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A weighted estimate for the square function on
the unit ball in C

n

Stefanie Petermichl and Brett D. Wick

Abstract. We show that the Luzin area integral or the square function on the unit ball

of Cn, regarded as an operator in the weighted space L2(w) has a linear bound in terms of the

invariant A2 characteristic of the weight. We show a dimension-free estimate for the “area-integral”

associated with the weighted L2(w) norm of the square function. We prove the equivalence of the

classical and the invariant A2 classes.

1. Introduction

Weighted inequalities for singular integral operators appear naturally in many
areas of analysis. The theory of weights is very well understood for the “real anal-
ysis” case. In a fundamental paper of Hunt, Muckenhoupt, and Wheeden, [4], it
is shown that the so-called Calderón–Zygmund operators in harmonic analysis are
bounded on weighted Lp spaces if and only if the weight satisfies the Ap condition.
Once this characterization was known, it then became of interest to determine ex-
actly how the norms of the operators from harmonic analysis are bounded in terms
of the characteristic of the weight. One seeks the smallest power r=r(p) so that
‖Tf‖Lp(ω)≤CQp(w)r‖f‖Lp(ω), with C an absolute constant. The best possible
power for p=2 usually is conjectured to be 1. Though this is only known for very
specific operators. The first successful estimate is for a dyadic analog of the square
function, see [3] and the martingale transforms in [16] shortly after. As for classical
Calderón–Zygmund operators, the best bound is only known for specific operators
with certain invariance properties, such as the Hilbert and Beurling transform and
the Riesz transforms. See [8], [9] and [10]. Such estimates have applications in par-
tial differential equations, see [1] and [10], and have received considerable attention.
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Much of the theory of harmonic analysis can be extended to the boundary of
the unit ball B since it is a domain of homogeneous type. Many of the notions
make sense on the boundary of the unit ball, but some care is needed. In studying
“complex analysis” questions, the choice of metric plays a distinguished role, and in
this context one should use the non-isotropic metric. This provides some additional
difficulties since the “balls” in this metric are actually elliptical, and this provides
some difference in the geometry. So, it makes sense to ask about the boundedness
properties of singular integral operators whose natural domain are functions on the
boundary of the unit ball, S, for example the Cauchy transform. In particular the
paper [6] demonstrates that the Cauchy transform is bounded on Lp(w) if and only
if w∈Ap. One can then inquire about other operators from harmonic analysis, such
as the square function

A major motivation for this note was the paper [3]. In this paper, the authors
determined the exact dependence of the norm of the square function (Luzin’s area
integral, g-functions, etc.) on L2(T; w) in terms of the invariant characteristic of the
weight. We extend the work in [3] to the case of the unit ball and its boundary S.
It is interesting to note that our proof has an underlying dyadic idea – similar to
all other proofs of optimal bounds in weighted spaces. This is so, even though
the unit sphere itself lacks a simple dyadic structure. One manages to utilize the
dyadic model in one real variable to obtain a result on the unit sphere, despite the
differences in geometry.

Acknowledgements. The authors would like to thank Texas A & M University
and the organizers of the Workshop in Analysis and Probability. Portions of this
paper were completed while the authors were in attendance at the workshop during
summer 2006.

The authors also thank an observant and skilled referee for many detailed
observations and comments. The presentation of the paper benefited greatly.

1.1. Definitions

Let B denote the unit ball in Cn, i.e. B={z∈Cn :|z|<1} and let S={z∈Cn :
|z|=1}. We write z=(z1, ..., zn) with zk=xk+iyk and recall that

∂k =
∂

∂zk
=

1
2

(
∂

∂xk
−i

∂

∂yk

)
and ∂̄k =

∂

∂z̄k
=

1
2

(
∂

∂xk
+i

∂

∂yk

)
.

The Bergman kernel on the unit ball is given by

K(z, w)=
n!

πn(1−〈z, w〉)n+1
.
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Define

gij(z)= ∂i∂̄j log K(z, z)=
n+1

(1−|z|2)2 [(1−|z|2)δij +z̄izj ]

The Bergman metric on B is

β2(z, ξ)=
n∑

i,j=1

gij(z)ξiξ̄j .

So the volume element associated to the Bergman metric is

dg(z)= K(z, z) dV (z)=
n!
πn

dV (z)
(1−|z|2)n+1

=
dν(z)

(1−|z|2)n+1
.

Here V is Lebesgue measure on the ball and ν is normalized Lebesgue measure on B.
Let gij be the inverse of the matrix gij , so the Laplace–Beltrami operator on

the ball is given by

∆̃ = 4
n∑

i,j=1

gij∂j ∂̄i = 4
(1−|z|2)

n+1

n∑
i,j=1

[δij−z̄izj ]∂j ∂̄i.

It also has a radial form, given by

∆̃f(z)=
(1−r2)
n+1

[
(1−r2)f ′′(r)+

2n−r2−1
r

f ′(r)
]

if f(z)=f(|z|) for f∈C2(B). The invariant gradient of a C1(B)-function is the
vector field given by

∇̃u = 2
n∑

i,j=1

gij(∂̄iu∂j+∂ju∂̄i).

The Poisson kernel for ∆̃ is given by P (z, ζ)=(1−|z|2)n/|1−〈z, ζ〉|2n and the Green’s
function for ∆̃ is given by

G(z)=
n+1
2n

∫ 1

|z|
(1−t2)n−1t−2n+1 dt.

For n=1 this of course becomes log(1/|z|). Let f∈L2(S), define the Poisson–Szegő
integral

f̃(z)=
∫

S

P (z, ζ)f(ζ) dσ(ζ),
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where σ is normalized surface measure. For any ζ∈S we define the Korányi admis-
sible approach region (the analogue of the non-tangential approach region or cone
in the unit disc) with aperture a>0 as

Γa(ζ)= {z∈B : |1−〈z, ζ〉|< a(1−|z|2)}.

Note that we must assume a> 1
2 otherwise Γa(ζ) is empty. It is well known that f̃

converges to f admissibly almost everywhere. The generalized Luzin area integral
or square function on the ball with respect to Γa(ξ) is

Sa(f)(ζ)=
(∫

Γa(ζ)

|∇̃f̃(z)|2 dg(z)
)1/2

.

We will be concerned with weighted L2 spaces on the ball. We say that a pos-
itive w∈L1

loc(S) is in the class Ap if

Qp(w)= sup
B

(
1

σ(B)

∫
B

w(ζ) dσ(ζ)
)(

1
σ(B)

∫
B

w1/(1−p)(ζ) dσ(ζ)
)p−1

<∞,

where the supremum runs over all non-isotropic balls B on S. The case of A2 is
especially interesting for us, and a weight is in this class if

Q2(w)= sup
B

(
1

σ(B)

∫
B

w(ζ) dσ(ζ)
)(

1
σ(B)

∫
B

w−1(ζ) dσ(ζ)
)

<∞,

and so Q2(w)=Q2(w−1).
Here, we will be more concerned with the invariant A2 class, denoted by Ã2.

A weight w is in Ã2 if and only if

Q̃2(w)= sup
z∈B

w̃(z) w̃−1(z)<∞.

The quantity Q̃2(w) is invariant under Möbius transforms and is therefore more
suited for questions on the ball. We will see later that these two classes are the
same, i.e. that A2=Ã2 and that

Q2(w)� Q̃2(w)� Q2(w)2,

where the implied constants depend upon the dimension n. Here and throughout
the paper A�B means A≤CB for some absolute constant C.

Let L2(w) denote the space of measurable functions in the ball that are square
integrable with respect to the measure w̃(z)G(z) dg(z). Also let L2(w) denote the
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space of measurable functions that are square integrable with respect to the measure
w(ξ) dσ(ξ). We define the operator

∇̃ : L2(w)−!L2(w)

by sending the function f to ∇̃f̃ , where f̃ is the Poisson–Szegő extension. It is an
easy calculation that

‖Saf‖L2(w) ≤ c(n)‖∇̃f̃‖L2(w).

For more information on some of these concepts the reader can consult [2], [5],
[12], [13], [14] or [15].

1.2. Main results

The main result in this paper is the following:

Theorem 1.1. Under the assumptions above, we have

‖Sa(f)‖L2(w) � Q̃2(w)‖f‖L2(w),

where the implied constant may depend upon the dimension n. Moreover,

‖∇̃(f̃)‖L2(w) � Q̃2(w)‖f‖L2(w),

where we have no dependence on the dimension. Moreover, the dependence upon
Q̃2(w) is sharp for both inequalities.

This theorem is proved by showing that the following string of inequalities
holds:

(1.1) ‖Sa(f)‖L2(w)

(1)

≤ c(n)‖∇̃f̃‖L2(w)

(2)

≤ c Q̃2‖f‖L2(w).

Inequality (1) is shown by changing the order of integration, while inequality (2) is
demonstrated by Bellman function techniques.

The other result demonstrated in this note is the equivalence between the
weight classes A2 and Ã2. This is a notable result since the corresponding fact fails
in Rn.

Theorem 1.2. With the notation above, we have

Q2(w)� Q̃2(w)� Q2(w)2.

In particular the classes A2 and Ã2 define the same class of weights on the unit
sphere S.

This result is demonstrated in the last section.
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2. The “area-integral” estimate

We prove part (2) of inequality (1.1) using Bellman functions.

2.1. The Bellman function and its properties

Let us consider the function

B(X, x, w, v)=
(

1+
1
Q

)
X− x2

Qw
− Q2x2

Q2w+(4Q2+1)w−w2v−4Q2/v

on the domain

O= {(X, x, w, v)> 0 : x2 < Xw and 1≤wv≤Q}.

Note that it is convenient to think of B=Q−1B1+B2, where

B1 = X−x2

w
and B2 = X− Q2x2

Q2w+(4Q2+1)w−w2v−4Q2/v
.

On O, it enjoys the following properties:

0≤B≤ 2X,(2.1)

−d2B ≥C
1

Q2
v(dx)2.(2.2)

It is of course very hard to guess such a function. It was taken from [3] where
a careful analysis was done to come up with this expression. The properties stated
above are a direct calculation, we refer the reader to [3] for details and briefly sketch
here how to get the estimates. The upper estimate on B for (2.1) is obvious. For
the positivity of B, we split B into B1 and B2 and note that X−x2/w≥0 and hence
it suffices to show that

Q2x2

Q2w+(4Q2+1)w−w2v−4Q2/v
≤ x2

w
.

To see the latter, note that it is equivalent to w2v2+4Q2≤(4Q2+1)vw which in turn
is equivalent to (vw−2Q)2≤(2Q−1)2vw. The last inequality is true for 1≤vw≤Q.
To establish (2.2), observe that −d2B≥(2/Q)vx2(dx/x−dw/w)2. Also notice
that B2(X, x, w, v)=B1(X, x, w′), where w′=w+((4Q2+1)w−w2v−4Q2/v)/Q2.
Then use the chain rule to get the estimate −d2B2�(1/Q2)vx2(dw/w)2. Com-
bining the estimates on the Hessians of B1 and B2 gives −d2B�(1/Q2)v(dx)2.
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2.2. A dimension-free Littlewood–Paley formula

On the unit disc one has a Littlewood–Paley formula saying that

1
2π

∫ π

−π

f(eiθ)h̄(eiθ) dθ =
1
π

∫
D

〈∇f̃ (z),∇h̃(z)〉 log
1
|z| dA(z),

as long as f(0)h(0)=0. In [17] a Littlewood–Paley formula for the unit ball, using
the Bergman metric was derived:

∫
S

f(ξ)h̄(ξ) dσ(ξ)= Cn

∫
B

〈∇̃f̃(z), ∇̃h̃(z)〉G(z) dg(z),

where f, h∈L2(S) with f(0)h(0)=0. Here, the author was mostly concerned with
showing that there be a finite constant Cn. This result is not immediate, recall
that the ball, equipped with the Bergman metric is not a compact manifold as the
metric blows up on S.

Lemma 2.1. With u∈C2(B)∩C(B) and under the assumptions above, we have
the dimension-free formula

∫
B

∆̃u(z)G(z) dg(z)=
∫

S

u(ξ) dσ(ξ)−u(0),

here σ is normalized surface measure.

The constants in this lemma can be seen by testing Green’s formula for the unit
ball B from [17] using the radial function f(z)=f(|z|)=|z|2.

2.3. The main inequality

Lemma 2.2. Given x∈R
k and two smooth functions B(x) and ṽ(z)=

(ṽ1(z), ..., ṽk(z)), where the ṽs are Poisson extensions, we have the following formula
for the invariant Laplacian for b(z)=B(ṽ(z)):

∆̃b(z)= 4
n∑

i,j=1

gij(d2B(ṽ(z))∂̄iṽ(z), ∂jṽ(z))

If −d2B(x)≥F (x)(dxs)2 then we have the estimate −∆̃b(z)≥F (ṽ(z))|∇̃ṽs(z)|2.
Here (dxs)2 is the operator represented by the matrix with an entry 1 in the position
corresponding to the second derivative in the sth variable and 0 entries everywhere
else.
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Proof. The proof is certainly a direct computation, using harmonicity of the
entries of ṽ. �

To arrive at the main inequality we let X=f̃2/w(z), x=f̃(z) , w=w̃(z) and v=
w̃−1(z). Here, we would like to stress the order of the operations, for example w̃−1

and w̃−1 have different meaning. We substitute these quantities into our Bellman
function B(X, x, w, v), letting

b(z) := B

(
f̃2

w
(z), f̃(z), w̃(z), w̃−1(z)

)
.

Notice that with our choice of Q=Q̃(w) and choices for variables all entries are in
our domain O.

Using the above Lemma 2.2 and the concavity property (2.2) of the Bellman
function B we have

−∆̃b(z)≥C
1

Q2
w̃−1|∇̃f̃ |2.

Using the lower bound of the size condition of the Bellman function (2.1) we also
see that b(z)≥0 and consequently

∫
S
b dσ≥0. The upper estimate in (2.1) gives

b(0)≤f̃2/w(0)=
∫

S
(f2/w) dσ. So we have

∫
S

f2

w
dσ≥ b(0)−

∫
S

b dσ =
∫

B

−∆̃b(z)G(z) dg(z)

≥C
1

Q2

∫
B

|∇̃f̃(z)|2w̃−1(z)G(z) dg(z).

Here we applied Green’s formula to b. This proves the second inequality. The esti-
mate is valid for any weight w∈A2. Replacing w by w−1 and recalling that w−1∈A2,
we arrive at the desired result.

3. The square function estimate

We now turn to (1) of inequality (1.1). Let L2(w) denote the space of mea-
surable functions on the unit ball B that are square integrable with respect to
w̃(z)G(z) dg(z). We have

‖Sa(f)‖L2(w) ≤ c(n)‖∇̃f̃‖L2(w).
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This follows from the following observation, (1/σ(Q))
∫

Q w(η) dσ(η)≤c(n)w̃(z).
Indeed, use the observation that for any non-isotropic ball Q=Q(ξ, δ) of radius δ

and center ξ∈S there exists a zξ∈B such that σ(Q)=(1−|zξ|2)n with ξ=zξ/|zξ|. Ad-
ditionally, by the triangle inequality for the non-isotropic metric (recall the triangle
inequality also holds in B), for any η∈Q(ξ, δ),

|1−〈zξ, η〉|1/2 ≤ |1−〈ξ, η〉|1/2+|1−〈zξ, ξ〉|1/2 ≤ δ+σ(Q)1/2n.

Then for any Q=Q(ξ, δ),

1
σ(Q)

∫
Q

w(η) dσ(η) =
1

σ(Q)

∫
Q

(1−|zξ|2)n

|1−〈zξ, η〉|2n

|1−〈zξ, η〉|2n

(1−|zξ|2)n
w(η) dσ(η)

=
1

σ(Q)

∫
Q

Pzξ
(η)

|1−〈zξ, η〉|2n

(1−|zξ|2)n
w(η) dσ(η)

≤ (δ+σ(Q)1/2n)4n

σ(Q)2

∫
Q

Pzξ
(η)w(η) dσ(η)

= c1(n)w̃(zξ).

Since cl(n)δ2n≤σ(Q)≤cu(n)δ2n (there is only a comparison, due to the fact
that the “balls” in this metric are elliptical) then notice that

c1(n)≤ (1+c
1/2n
u )4n

cl(n)2
.

With this observation we now estimate ‖Sa(f)‖L2(w),

∫
S

S2
a(f)(ζ)w(ζ) dσ(ζ) =

∫
S

∫
Γa(ζ)

|∇̃f(z)|2 dg(z)w(ζ) dσ(ζ)

=
∫

B

|∇̃f(z)|2
∫

S

1Γa(ζ)(z)w(ζ) dσ(ζ) dg(z).

For fixed z∈B, let

E(z) :=
{

ζ ∈S :
∣∣∣∣1−

〈
z

|z| , ζ
〉∣∣∣∣

1/2

< (a1/2+1)(1−|z|2)1/2

}
.

Then one sees by the triangle inequality for the non-isotropic metric that for
any z∈Γa(ζ) we have ζ∈E(z). Note that E(z) is a non-isotropic ball with center
z/|z| and radius (a1/2+1)(1−|z|2)1/2. Continuing our estimate we have,
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∫
S

S2
a(f)(ζ)w(ζ) dσ(ζ) =

∫
S

∫
Γa(ζ)

|∇̃f̃(z)|2 dg(z)w(ζ) dσ(ζ)

=
∫

B

|∇̃f̃(z)|2
∫

S

1Γa(ζ)(z)w(ζ) dσ(ζ) dg(z)

≤
∫

B

|∇̃f̃(z)|2
(

1
σ(E(z))

∫
E(z)

w(ζ) dσ(ζ)
)

σ(E(z)) dg(z)

≤ c1(n)
∫

B

|∇̃f̃(z)|2w̃(z)σ(E(z)) dg(z)

≤ c1(n)cu(n)(a1/2+1)2n

∫
B

|∇̃f̃(z)|2w̃(z)(1−|z|2)n dg(z).

We now use the inequality (1−|z|2)n≤4n2G(z)/(n+1) in the last integral from
above, and continue the estimate:∫

S

S2
a(f)(ζ)w(ζ) dσ(ζ) ≤ c1(n)cu(n)(a1/2+1)2n 4n2

n+1

∫
B

|∇̃f̃(z)|2w̃(z)G(z) dg(z)

= c(n)
∫

B

|∇̃f̃(z)|2w̃(z)G(z) dg(z).

This proves inequality (1) in (1.1).

4. Sharpness of the linear dependence on Q̃2(ω).

To see that our estimate is sharp, we supply a family of examples. We utilize
power weights adapted to the non-isotropic metric on the sphere. Let ωα(ξ)=
|1−〈ξ, η0〉|α for some fixed η0∈S. Choose fα(ξ)=|1−〈ξ, η0〉|−α. One can observe
that ωα∈Ã2 if and only if |α|<n−1. To see this, one integrates using the following
formula (valid for n≥2) from [15]:

∫
S

g(〈ξ, η〉) dσ(ξ)=
n−1

π

∫
T

∫ 1

0

(1−r2)n−2g(reiθ)r dr dθ

with g(z)=|1−z|α. The largest contribution of the integrand in our case appears

near η0. Recall that Q̃2(ωα)=supz ω̃α(z)ω̃−1
α (z). The supremum here is attained

for z on the ray from 0 to η0. One sees that for α!n−1 we have Q̃2(ωα)∼
(n−1−α)−1. Similarly one calculates that ‖fα‖L2(ωα)∼(n−1−α)−1/2. It remains
to see that ‖∇̃f̃α‖L2(w)�(n−1−α)−3/2 and ‖Safα‖L2(ωα)�(n−1−α)−3/2. Letting
α!n−1 then establishes sharpness. To see this, one computes the invariant gra-
dient of the Poisson extension of the function fα directly. One then establishes
the weighted norm of the area integral similar to [3], just more computationally
involved.
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5. The comparison of classical and invariant A2

In this section we establish the fact that the classes A2 and Ã2 are in fact the
same. This is shown by demonstrating that

Q2(w)� Q̃2(w)� Q2
2(w),

where the implied constants only depend upon the dimension.
We begin with the following fact. First, some notation. Let

fQ =
1

σ(Q)

∫
Q

f(ξ) dσ(ξ) and w(Q)=
∫

Q

w(ξ) dσ(ξ).

Now, observe that by Cauchy–Schwarz’s inequality

f2
Qw(Q)≤Q2(w)(f2w)(Q).

If P⊂Q, and applying the above to 1Q\P we get

(5.1)
(

1−σ(P )
σ(Q)

)2

≤Q2(w)(w(Q)−w(P )).

Upon rearrangement we arrive at

(5.2) w(P )≤
(

1− (1−σ(P )/σ(Q))2

Q2(w)

)
w(Q).

Given any non-isotropic ball Q on the sphere, choose zQ∈B so that the center
of Q is zQ/|zQ| and its volume is (1−|zQ|)n (hence its radius is ∼(1−|zQ|)1/2).
There is a one-to-one correspondence between Q’s and zQ’s. The value w̃(zQ) will
approximately correspond to w(Q).

We estimate

w̃(zQ)w̃−1(zQ)≥
(∫

Q

PzQw dσ

)(∫
Q

PzQw−1 dσ

)

�
(

(1−|zQ|2)n

(1−|zQ|)2n

)2(∫
Q

w dσ

)(∫
Q

w−1 dσ

)

� 1
(1−|zQ|)2n

(∫
Q

w dσ

)(∫
Q

w−1 dσ

)

� Q2(w).

Hence Q2(w)�Q̃2(w).
We now turn to the other inequality. We have to estimate w̃(z)w̃−1(z)�Q2

2(w)
with implied constant independent of w and Q. Using the Möbius invariance of Q̃2
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it suffices to assume that z=(r, 0, ..., 0) with 0<r<1 arbitrary. Now fix r and let Q

be the non-isotropic ball with center (1, 0, ..., 0) and σ(Q)=(1−r)n.
To obtain the upper estimate, we exhaust the sphere by enlarging Q. Let us

denote by cQ the ball with the same center and cn-fold volume (hence c1/2-fold
radius). Then

(5.3)
∫

S

Pzw dσ =
∫

Q

Pzw dσ+
∞∑

k=1

∫
2kQ\2k−1Q

Pzw dσ

Observe that for all ξ∈S,

Pz(ξ)≤ (1+r)n

(1−r)n
.

Moreover, if ξ∈2kQ\2k−1Q we have the better estimate

Pz(ξ)� 2−2nk (1+r)n

(1−r)n
.

So we get

w̃(z)� (1+r)n

(1−r)n

∞∑
k=0

2−2nkw(2kQ)

and similarly for w̃−1. We start to estimate the product

w̃(z)w̃−1(z)� (1+r)2n

(1−r)2n

∞∑
k=0

2−2nkw(2kQ)
∞∑

l=0

2−2nlw−1(2lQ)

≤ (1+r)2n

(1−r)2n

∞∑
k=0

2−2nkw(2kQ)
k∑

l=0

2−2nlw−1(2lQ)

+
(1+r)2n

(1−r)2n

∞∑
k=0

2−2nkw(2kQ)
∞∑

l=k

2−2nlw−1(2lQ).

The latter sums are equivalent (with roles of w and w−1 switched) so we estimate
the second sum only. Iterating the estimate (5.2) we estimate for l≥k,

w(2kQ)≤
(

1− 1−4−n

Q2(w)

)l−k

w(2lQ),

and using that σ(2kQ)=2nk(1−r)n we get

(1+r)2n

(1−r)2n

∞∑
k=0

2−2nkw(2kQ)
∞∑

l=k

2−2nlw−1(2lQ)� Q2(w)
∞∑

k=0

2−2nk
∞∑

s=0

(
1− 1−4−n

Q2(w)

)s

� Q2
2(w).
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6. Concluding remarks

The result in [6] establishes that the Cauchy transform on Lp(w) is bounded
if and only if the weight is in Ap. It is however not known how the norm of the
Cauchy transform grows with respect to the characteristic of the weight. Thus,
it is an interesting task to understand the dependence of the norm of the Cauchy
transform on weighted L2 spaces of the unit sphere by means of Bellman functions.
On the unit disc, using Bellman function techniques, a very simple proof of the
boundedness of the Cauchy transform on weighted L2 spaces is given, see [7] for
continuity and [11] for the sharp result in terms of the invariant characteristic. In
the case of the disc the sharp weighted bound for the square function was a first
step and a tool to obtain the sharp bound for the Cauchy transform, which was
a major motivation for this note.

As for the Cauchy transform C, the goal is to provide a linear and sharp es-
timate of the form ‖Cf‖L2(ω)�Q̃2(ω)‖f‖L2(ω), where the implied constant is inde-
pendent of f , ω and the dimension n. The claim is that the invariant characteristic
of the weight is the correct one, so that the dependence is both linear and no depen-
dence on the dimension occurs. Our dimension-free estimate on the “area integral”
illustrates that this guess was a good one. The missing ingredient for the estimate
for the Cauchy transform is the following formula: |∇̃Cf |∼|∇̃f̃ |, which holds in one
dimension, but is not true in several variables. The estimate for the square function
avoids this deficiency.

Conjecture 6.1. Let w∈A2 and C denote the Cauchy transform in Cn. Then,
is it true that

‖C(f)‖L2(w) � Q̃2(w)‖f‖L2(w),

where the implied constant does not depend upon the dimension?
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