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Boundary decay estimates for solutions of
fourth-order elliptic equations

Gerassimos Barbatis

Abstract. We obtain integral boundary decay estimates for solutions of fourth-order elliptic

equations on a bounded domain with regular boundary. We apply these estimates to obtain

stability bounds for the corresponding eigenvalues under small perturbations of the boundary.

1. Introduction

Let Ω be a bounded region in RN and let H be a fourth-order, self-adjoint,
uniformly elliptic operator on L2(Ω) subject to Dirichlet boundary conditions on ∂Ω,

Hu(x)=
∑

|η|≤2
|ζ|≤2

Dη(aηζ(x)Dζu(x)), x∈Ω.

The scope of this paper is to obtain integral boundary decay estimates for solutions
of the equation

Hu = f, f ∈L2(Ω).(1)

More precisely, we want to establish ranges of β>0 for which the integrals
∫

Ω

d−2−βu2 dx and
∫

Ω

d−β |∇u|2 dx

are finite (where d(x)=dist(x, ∂Ω)). If Ω is regular in the sense that the Hardy–
Rellich inequality

∫

Ω

(∆u)2 dx≥ c

∫

Ω

( |∇u|2
d2

+
u2

d4

)
dx, u∈H2

0 (Ω),

is valid, we then immediately have such an estimate since H2
0 (Ω)=Dom(H1/2). Our

aim is to establish better decay estimates that exploit the fact that the solution u

of (1) belongs not only to H2
0 (Ω) but also to Dom(H).
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This problem is well studied in the case of second-order operators. In [D2]
Davies obtained boundary decay estimates of the form

∫

Ω

( |∇u|2
d2α

+
u2

d2+2α

)
dx≤ c(‖Hu‖2‖H1/2u‖2+‖u‖2

2), u∈Dom(H),(2)

for α>0 in some interval (0, α0). Here α0 is an explicitly given constant which
depends on the boundary regularity and the ellipticity constants of H . As an
application of (2) stability estimates were obtained on the eigenvalues {λn}∞n=1 of H

under small perturbations of the boundary ∂Ω. More precisely, if Ω̃⊂Ω is a domain
such that ∂Ω̃⊂{x∈Ω:dist(x, ∂Ω)<ε} and if {λ̃n}∞n=1 are the corresponding Dirichlet
eigenvalues (the operator H̃ being defined by form restriction), then it was shown
that (2) implies

0≤ λ̃n−λn ≤ cnε2α(3)

for all n∈N and all ε>0 small enough. This estimate has obvious applications in
the numerical computation of eigenvalues; see [D2] for more on specific examples.

Inequality (3) was subsequently improved in [D3], where ε2α, α<α0, was re-
placed by ε2α0 , for the same α0; this was done by estimating the integrals∫

d(x)<ε
|∇u|2 dx and

∫
d(x)<ε

u2 dx for small ε>0. For results analogous to those of
[D3] for the p-Laplacian together with applications we refer to Fleckinger et al. [FHT].
See also [EHK] where estimates of this type were first obtained for eigenfunctions
of second-order operators. For relevant results in the case of singular operators
see [M].

In our main theorem we obtain integral decay estimates analogous to (2) for
fourth-order operators. More precisely, for a fourth-order operator H with L∞

coefficients we establish boundary decay estimates of the form
∫

Ω

( |∇2u|2
d2α

+
|∇u|2
d2+2α

+
u2

d4+2α

)
dx≤ c(‖Hu‖2‖Hα/2u‖2+‖u‖2

2), u∈Dom(H),(4)

for α in an interval (0, α0). Under additional assumptions we obtain α0= 1
2 , which

is optimal. To prove (4) we first use some general inequalities, which lead to a prop-
erty (Pα) being identified as sufficient for the validity of (4). We then study prop-
erty (Pα), and find sufficient conditions under which it is valid; the distance function
used here is taken to be the Finsler distance induced by the operator.

Technical reasons oblige us to make a regularity assumption that is not needed
in the second-order case and requires d(x) to be C2 near ∂Ω. This relates to
a recurrent and largely unsolved issue in higher-order problems: a distance function
is normally only once differentiable, but is required for technical reasons to be
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differentiated more than once; see for example [B], where such an issue has arisen
in the context of heat kernel estimates.

Finally, as an application of (4) we obtain stability bounds analogous to (3) on
the eigenvalues of H under small boundary perturbations.

The structure of the paper is as follows: in Section 2 we provide a sufficient
condition (Pα) for the validity of (4); in Section 3 we establish a range of α for
which (Pα) is valid for different classes of operators; and in Section 4 we present
the application to eigenvalue stability.

Setting

We fix some notation. Given a multi-index η=(η1, ..., ηN ) we write η!=η1!...ηN !
and |η|=η1+...+ηN . We write γ≤η if γi≤ηi for all i, in which case we also set
cη
γ =η!/γ!(η−γ)!. We use the standard notation Dηu=(∂/∂x1)η1 ...(∂/∂xN )ηN u and

(∇u)η =uη1
x1

...uηN
xN

. By ∇2u we denote the vector (uxixj )N
i,j=1. The letter c will

denote a constant whose value may change from line to line; the constants c1, c2

and c3 however are the same throughout the paper.
We now describe our setting. We assume that Ω is a bounded domain in RN

with boundary ∂Ω. We consider a distance function d( · , · ) on Ω, and denote by
d( · ) the corresponding distance to the boundary ∂Ω. We say that d( · ) belongs to
the class D if it satisfies:

(D1) There exist c1, c2>0 such that for any x, y∈Ω,

c1 ≤ |∇zd(z, y)| ≤ c2, z ∈Ω,(a)

c1dEuc(x, y)≤ d(x, y)≤ c2dEuc(x, y).(b)

(D2) There exist θ, τ >0 such that

d(x) is C2 on {x∈Ω : 0 < d(x)< θ},(a)

|∇2d(x)| ≤ cd(x)−1+τ on {x∈Ω : 0 < d(x)< θ}.(b)

(D3) The following Hardy–Rellich inequalities are valid for all v∈C2
c (Ω):

∫

Ω

(∆v)2 dx≥ c3

∫

Ω

v2

d4
dx,(a)

∫

Ω

(∆v)2 dx≥ c3

∫

Ω

|∇v|2
d2

dx.(b)

We note that a sufficient condition for (D3)(b) is the Hardy inequality
∫

Ω

|∇v|2 dx≥ c3

∫

Ω

v2

d2
dx.
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The distance d( · , · ) will typically be a Finsler distance, in which case (a) and (b)
of (D1) are equivalent. Condition (D2) is essentially a strong regularity assumption
on ∂Ω, as will be seen below. Its validity in examples will always involve the
specific value τ=1; we choose however this more general and somewhat axiomatic
setting because, we believe, it shows more clearly what the essential ingredients
are. Finally, for more on Hardy–Rellich inequalities, optimal constants as well as
improved versions of such inequalities we refer to [BFT] and [BT] and references
therein.

In the sequel we shall often need to twice differentiate d(x) near ∂Ω. In order
to avoid repeatedly splitting integrals in two, we redefine d(x) on {x∈Ω:d(x)>θ}
so that now d(x) is a positive C2 function on Ω which equals inf{d(x, y):y∈∂Ω} for
x∈{x∈Ω:dist(x, ∂Ω)<θ} but not necessarily for all x∈Ω (of course d(x, · ) extends
to ∂Ω by uniform continuity). In relation to this we emphasize that throughout the
paper what really matters is what happens near the boundary ∂Ω. We also note
that, while the validity of estimate (4) and assumption (D3) is independent of the
specific distance d( · )∈D chosen, we shall need to consider non-Euclidean distances
since some of the intermediate calculations do depend on the specific choice of the
distance.

We will consider operators of the form

Hu(x)=
∑

|η|=2
|ζ|=2

Dη(aηζ(x)Dζu(x)), x∈Ω,(5)

subject to Dirichlet boundary conditions on ∂Ω; lower-order terms can be easily ac-
comodated. More precisely, we start with a matrix-valued function a(x)={aηζ(x)}
which is assumed to be have entries in L∞(Ω) and to take its values in the set of
all real, 1

2N(N +1)× 1
2N(N +1) matrices (1

2N(N +1) is the number of multi-indices
η of length |η|=2). We assume that {aηζ(x)} is symmetric for all x∈Ω and define
a quadratic form Q( · ) on the Sobolev space H2

0 (Ω) by

Q(u)=
∫

Ω

∑

|η|=2
|ζ|=2

aηζ(x)Dηu(x)Dζu(x) dx, u∈H2
0 (Ω).

We make the ellipticity assumption that there exist λ, Λ>0 such that

λQ0(u)≤Q(u)≤ΛQ0(u), u∈H2
0 (Ω),

where Q0(u)=
∫
Ω
(∆u)2 dx denotes the quadratic form corresponding to the bilapla-

cian ∆2. We then define H to be the associated self-adjoint operator on L2(Ω), so
that 〈Hu, u〉=Q(u) for all u∈Dom(H).
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2. Boundary decay

Let d( · )∈D. Let α>0 be fixed and let us define

ω(x)= d(x)−α, x∈Ω.

We regularize ω defining

dn(x)= d(x)+
1
n

, ωn(x)= dn(x)−α, n = 1, 2, ....(6)

We note that u∈H2
0 (Ω) implies ωnu∈H2

0 (Ω), n∈N. It is crucial for the estimates
which follow that, while they contain the functions dn and ωn, they involve constants
that are independent of n∈N.

Lemma 1. Let α>0. There exists a constant c which is independent of n∈N
such that

∫

Ω

( |∇2u|2
d2α

n

+
|∇u|2
d2+2α

n

+
u2

d4+2α
n

)
dx≤ cQ(ωnu), u∈H2

0 (Ω).(7)

Proof. It suffices to prove (7) for all u∈C2
c (Ω). So let u∈C2

c (Ω) be given and
let v=ωnu, a function also in C2

c (Ω). Using (D3) we have
∫

Ω

u2

d4+2α
n

dx=
∫

Ω

v2

d4
n

dx≤
∫

Ω

v2

d4
dx≤ c

∫

Ω

(∆v)2 dx.

Similarly,
∫

Ω

|∇u|2
d2+2α

n

dx =
∫

Ω

1
d2+2α

n

∣∣αdα−1
n v∇dn+dα

n∇v
∣∣2 dx

≤ c

∫

Ω

v2

d4
n

dx+c

∫

Ω

|∇v|2
d2

n

dx≤ c

∫

Ω

(∆v)2 dx,

where we have used the fact that
∫

Ω

|∇2v|2 dx=
∫

Ω

(∆v)2 dx.(8)

Finally, since d and dn differ by a constant,

uxixj = dα
nvxixj +αdα−1

n (dxivxj +dxjvxi)+αdα−1
n dxixjv+α(α−1)dα−2

n dxidxj v,

and therefore
∫

Ω

|∇2u|2
d2α

n

dx≤ c

(∫

Ω

|∇2v|2 dx+
∫

Ω

|∇v|2
d2

n

dx+
∫

Ω

v2

d4
n

dx+
∫

Ω

|∇2d|2
d2

n

v2 dx

)
.

Since dn≥d, the second and third terms in the brackets are smaller than c
∫
Ω
(∆v)2 dx

by the Hardy–Rellich inequalities (D3). The same is true for the last term by (D2).
Thus, one more application of (8) concludes the proof. �
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Lemma 2. Let α∈(0, 1) and ωn=d−α
n . Then there exists a constant c>0,

independent of n∈N, such that

Q(u, ω2
nu)≤ c‖Hu‖2‖Hα/2u‖2, u∈Dom(H).

Proof. For any n∈N and u∈C2
c (Ω) we have

∫

Ω

ω4/α
n u2 dx≤

∫

Ω

ω4/αu2 dx=
∫

Ω

u2

d4
dx≤ cQ(u).

Hence ω
4/α
n ≤cH in the quadratic form sense, which by [D1, Lemma 4.20] implies

that ω4
n≤cHα (since α∈(0, 1)). Hence given u∈Dom(H) we have

Q
(
u, ω2

nu
)≤‖Hu‖2

∥∥ω2
nu

∥∥
2
≤ c‖Hu‖2‖Hα/2u‖2,

which is the stated inequality. �

We can now establish a sufficient condition for the boundary decay estimates.

Theorem 3. Let α∈(0, 1) be fixed and let ωn=d−α
n . Assume that there exist

k, k′>0 independent of n∈N such that

Q(ωnu)≤ kQ
(
u, ω2

nu
)
+k′‖u‖2

2, u∈C2
c (Ω),(9)

for all n∈N. Then there exists c>0 such that

∫

Ω

( |∇2u|2
d2α

+
|∇u|2
d2+2α

+
u2

d4+2α

)
dx≤ c‖Hu‖2‖Hα/2u‖2, u∈Dom(H).(10)

Proof. The validity of (9) for all u∈C2
c (Ω) implies its validity for all u∈H2

0 (Ω)
and in particular for all u∈Dom(H). Hence given u∈Dom(H) and applying Lem-
mas 1 and 2 we conclude that there exists a constant c such that for any n∈N there
holds

∫

Ω

( |∇2u|2
d2α

n

+
|∇u|2
d2+2α

n

+
u2

d4+2α
n

)
dx≤ c

(‖Hu‖2‖Hα/2u‖2+‖u‖2
2

)
.

Letting n!+∞, applying the dominated convergence theorem and using the fact
that the spectrum of H is bounded away from zero we obtain (10). �
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3. The property (Pα)

The validity of assumption (9) of Theorem 3 will be our main interest in this
section. For the sake of simplicity, for any α∈(0, 1) we define the property (Pα)
(relative to the distance function d∈D) as

⎧
⎪⎨

⎪⎩

There exists constants k, k′>0 such that

Q
(
d−α

n u
)≤kQ

(
u, d−2α

n u
)
+k′‖u‖2

2

for all n∈N and u∈C2
c (Ω).

(Pα)

This is precisely assumption (9) of Theorem 3. Our aim in this section is to obtain
sufficient conditions under which property (Pα) is valid. In the following three sub-
sections we present three theorems that provide such conditions. The first applies
to all operators in the class under consideration; the second applies to operators
of a specific type but gives a better range of α>0; and the third applies to small
perturbations of operators in the second class.

Remark. If ∂Ω is smooth then the ground state φ of ∆2 decays as d(x)2 as
x!∂Ω. Hence the integral in the left-hand side of (10) is not finite for α≥ 1

2 .
For this reason and throughout the rest of the paper we restrict our attention to
α∈(0, 1

2 ).

3.1. General operators

We always work in the context described at the beginning of Section 2. We
recall that for α∈(0, 1

2 ) we have ωn=d−α
n =(d+1/n)−α; we also recall that λ and Λ

are the ellipticity constants of the operator H .

Theorem 4. There exists a computable constant c>0 such that property (Pα)
relative to the Euclidean distance is valid for H for all α∈(0, c−1Λ−1λ).

Proof. Let u∈C2
c (Ω) be fixed. Setting v=d−α

n u and using Leibniz’ rule we have

Q(d−α
n u)−Q(u, d−2α

n u)

= Q(v)−Q(dα
nv, d−α

n v)

=
∫

Ω

∑

|η|=2
|ζ|=2

aηζ

(
DηvDζv−Dη

(
dα

nv
)
Dζ

(
d−α

n v
))

dx
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=−
∫

Ω

∑

|η|=2
|ζ|=2

∑

γ≤η
δ≤ζ

γ+δ>0

cη
γcζ

δaηζ

(
Dγdα

n

)(
Dδd−α

n

)
(Dη−γv)(Dζ−δv) dx

≤ cΛ
∫ ∑

0≤i,j≤2
i+j>0

∣∣∇idα
n

∣∣ ∣∣∇jd−α
n

∣∣ |∇2−iv| |∇2−jv| dx.

But, by (D1) and (D2),
∣∣∇d±α

n

∣∣= αd±α−1
n and

∣∣∇2d±α
n

∣∣≤ cαd±α−2
n ,

and we thus obtain

Q(v)−Q
(
dα

nv, d−α
n v

)≤ cΛα

∫

Ω

(
|∇2v|2+

|∇v|2
d2

n

+
v2

d4
n

)
dx≤ cΛλ−1αQ(v).

Hence, if α is such that cΛλ−1α<1, then property (Pα) is valid for H . �

3.2. Regular coefficients

The weak point of Theorem 4 is the poor information it provides on the range
of α for which (Pα) is valid. In this subsection we shall consider operators of a more
specific type and for which we shall see that (Pα) is valid for all α∈(0, 1

2 ).
It will be useful in this subsection to drop the multi-index notation and write

the quadratic form as

Q(u)=
∫

Ω

N∑

i,j,k,l=1

aijkluxixj uxkxl
dx, u∈H2

0 (Ω).

We may clearly assume that the functions aijkl have the following symmetries:

aijkl = ajikl, aijlk , aklij .(11)

We make the following additional assumptions on the coefficients {aijkl}:
(i) There exist θ, τ>0 such that

each aijkl is differentiable in {x∈Ω : d(x)< θ}(12.a)

|∇aijkl | ≤ cd−1+τ on {x∈Ω : d(x)< θ}(12.b)

(ii)

N∑

i,j,k,l=1

aijkl(x)ξiξkηjηl ≤
N∑

i,j,k,l=1

aijkl(x)ξiξjηkηl, ξ, η ∈RN , x∈Ω.(12.c)
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Without any loss of generality we assume that τ in (i) is the same as in (D2).
Condition (ii) is a technical one, whose necessity is not clear. We present two
examples in which it is valid.

Example 1. Suppose that aijkl=bijbkl for some non-negative N×N

matrix {bij}i,j . Then (ii) is valid by the Cauchy-Schwarz inequality for the
non-negative form (ξ, η) 
!bijξiηj . This for example includes operators of the form
∆a(x)∆, for which we have aijkl=a(x)δijδkl.

Example 2. Suppose that aijkl=δijδklaik, where aik=aki≥0 for i, k=1, ..., N .
Then it is easily seen that (ii) is again valid.

We choose the distance function d( · ) to be the one naturally associated with H ,
that is the one induced by the Finsler metric p(x, η) whose dual metric (cf. (15)
below) is

p∗(x, ξ)=
( N∑

i,j,k,l=1

aijkl(x)ξiξjξkξl

)1/4

.(13)

This implies in particular that the function d( · ) satisfies

N∑

i,j,k,l=1

aijkl(x)dxidxj dxk
dxl

= 1, a.e. x∈Ω.(14)

Indeed, the inequality
∑N

i,j,k,l=1 aijkl(x)dxidxj dxk
dxl

≤1 is shown in [A, Lemma 1.3].
To prove the converse inequality let y denote a point of differentiability of d. Then
y has a unique nearest point y0∈∂Ω; so d(y)=d(y, y0)=:s. Let yt, t∈[0, s], be the
geodesic joining y0 and y parametrised by arc length so that ys=y. Then for small
ε>0 we have on the one hand

d(ys−ε)−d(y)= d(y, ys−ε)= p(y, y−ys−ε)+o(ε),

and on the other hand, by differentiability,

d(ys−ε)−d(y)=∇d(y)·(ys−ε−y)+o(ε).

Hence

p∗(y,∇d(y))= sup
ξ∈RN

∇d(y)·ξ
p(y, ξ)

≥ lim
ε&0

∇d(y)·(ys−ε−y)
p(y, y−ys−ε)

= 1.(15)

We note that the metric is Riemannian if the symbol of the operator H is the square
of a polynomial of degree two.
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We assume that our basic hypotheses (D1)–(D3) of the introduction are valid;
Concerning in particular the validity of condition (D2), we note that it is satisfied
if enough regularity is imposed on the boundary and the coefficients. If for example
the boundary is C3 and the coefficients aijkl lie in C3({x∈�Ω:0≤d(x)<θ}), then d∈
C2({x∈�Ω:0≤d(x)<θ}); see [LN, Section 1.3]. On the other hand, for the Euclidean
distance a C2 boundary is enough [GT, p. 354].

It is useful to introduce at this point a class A of integrals that are in a sense
negligible.

Definition. A family of quadratic integral forms Tn(v), v∈C2
c (Ω), n∈N, be-

longs to the class A if for any ε>0 there exists cε>0 (independent of n∈N) such
that

|Tn(v)| ≤ εQ(v)+cε

∫

Ω

v2 dx, n∈N, v ∈C2
c (Ω).(16)

Lemma 5. Let In(v)=
∫
Ω bn(Dγv)(Dδv) dx, |γ|, |δ|≤2, be a term that results

after expanding Q(dα
nv, d−α

n v) and integrating by parts a number of times. If bn

contains as a factor either a derivative of aηζ or a second-order derivative of dn,
then {In}∞n=1∈A.

Proof. After expanding Q(dα
nv, d−α

n v) (cf. (19) below) we obtain a linear com-
bination of integrals, and direct observation shows that each one of them has one
of the following three forms (we switch temporarily to multi-index notation):

∫

Ω

aηζd
−4+|γ+δ|
n (∇dn)η+ζ−γ−δ(Dγv)(Dδv) dx, |η|= |ζ|= 2, γ ≤ η, δ≤ ζ,(a)

∫

Ω

aηζd
−3+|γ|
n (∇dn)η−γ(Dζdn)v(Dγv) dx, |η|= |ζ|= 2, γ ≤ η,(b)

∫

Ω

aηζd
−2
n (Dηdn)(Dζdn)v2 dx, |η|= |ζ|= 2.(c)

(These are distinguished by the number of second-order derivatives of dn that they
contain – none, one and two, respectively.) Hence all resulting integrals have the
form

∫

Ω

bn(x)(Dγv)(Dδv) dx, 0≤ |γ|, |δ| ≤ 2,

where bn(x) is a product of aηζ with powers and/or derivatives of dn and, since ∇dn

is bounded,

|bn(x)| ≤ cdn(x)−4+|γ+δ|, x∈Ω.(17)
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In cases (b) and (c) however, where bn(x) contains as a factor at least one second-
order derivative of dn, it follows from condition (D2) of the introduction that we
have something more, namely

|bn(x)| ≤ cdn(x)−4+|γ+δ|+τ , x∈Ω.

This easily implies that the integral lies in A in this case.
Suppose now that we integrate by parts in the integral (a) above, transferring

one derivative from, say, Dγv, (|γ|≥1), to the remaining functions. If the derivative
being transfered is ∂/∂xi, we obtain – in an obvious notation – the integral

∫

Ω

[aηζd
−4+|γ+δ|
n (∇dn)η+ζ−γ−δ(Dδv)]xi(D

γ−eiv) dx.

If the derivative ∂/∂xi “hits” either aηζ or one of the factors that make up
(∇dn)η+ζ−γ−δ we obtain an integral of the form

∫

Ω

bn(x)(Dγ−eiv)(Dδv) dx,

where |bn|≤cd−1+τ
n d

−4+|γ+δ|
n ; hence this integral belongs to A. �

Example. We illustrate the last lemma with an example: in (21) below there
appears the integral

In(v)=
∫

Ω

aijkld
−2
n dxidxj vvxkxl

dx.

Letting {Tn}∞n=1, {T ′
n}∞n=1 denote elements in A we compute

∫

Ω

aijkld
−2
n dxidxj vvxkxl

dx

=−
∫

Ω

(aijkl)xk
d−2

n dxidxj vvxl
dx+2

∫

Ω

aijkld
−3
n dxidxj dxk

vvxl
dx

−
∫

Ω

aijkld
−2
n dxixk

dxj vvxl
dx−

∫

Ω

aijkld
−2
n dxidxjxk

vvxk
dx

−
∫

Ω

aijkld
−2
n dxidxj vxk

vxl
dx

=
∫

Ω

aijkld
−3
n dxidxj dxk

(v2)xl
dx−

∫

Ω

aijkld
−2
n dxidxj vxk

vxl
dx+Tn(v)

= 3
∫

Ω

aijkld
−4
n dxidxj dxk

dxl
v2 dx−

∫

Ω

aijkld
−2
n dxidxj vxk

vxl
dx+T ′

n(v).
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Note. The summation convention over repeated indices will be used from now
on.

Lemma 6. There exists {Tn}∞n=1∈A such that

Q(v)−Q
(
dα

nv, d−α
n v

)
= 2α2

∫

Ω

aijkld
−2
n dxidxj vxk

vxl
dx(18)

+4α2

∫

Ω

aijkld
−2
n dxidxk

vxj vxl
dx

−(α4+11α2)
∫

Ω

d−4
n v2 dx+Tn(v)

for all v∈C2
c (Ω).

Proof. For β=α and β=−α we have

(dβ
nv)xixj = dβ

nvxixj +βdβ−1
n dxivxj +βdβ−1

n dxj vxi(19)

+β(β−1)dβ−2
n dxidxj v+βdβ−1

n dxixj v.

We substitute in Q(dα
nv, d−α

n v) and expand. Now, by Lemma 5 all terms containing
second-order derivatives of dn belong to A. Further, the symmetries (11) of aijkl

give

aijkldxidxj dxk
vxl

= aijkldxidxk
dxl

vxj = ...,

aijkldxidxj vxkxl
= aijkldxk

dxl
vxixj = ...,(20)

aijkldxidxl
vxj vxk

= aijkldxidxk
vxj vxl

= ....

Denoting by {Tn}∞n=1 an element of A which may change within the proof we thus
arrive at

Q
(
dα

nv, d−α
n v

)
=

∫

Ω

aijkl[vxixj vxkxl
+2α2d−2

n dxidxj vvxkxl
−4α2d−2

n dxidxk
vxj vxl

(21)

+4α2d−3
n dxidxj dxk

vvxl

+α2(α2−1)d−4
n dxidxj dxk

dxl
v2] dx+Tn(v).

We integrate by parts the second and fourth terms in the last integral. By Lemma 5,
all terms that contain either derivatives of aijkl or second-order derivatives of dn,
belong to A. Hence, denoting always by {Tn}∞n=1 a generic element of A we obtain
(cf. the example above)

∫

Ω

aijkld
−2
n dxidxj vvxkxl

dx = 3
∫

Ω

aijkld
−4
n dxidxj dxk

dxl
v2 dx

−
∫

Ω

aijkld
−2
n dxidxj vxk

vxl
dx+Tn(v)
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and, similarly,
∫

Ω

aijkld
−3
n dxidxj dxk

vvxl
dx=

3
2

∫

Ω

aijkld
−4
n dxidxj dxk

dxl
v2 dx+Tn(v).

Substituting in (21) yields

Q
(
dα

nv, d−α
n v

)
=

∫

Ω

aijkl [vxixj vxkxl
−4α2d−2

n dxidxk
vxj vxl

−2α2d−2
n dxidxj vxk

vxl

+(α4+11α2)d−4
n dxidxj dxk

dxl
v2] dx+Tn(v).

Recalling that (14) holds, relation (18) follows. �

Lemma 7. Let v∈C2
c (Ω) and w=d

−3/2
n v. Then

Q(v)−Q(dα
nv, d−α

n v)= 2α2

∫

Ω

aijkldndxidxj wxk
wxl

dx

+4α2

∫

Ω

aijkldndxidxk
wxj wxl

dx

+
(
−α4+

5α2

2

) ∫

Ω

d−1
n w2 dx+Tn(v),

where {Tn}∞n=1∈A.

Remark 1. When working with the function w, all integrals have the form
∫

Ω

bn(x)(Dγw)(Dδw) dx

where the function bn satisfies

|bn(x)| ≤ cdn(x)−1+|γ+δ|, x∈Ω.(22)

Such an integral lies in A if in addition

|bn(x)| ≤ cdn(x)−1+|γ+δ|+τ , x∈Ω,

for some τ>0; as before, these are precisely the integrals that contain either second-
order derivatives of dn or (first-order) derivatives of aijkl.

Remark 2. Since d and dn differ by a constant, for the sake of simplicity we
shall write dxi instead of (dn)xi , etc.
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Proof of Lemma 7. We substitute vxi =d
3/2
n wxi +

3
2d

1/2
n dxiw in (18). Recalling

the symmetry relations (20) (with w in the place of v) and using the fact that
aijkldxidxj dxk

dxl
=1 we obtain

Q(v)−Q
(
dα

nv, d−α
n v

)

= 4α2

∫

Ω

aijkld
−2
n dxidxk

[
d3/2

n wxj +
3
2
d1/2

n dxj w

][
d3/2

n wxl
+

3
2
d1/2

n dxl
w

]
dx

+2α2

∫

Ω

aijkld
−2
n dxidxj

[
d3/2

n wxk
+

3
2
d1/2

n dxk
w

][
d3/2

n wxl
+

3
2
d1/2

n dxl
w

]
dx

−(α4+11α2)
∫

Ω

d−1
n w2 dx+Tn(v)

= 4α2

∫

Ω

aijkld
−2
n dxidxk

[
d3

nwxj wxl
+3d2

ndxj wxl
w+

9
4
dndxj dxl

w2

]
dx

+2α2

∫

Ω

aijkld
−2
n dxidxj

[
d3

nwxk
wxl

+3d2
ndxk

wxl
w+

9
4
dndxk

dxl
w2

]
dx

−(α4+11α2)
∫

Ω

d−1
n w2 dx+Tn(v)

= 4α2

∫

Ω

aijkldndxidxk
wxj wxl

dx+2α2

∫

Ω

aijkldndxidxj wxk
wxl

dx

+
(
−α4+

5α2

2

) ∫

Ω

d−1
n w2 dx+18α2

∫

Ω

aijkldxidxj dxk
wxl

w dx+Tn(v).

But the last integral belongs to A by an integration by parts; hence the proof is
complete. �

Lemma 8. Let v∈C2
c (Ω) and w=d

−3/2
n v. Then

Q(v) =
∫

Ω

aijkld
3
nwxixjwxkxl

dx+
9
2

∫

Ω

aijkldndxidxj wxk
wxl

dx

−3
∫

Ω

aijkldndxidxk
wxj wxl

dx+
9
16

∫

Ω

d−1
n w2 dx+Tn(v),

where {Tn}∞n=1 is an element of A.

Proof. We have

vxixj = d3/2wxixj + 3
2d1/2

n dxiwxj + 3
2d1/2

n dxj wxi +
3
4d−1/2

n dxidxj w+ 3
2d1/2

n dxixjw.
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As already mentioned, all terms involving second-order derivatives of dn belong
to A. Hence, using the symmetry relations (20) once more we compute,

Q(v) =
∫

Ω

aijkl

[
d3/2

n wxixj +3d1/2
n dxiwxj +

3
4
d−1/2

n dxidxj w

]
(23)

×
[
d3/2

n wxkxl
+3d1/2

n dxk
wxl

+
3
4
d−1/2

n dxk
dxl

w

]
dx+Tn(v)

=
∫

Ω

aijkl

[
d3

nwxixjwxkxl
+6d2

ndxiwxj wxkxl
+

3
2
dndxidxj wxkxl

w

+9dndxidxk
wxj wxl

+
9
2
dxidxj dxk

wxl
w

+
9
16

d−1
n dxidxj dxk

dxl
w2

]
dx+Tn(v).

The fifth term belongs to A be a simple integration by parts. We also integrate the
second and third terms by parts, obtaining, respectively,

∫

Ω

aijkld
2
ndxiwxj wxkxl

dx =−2
∫

Ω

aijkldndxidxk
wxj wxl

dx

+
∫

Ω

aijkldndxidxj wxk
wxl

dx+Tn(v),
∫

Ω

aijkldndxidxj wxkxl
w dx =−

∫

Ω

aijkldndxidxj wxk
wxl

dx+Tn(v).

Substituting in (23) and recalling (14) we obtain the stated relation. �

We can now prove the main theorem of this subsection. For any α∈(0, 1
2 ) we

define

kα =
9

(1−4α2)(9−4α2)
.

Theorem 9. For the operator H and relative to the metric (13), property
(Pα) is valid for all α∈(0, 1

2 ). More precisely, for any α∈(0, 1
2 ) and any k>kα

there exists k′<+∞ such that

Q
(
d−α

n u
)≤ kQ

(
u, d−2α

n u
)
+k′‖u‖2

2, u∈C2
c (Ω).(24)

Proof. Let u∈C2
c (Ω) be given and let v and w be defined by v=d−α

n u and
w=d

−3/2
n v, respectively. Define γα=(40α2−16α4)/9 and observe that γα∈(0, 1).
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Applying Lemmas 7 and 8 and assumption (12.c) we obtain

γαQ
(
d−α

n u
)−[Q(d−α

n u)−Q(u, d−2α
n u)](25)

= γαQ(v)−[Q(v)−Q(dα
nv, d−α

n v)]

= γα

∫

Ω

aijkld
3
nwxixj wxkxl

dx+
(

9γα

2
−2α2

) ∫

Ω

aijkldndxidxj wxk
wxl

dx

−(3γα+4α2)
∫

Ω

aijkldndxidxk
wxj wxl

dx

+
(

α4− 5α2

2
+

9γα

16

) ∫

Ω

aijkld
−1
n dxidxj dxk

dxl
w2 dx+Tn(v)

≥ γα

∫

Ω

aijkld
3
nwxixj wxkxl

dx+
(

3γα

2
−6α2

) ∫

Ω

aijkldndxidxj wxk
wxl

dx

+
(

α4− 5α2

2
+

9γα

16

) ∫

Ω

aijkld
−1
n dxidxj dxk

dxl
w2 dx+Tn(v).

Therefore

γαQ(d−α
n u)−[Q(d−α

n u)−Q(u, d−2α
n u)]≥Tn(v),(26)

since the coefficient of the last integral is zero and those of the other two integrals
are non-negative. Now, for any ε1, ε2>0 we have from (16),

|Tn(v)| ≤ ε1Q(v)+cε1‖v‖2
2

= ε1Q(d−α
n u)+cε1‖d−α

n u‖2
2

≤ ε1Q(d−α
n u)+cε1(ε2‖d−α−2

n u‖2
2+cε2‖u‖2

2)

≤ ε1Q(d−α
n u)+cε1(cε2Q(d−α

n u)+cε2‖u‖2
2),

and therefore

|Tn(v)| ≤ εQ(d−α
n u)+cε‖u‖2

2(27)

for any ε>0 small. Choosing ε>0 so that γα+ε<1 we obtain from (26) and (27),

Q(d−α
n u)≤ 1

1−γα−ε
Q(u, d−2α

n u)+
cε

1−γα−ε
‖u‖2

2.

Hence (24) is valid for any k>1/(1−γα)=kα. �
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3.3. Small perturbations

In this subsection we prove a stability theorem on the validity of (Pα). We de-
note by M+ the cone of all coefficient matrices for the operators under consideration,
that is

M+ =
{
a = {aηζ}|η|=|ζ|=2 : aηζ is symmetric, real-valued and measurable

with λQ0(u)≤Q(u)≤ΛQ0(u), u∈C2
c (Ω) (λ, Λ>0)

}
,

equipped with the uniform norm

‖a‖∞ := ess sup |a(x)|∞ ;(28)

here |a(x)| is the norm of the matrix a(x)={aηζ(x)}η,ζ considered as an operator
on RN(N+1)/2. We recall that λ, λ̃, etc, denote the lower ellipticity constants for
the operators induced by the matrices a, ã, etc. We have the following result.

Lemma 10. There exists a computable constant c>0 such that for all α∈
(0, 1

2 ),

∫

Ω

|∇2(dα
nv)| |∇2(d−α

n v)| dx≤ cQ0(v), v ∈C2
c (Ω).

Note. For an estimate on the constant c see the remark at the end of this
subsection.

Proof. For any β∈R we have

(dβ
nv)xixj = dβvxixj +βdβ−1

n dxivxj +βdβ−1
n dxj vxi(29)

+β(β−1)dβ−2
n dxidxj v+βdβ−1

n dxixj v.

We write this for β=α and for β=−α, and we multiply the two relations; dα
n cancels

with d−α
n and we obtain

|∇2(ω−1
n v)| |∇2(ωnv)| ≤ c

(
|∇2v|2+

|∇v|2
d2

n

+
v2

d4
n

+
|∇2dn|2

d2
n

v2

)
.

The proof is concluded by using assumption (D2) on ∇2d and the Hardy–Rellich
inequalities (D3); here we have also used the fact that

∫
Ω |∇2v|2 dx=

∫
Ω(∆v)2 dx. �
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Proposition 11. Let α∈(0, 1
2 ) be fixed. Assume that (Pα) is valid for the

matrix a∈M+ relative to some distance d( · )∈D and let k, k′>0 be such that

Q(ωnu)≤ kQ
(
u, ω2

nu
)
+k′‖u‖2

2, n∈N, u∈C2
c (Ω).

Then there is a constant c>0 such that if ã∈M+ satisfies ‖ã−a‖∞<λ̃[(1+ck)]−1,
then (Pα) is also satisfied for ã relative to d( · ); more precisely, there exists k̃′<+∞
so that

Q̃(ωnu)≤ k

1−λ̃−1(1+ck)‖a−ã‖∞
Q̃

(
u, ω2

nu
)
+k̃′‖u‖2

2, n∈N, u∈C2
c (Ω).

Proof. We first note that

|Q̃(v)−Q(v)| ≤
∫

Ω

|ã−a| |∇2v|2 dx≤‖ã−a‖∞Q0(v), v ∈C2
c (Ω).(30)

Moreover, setting v=ωnu we have from Lemma 10,

|Q̃(u, ω2
nu)−Q(u, ω2

nu)|≤ ‖ã−a‖∞
∫

Ω

|∇2u| |∇2(ω2
nu)| dx(31)

= ‖ã−a‖∞
∫

Ω

|∇2(ω−1
n v)| |∇2(ωnv)| dx

≤ c‖ã−a‖∞Q0(v).

From (30) and (31) we conclude that for any n∈N and u∈C2
c (Ω) we have

Q̃(ωnu)≤Q(ωnu)+‖ã−a‖∞Q0(ωnu)

≤ kQ(u, ω2
nu)+k′‖u‖2

2+‖ã−a‖∞Q0(ωnu)

≤ k(Q̃(u, ω2
nu)+c‖ã−a‖∞Q0(ωnu))+k′‖u‖2

2+‖ã−a‖∞Q0(ωnu)

= kQ̃(u, ω2
nu)+(1+ck)‖ã−a‖∞Q0(ωnu)+k′‖u‖2

2

≤ kQ̃(u, ω2
nu)+λ̃−1(1+ck)‖ã−a‖∞Q̃(ωnu)+k′‖u‖2

2,

from which the statement of the lemma follows. �

Let G denote the cone of all coefficient matrices that satisfy assumptions (i)
and (ii) of Section 3.2. Let also kα be as in Theorem 9. Combining Proposition 11
and Theorem 9 we obtain immediately the following result.

Theorem 12. There exists a computable constant c>0 such that if for some
α∈(0, 1

2 ) the coefficient matrix a of the operator H satisfies

distL∞(a,G)<
λ

1+ckα
,

then (Pα) is satisfied for H.
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Proof. Let ã∈G be such that

‖a−ã‖∞ <
λ

1+ckα

By Theorem 9, (Pα) is satisfied for ã and (24) is valid for any k>kα. If in addition
k satisfies

‖a−ã‖∞ <
λ

1+ck
,

then (Pα) is also valid for a by Proposition 11. �

Example. Suppose that the coefficients aηζ are uniformly continuous and sat-
isfy (12.c). Then property (Pα) is valid for H for all α∈(0, 1

2 ). This is seen by
approximating aηζ with smooth functions using an approximate identity; note that
the approximating functions also satisfy (ii).

Remark. The constant c of the above proposition is precisely the constant c of
Lemma 10. Precise estimates for this constant can be easily obtained. Indeed, it
follows from (29) that for α∈(

0, 1
2

)
there holds modulo A

∫

Ω

|∇2(dα
nv)| |∇2(d−α

n v)| dx

≤ 3
∫

Ω

(
|∇2v|2+4α2|∇d|2 |∇v|2

d2
n

+α2(α+1)2|∇d|4 v2

d4
n

)
dx

≤ 3
∫

Ω

(
|∇2v|2+|∇d|2 |∇v|2

d2
n

+
9
16

|∇d|4 v2

d4
n

)
dx.

Hence, letting c2 and c3 be as in (D1) and (D3), we obtain (modulo A)
∫

Ω

|∇2(dα
nv)| |∇2(d−α

n v)| dx≤ 3
(

1+c2
2c

−1
3 +

9
16

c4
2c

−1
3

) ∫

Ω

(∆v)2 dx.

In fact, since we work modulo A, the last constant can be improved to become
3
(
1+c2

2A
−1+ 9

16c4
2B

−1
)
, where A and B are the weak Hardy constants, that is they

satisfy
∫

Ω

|∇v|2 dx≥A

∫

Ω

v2

d2
dx−c′

∫

Ω

v2 dx,

∫

Ω

(∆v)2 dx≥B

∫

Ω

v2

d4
dx−c′′

∫

Ω

v2 dx.

For smooth boundaries with a smooth Riemannian metric this amounts to A= 1
4

and B= 9
16 .
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4. An application: eigenvalue stability

In this final section we demonstrate how the boundary decay estimate of Theo-
rem 3 yield stability bounds on the eigenvalues {λn}∞n=1 of H under small perturba-
tions of the boundary ∂Ω. The proof follows closely the corresponding proof in [D2]
for the second-order case, however we include it here for the sake of completeness.
So we consider a distance function d( · )∈D, an operator H as above and assume
that the boundary decay estimates (10) are valid for some fixed α∈(0, 1

2 ). For ε>0
we define Ωε={x∈Ω:d(x)>ε}. We assume that ε<θ/2 so that d(x) is C2 on Ω\Ω2ε.
We define dε(x)=dist(x, ∂Ωε), x∈Ω, and make the additional assumption that there
exists c>0 such that for small enough ε>0,

|∇2dε| ≤ c on {x∈Ω : d(x)< 2ε}.(32)

Now, let Ω̃ be a domain such that

Ωε ⊂ Ω̃⊂Ω ;

we do not make any regularity assumptions on ∂Ω̃. We denote by {λ̃n}∞n=1 the
eigenvalues of the operator H̃ on L2(Ω̃), which is defined by restricting the quadratic
form Q( · ) on H2

0 (Ω̃).
Let φ be a non-negative, smooth, increasing function on R such that

φ(t)=

{
0, t≤0,

1, t≥1.

We define a C2 cut-off function τ on Ω by

τ(x)=

{
0, x∈Ω\Ωε,

φ(dε(x)/ε), x∈Ωε.

Note that τ(x)=1 when d(x)>2ε; moreover (32) yields

|τ(x)| ≤ 1, |∇τ(x)| ≤ cε−1 and |∇2τ(x)| ≤ cε−2.

Let us now denote by {φn}∞n=1 the normalized eigenfunctions of H . For n≥1
we set

Ln = span{φ1, ..., φn} and L̃n = span{τφ1, ..., τφn},

and observe that L̃n⊂H2
0 (Ω̃).
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Lemma 13. There exists a constant c>0 such that for all small ε>0 and all
u∈Dom(H),

|Q(τu)−Q(u)| ≤ cε2α‖Hu‖2‖Hα/2u‖2,(i)
∣∣‖τu‖2−‖u‖2

∣∣≤ cε2+α‖Hu‖1/2
2 ‖Hα/2u‖1/2

2 .(ii)

Proof. Let u∈Dom(H). On Ω2ε we have τ(x)=1, hence

|Q(τu)−Q(u)|=
∣∣∣∣
∫

Ω

∑

|η|=2
|ζ|=2

aηζ((Dη(τu))(Dζ (τu))−(Dηu)(Dζu)) dx

∣∣∣∣

≤ c

∫

d(x)<2ε

(|∇2(τu)|2+|∇2u|2) dx

≤ c

∫

d(x)<2ε

(|∇2u|2+|∇τ |2|∇u|2+|∇2τ |2u2) dx

≤ c

∫

d(x)<2ε

(|∇2u|2+ε−2|∇u|2+ε−4u2) dx

≤ cε2α

∫

d(x)<2ε

( |∇2u|2
d2α

+
|∇u|2
d2+2α

+
|u|2

d4+2α

)
dx,

from which (i) follows by means of Theorem 3. Similarly,

∣∣‖τu‖2−‖u‖2

∣∣2 ≤‖τu−u‖2
2≤

∫

d(x)<2ε

|u|2 dx

≤ ε4+2α

∫

d(x)<2ε

u2

d4+2α
dx≤ cε4+2α‖Hu‖2‖Hα/2u‖2,

from which (ii) follows. �

Theorem 14. Assume that there exists a distance function d∈D and an α∈
(0, 1

2 ) such that (10) is satisfied. Assume also that (32) is valid. Then there exists
c, c′>0 such that for each n≥1,

0 < λn ≤ λ̃n ≤λn+cλ5/4
n ε2α(33)

for all ε>0 satisfying ε2α<c′λ−5/4
n .

Proof. We fix n≥1. Since L̃n⊂H2
0 (Ω̃) we have by min-max

λ̃n ≤ sup
{
Q(v)/‖v‖2

2 : v ∈ L̃n

}
= sup

{
Q(τu)/‖τu‖2

2 : u∈Ln

}
.(34)
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Now, let u∈Ln be given. It follows from Lemma 13 (i) that

Q(τu)≤Q(u)+cε2α‖Hu‖2‖Hα/2u‖2 ≤Q(u)+cε2αλ5/4
n ‖u‖2

2.(35)

Similarly Lemma 13 (ii) gives

‖τu‖2
2 ≥‖u‖2

2−cε2+αλ5/8
n ‖u‖2(‖u‖2+‖τu‖2)≥‖u‖2

2−cε2+αλ5/8
n ‖u‖2

2.(36)

Assuming in addition that ‖u‖2=1 we thus obtain from (35) and (36) that

Q(τu)
‖τu‖2

2

≤ Q(u)+cε2αλ
5/4
n

1−cε2+αλ
5/8
n

≤Q(u)+cλ5/4
n ε2α ≤λn+cλ5/4

n ε2α,

where for the second inequality we have used the fact that ε2α<c′λ−5/4
n , with c′

small enough but fixed (and independent of n and ε). Hence (34) implies

λn ≤ λ̃n ≤λn+cλ5/4
n ε2α,

which completes the proof of the theorem. �

Remark. In the case where Ω=B(1) and Ω̃=B(1−ε) we have λ̃n=(1−ε)−4λn

and hence λ̃n−λn=4λn(ε+O(ε2)). Hence the value α= 1
2 is the best possible for

estimate (33).
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