 1,

−‖x‖p +
1
σ

+ 1, ‖x‖ > 1,
(4.7)

where σ > p > 1. This function satisfies H( j)5 but note the hypotheses of [13, Theorem
3.4.11] and of [14, Theorem 10].

5. The scalar case

We conclude with an existence result for the scalar problem (i.e.,N = 1) with an indefinite
energy functional. The problem under consideration is the following:

−(∣∣x′(t)∣∣p−2
x′(t)

)′ ∈ ∂ j(t,x(t)
)
, a.e. on T = [0,b],

x(0)= x(b), x′(0)= x′(b), 1 < p < +∞. (IV)

We denote by λ0 and λ1 the first two eigenvalues of the negative scalar p-Laplacian with
periodic boundary conditions (see [13, Section 1.5]). Our aim is to prove the existence of
a solution for problem (IV) where, asymptotically at ∞, we permit a partial interaction
with λ0 and λ1. In fact, our hypotheses on the nonsmooth potential are the following:
H( j)6: j : T ×R→R is a function such that

(i) for all x ∈, t �→ j(t,x) is measurable;
(ii) for almost all t ∈ T , x �→ j(t,x) is locally Lipschitz;

(iii) for every r > 0 there exists ar ∈ Lq(T)+ (1/p+ 1/q = 1) such that for almost
all t ∈ T , all |x| ≤ r and all u∈ ∂ j(t,x), we have |u| ≤ ar(t);

(iv) there exist ϑ1,ϑ2 ∈ L∞(T)+ such that 0≤ ϑ1(t)≤ ϑ2(t)≤ λ1 for almost all t ∈
T and the first and the third inequalities are strict on a set (not necessarily
the same) of positive measure and

ϑ1(t)≤ liminf
|x|→∞

u

|x|p−2x
≤ limsup

|x|→∞

u

|x|p−2x
≤ ϑ2(t), (5.1)

uniformly for almost all t ∈ T and for all u∈ ∂ j(t,x);
(v) there exists M > 0 such that for almost all t ∈ T and all |x| ≥M we have

j(t,x)≤ λ1

p
|x|p; (5.2)

(vi) j(t,x)→ +∞ as ‖x‖→∞ uniformly for almost all t ∈ T .

Theorem 5.1. If hypotheses H( j)6 hold, then problem (IV) has a nontrivial solution x ∈
C1

per(T ,R).

Proof. We start by proving that the energy functional

ϕ(x)= 1
p
‖x′‖pp−

∫ b

0
j
(
t,x(t)

)
dt, ∀x ∈W1,p

per (T ,R), (5.3)
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satisfies the (PS)-condition. So let {xn}n ⊂W
1,p
per (T ,R) be a sequence for which there

exists M1 > 0 such that |ϕ(xn)| ≤M1 for all n ≥ 1 and m(xn) → 0 as n→∞. Let also
x∗n ∈ ∂ϕ(xn), n≥ 1, such that m(xn)= ‖x∗n ‖∗. As before, we can find un ∈ Lq(T),un(t)∈
∂ j(t,xn(t)), a.e. on T , such that x∗n =A(xn)−un, n≥ 1. Therefore, for all w ∈W1,p

per (T ,R)
it follows that

∣
∣
∣
∣
〈
A
(
xn
)
,w
〉−

∫ b

0
un(t)w(t)dt

∣
∣
∣
∣≤ εn‖w‖, (5.4)

where εn ↓ 0.
We claim that {xn}n ⊂W1,p

per (T ,R) is bounded. We proceed by contradiction. Suppose
that {xn}n is unbounded. Then, by passing to a subsequence, if necessary, we may assume
that ‖xn‖→∞ and xn �= 0, for all n≥ 1. Set yn = xn/‖xn‖, n≥ 1. We may assume that

yn −→ y weakly in W
1,p
per (T ,R), yn −→ y in Cper(T ,R). (5.5)

In (5.4), let w = yn− y ∈W1,p
per (T ,R), n≥ 1. Dividing with ‖xn‖p−1, we obtain

∣
∣
∣
∣
〈
A
(
yn
)
, yn− y

〉−
∫ b

0

un(t)
∥
∥xn
∥
∥p−1

(
yn(t)− y(t)

)
dt
∣
∣
∣
∣≤

εn
∥
∥xn
∥
∥p−1

∥
∥yn− y

∥
∥. (5.6)

Fix ε > 0. By virtue of hypothesis H( j)6(iv), there exists M2 > 0 such that

u≤ (ϑ2(t) + ε
)
xp−1

u≥ (ϑ1(t)− ε)xp−1
a.e. t ∈ T , ∀x >M2 and all u∈ ∂ j(t,x),

u≥ (ϑ2(t) + ε
)|x|p−2x

u≤ (ϑ1(t)− ε)|x|p−2x
a.e. t ∈ T , ∀x <−M2 and all u∈ ∂ j(t,x).

(5.7)

Therefore, using also hypothesis H( j)6(iii), there exists ξ ∈ L∞(T)+ such that

|u| ≤ aM1 (t) + ξ(t)|x|p−1, a.e. t ∈ T , ∀x ∈R and all u∈ ∂ j(t,x). (5.8)

We deduce that {un/‖xn‖p−1}n is bounded in Lq(T). So

∫ b

0

un(t)
∥
∥xn
∥
∥p−1

(
yn(t)− y(t)

)
dt −→ 0 as n−→∞, (5.9)

and then, from (5.6),

limsup
n→∞

〈
A
(
yn
)
, yn− y

〉≤ 0. (5.10)



20 Abstract and Applied Analysis

As before, exploiting the pseudomonotonicity ofA and the Kadec-Klee property of Lp(T),
we infer that

yn −→ y in W
1,p
per (T ,R). (5.11)

Moreover, passing to a subsequence, if necessary, we may assume that

un
∥
∥xn
∥
∥p−1 −→ h weakly in Lq(T). (5.12)

Consider now the following two sets:

C+
ε,n =

{
t ∈ T : xn(t) > 0, ϑ1(t)− ε ≤ un(t)

∣
∣xn(t)

∣
∣p−1 ≤ ϑ2(t) + ε

}
,

C−ε,n =
{
t ∈ T : xn(t) < 0, ϑ1(t)− ε ≤ un(t)

∣
∣xn(t)

∣
∣p−2

xn(t)
≤ ϑ2(t) + ε

}
.

(5.13)

Since ‖xn‖ →∞, we may assume, passing to a subsequence if necessary, that ‖xn‖∞ →∞
(otherwise y must be 0 which contradicts the fact that ‖yn‖ = 1), so it is possible to find
n ≥ 1 such that T = C+

ε,n ∪C−ε,n, for all n ≥ n. On the other hand, denoted by C+ = {t ∈
T : y(t) > 0} and by C− = {t ∈ T : y(t) < 0}, it is simple to see that

χC+
ε,n

(t)−→ 1, a.e. on C+,

χC−ε,n(t)−→ 1, a.e. on C−,
(5.14)

where χC+
ε,n

and χC−ε,n are the characteristic functions of the sets C+
ε,n and C−ε,n, respectively.

Now putting hn = un/‖xn‖p−1 from (5.12) and (5.14), we have that
∥
∥χC+

ε,n
hn−hn

∥
∥−→ 0, in L1(C+),

∥
∥χC−ε,nhn−hn

∥
∥−→ 0, in L1(C−

)
,

(5.15)

and so

χC+
ε,n
hn −→ h weakly in L1(C+),

χC−ε,nhn −→ h weakly in L1(C−
)
.

(5.16)

Moreover, for a.e. t ∈ C+, there exists n̂≥ 1 such that, for all n≥ n̂, t ∈ C+
ε,n and so

(
ϑ1(t)− ε)∣∣yn(t)

∣
∣p−1 ≤ hn(t)≤ (ϑ2(t) + ε

)∣∣yn(t)
∣
∣p−1

. (5.17)

Taking the weak limit in L1(C+), we obtain

(
ϑ1(t)− ε)∣∣y(t)

∣
∣p−1 ≤ h(t)≤ (ϑ2(t) + ε

)∣∣y(t)
∣
∣p−1

. (5.18)

Analogously, for a.e. t ∈ C−,

(
ϑ2(t) + ε

)∣∣y(t)|p−2y(t)≤ h(t)≤ (ϑ1(t)− ε)∣∣y(t)
∣
∣p−2

y(t). (5.19)
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Since ε > 0 was arbitrary, we deduce that

ϑ1(t)
∣
∣y(t)

∣
∣p−1 ≤ h(t)≤ ϑ2(t)

∣
∣y(t)

∣
∣p−1

, a.e. on C+,

ϑ2(t)
∣
∣y(t)

∣
∣p−2

y(t)≤ h(t)≤ ϑ1(t)
∣
∣y(t)

∣
∣p−2

y(t), a.e. on C−.
(5.20)

Since from (5.8) it is obvious that h(t)= 0 for a.e. t ∈ T such that y(t)= 0, from (5.20),
there exists g ∈ L∞(T)+ such that

h(t)= g(t)
∣
∣y(t)

∣
∣p−2

y(t), a.e. t ∈ T , (5.21)

with ϑ1(t)≤ g(t)≤ ϑ2(t), a.e. t ∈ T .
We return to (5.4), divide with ‖xn‖p−1, and pass to the limit as n→∞. We obtain

〈
A(y),w

〉=
∫ b

0
g(t)

∣
∣y(t)

∣
∣p−2

y(t)w(t)dt, ∀w ∈W1,p
per (T ,R). (5.22)

For this, as before, via Green’s identity, we have

−(∣∣y(t)
∣
∣p−2

y(t)
)′ = g(t)

∣
∣y(t)

∣
∣p−2

y(t), a.e. on T = [0,b]

y(0)= y(b), y′(0)= y′(b),
(5.23)

and, as we have noticed before, y ∈ C1
per(T ,R) is nontrivial. But according to [19, page

800], from the strict monotonicity of the eigenvalue on the weight, since 0 ≤ g(t) ≤ λ1,
a.e. t ∈ T (these inequalities are strict on sets of positive measure), we have that

λ0(g) > λ0
(
λ1
)
. (5.24)

Comparing this with (5.23), we reach the contradiction 0 > 0. This proves that {xn}n ⊂
W

1,p
per (T ,RN ) is bounded, and then as in the proof of Theorem 3.14, we can verify that ϕ

satisfies the (PS)-condition.
Now letD={x∈W1,p

per (T ,R) :
∫ b

0 |x(t)|p−2x(t)dt=0}. By virtue of hypothesesH( j)6(v)
and H( j)6(iii) we have

j(t,x)≤ a(t) +
λ1

p
|x|p, a.e. on T , ∀x ∈R. (5.25)

So from the properties λ1 > 0 (see [13, Corollary 1.5.1]), there exists β0 > 0 such that

ϕ(x)≥−β0, ∀x ∈D. (5.26)

On the other hand, by virtue of hypothesis H( j)6(vi), we can find ξ > 0 with the property

ϕ(±ξ) <−β0. (5.27)

Let ψ :W
1,p
per (T ,R)→R be defined by

ψ(x)=
∫ b

0

∣
∣x(t)

∣
∣p−2

x(t)dt, ∀x ∈W1,p
per (T ,R). (5.28)
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Consider, moreover, the two sets C0 = {±ξ} and C = {x ∈W
1,p
per (T ,RN ) : −ξ ≤ x(t) ≤ ξ,

for all t ∈ T}. We will show thatC0 andD link viaC (see [13, Definition 2.1.4 and Remark
2.1.4]). Indeed if η is a continuous function from C to W

1,p
per (T ,R) such that η(±ξ)=±ξ,

then (ψ ◦η)(−ξ) < 0 < (ψ ◦η)(+ξ) and so by the intermediate value theorem we can find
x0 ∈ C such that (ψ ◦η)(x0)= 0, hence η(x)∈D. Therefore η(C)∩D �= ∅, as we want to

prove. Apply the minimax principle (see [13, Theorem 2.1.2]) to obtain x ∈W
1,p
per (T ,R)

such that 0∈ ∂ϕ(x). As before we have that x ∈ C1
per(T ,R) and it solves problem (IV). �

Remark 5.2. A simple nonsmooth locally Lipschitz function satisfying H( j)6 is the func-
tion j : T ×R→R defined by

j(t,x)=max
{
θ(t)
p
|x|p,

θ(t)
r
|x|r

}
, (5.29)

where 1 < r < p and θ ∈ L∞(T), 0≤ θ(t)≤ λ1, a.e. on T and the inequalities are strict on
a set (not necessarily the same) of positive measure.

Moreover, we observe that this function does not verify the assumptions required in
the analogous results of [16] and in [13, Theorem 3.4.9].
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